Determination of Skin Friction Factor in Gravel Bed Rivers: Considering the Effect of Large-Scale Topographic Forms in Non-Uniform Flows
Abstract
:1. Introduction
2. Materials and Methods
3. Motivation and Objective
4. Methodology and Technical Approach
5. Field Study and Data Collection
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colosimo, C.; Copertino, V.A.; Veltri, M. Friction factor evaluation in gravel-bed rivers. J. Hydraul. Eng. 1988, 114, 861–876. [Google Scholar] [CrossRef]
- Rennie, C.D.; Millar, R.G. Discussion of “Estimation of Gravel-Bed River Flow Resistance” by Colin, D. Rennie and Robert, G. Millar. J. Hydraul. Eng. 1999, 125, 1317–1319. [Google Scholar] [CrossRef]
- Julien, P.Y.; Klaassen, G.J.; Ten Brinke, W.B.M.; Wilbers, A.W.E. Case study: Bed resistance of Rhine River during 1998 flood. J. Hydraul. Eng. 2002, 128, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Milukow, H.A.; Binns, A.D.; Adamowski, J.; Bonakdari, H.; Gharabaghi, B. Estimation of the Darcy–Weisbach friction factor for ungauged streams using Gene Expression Programming and Extreme Learning Machines. J. Hydrol. 2019, 568, 311–321. [Google Scholar] [CrossRef]
- Zhenlin Li, M. Direct skin friction measurements and stress partitioning over movable sand ripples. J. Geophys. Res. Ocean 1994, 99, 791–799. [Google Scholar] [CrossRef]
- Hey, R.D. Flow resistance in gravel-bed rivers. J. Hydraul. Div. 1979, 105, 365–379. [Google Scholar] [CrossRef]
- Kazem, M.; Afzalimehr, H.; Sui, J. Formation of Coherent Flow Structures beyond Vegetation Patches in Channel. Water 2021, 13, 2812. [Google Scholar] [CrossRef]
- Kazem, M.; Afzalimehr, H.; Sui, J. Characteristics of Turbulence in the Downstream Region of a Vegetation Patch. Water 2021, 13, 3468. [Google Scholar] [CrossRef]
- Juez, C.; Battisacco, E.; Schleiss, A.J.; Franca, M.J. Assessment of the performance of numerical modeling in reproducing a replenishment of sediments in a water-worked channel. Adv. Water Resour. 2016, 92, 10–22. [Google Scholar] [CrossRef]
- Franca, M.J.; Ferreira, R.M.; Lemmin, U. Parameterization of the logarithmic layer of double-averaged streamwise velocity profiles in gravel-bed river flows. Adv. Water Resour. 2008, 31, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Nikora, V.I.; Smart, G.M. Turbulence characteristics of New Zealand gravel-bed rivers. J. Hydraul. Eng. 1997, 123, 764–773. [Google Scholar] [CrossRef]
- Nikora, V.; Goring, D.; McEwan, I.; Griffiths, G. Spatially averaged open-channel flow over rough bed. J. Hydraul. Eng. 2001, 127, 123–133. [Google Scholar] [CrossRef]
- Yalin, M.S. Mechanics of Sediment Transport; Pergamon Press: New York, NY, USA, 1972; Volume 5, pp. 99–100. [Google Scholar]
- Afzalimehr, H.; Singh, V.P.; Najafabadi, E.F. Determination of form friction factor. J. Hydrol. Eng. 2010, 15, 237–243. [Google Scholar] [CrossRef]
- Afzalimehr, H.; Anctil, F. Vitesse de frottement associée à un écoulement non uniforme et une rugosité relative intermédiaire. J. Hydraul. Res. 2001, 39, 181–186. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Fundamentals of boundary-layer theory. In Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2000; pp. 29–49. [Google Scholar] [CrossRef]
- Yen, B.C. (Ed.) Channel Flow Resistance: Centennial of Manning’s Formula; Water Resources Publication, LLC.: Littleton, CO, USA, 1992. [Google Scholar]
- Bertin, S.; Groom, J.; Friedrich, H. Isolating roughness scales of gravel-bed patches. Water Resour. Res. 2017, 53, 6841–6856. [Google Scholar] [CrossRef]
- Mendicino, G.; Colosimo, F. Analysis of Flow Resistance Equations in Gravel-Bed Rivers with Intermittent Regimes: Calabrian fiumare Data Set. Water Resour. Res. 2019, 55, 7294–7319. [Google Scholar] [CrossRef]
- Luo, M.; Wang, X.; Yan, X.; Huang, E. Applying the mixing layer analogy for flow resistance evaluation in gravel-bed streams. J. Hydrol. 2020, 589, 125119. [Google Scholar] [CrossRef]
- Einstein, H.A. Flow on a movable bed. In Proceedings of the Second Hydraulics Conference, Iowa City, IA, USA, 1–4 June 1942; Howe, J.W., Rouse, H., Eds.; University of Iowa: Iowa City, IA, USA, 1943; pp. 332–341, Bulletin 27. [Google Scholar]
- Keulegan, G.H. Laws of turbulent flow in open channels. J. Res. Bur. Stand. 1938, 21, 707–741. [Google Scholar] [CrossRef]
- Ackers, P.; White, W.R. Sediment transport: New approach and analysis. J. Hydraul. Div. 1973, 99, 2041–2059. [Google Scholar] [CrossRef]
- van Rijn, L.C. Equivalent roughness of alluvial bed. J. Hydraul. Div. 1982, 108, 1215–1218. [Google Scholar] [CrossRef]
- Hammond, F.D.C.; Heathershaw, A.D.; Langhorne, D.N. A comparison between Shields’ threshold criterion and the movement of loosely packed gravel in a tidal channel. Sedimentology 1984, 31, 51–62. [Google Scholar] [CrossRef]
- Lamb, M.P.; Dietrich, W.E.; Venditti, J.G. Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? J. Geophys. Res. Earth Surf. 2008, 113, F02008. [Google Scholar] [CrossRef] [Green Version]
- Sarma, K.V.; Lakshminarayana, P.; Rao, N.L. Velocity distribution in smooth rectangular open channels. J. Hydraul. Eng. 1983, 109, 270–289. [Google Scholar] [CrossRef]
- Zagarola, M.V.; Perry, A.E.; Smits, A.J. Log laws or power laws: The scaling in the overlap region. Phys. Fluids 1997, 9, 2094–2100. [Google Scholar] [CrossRef] [Green Version]
- Gadbois, J.; Wilkerson, G. Uniform flow development length in a rough laboratory flume. In Proceedings of the World Environmental and Water Resources Congress 2014, Portland, OR, USA, 1–5 June 2014; pp. 1234–1242. [Google Scholar] [CrossRef]
- Wolman, M.G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Juez, C.; Soares-Frazao, S.; Murillo, J.; García-Navarro, P. Experimental and numerical simulation of bed load transport over steep slopes. J. Hydraul. Res. 2017, 55, 455–469. [Google Scholar] [CrossRef]
- Francalanci, S.; Solari, L.; Toffolon, M. Local high-slope effects on sediment transport and fluvial bed form dynamics. Water Resour. Res. 2009, 45, W05426. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.; Wilcock, P.R.; Paola, C.; Dietrich, W.E.; Pitlick, J. Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Papanicolaou, A.N.; Diplas, P.; Evaggelopoulos, N.; Fotopoulos, S. Stochastic incipient motion criterion for spheres under various bed packing conditions. J. Hydraul. Eng. 2002, 128, 369–380. [Google Scholar] [CrossRef]
- Schmeeckle, M.W.; Nelson, J.M. Direct numerical simulation of bedload transport using a local, dynamic boundary condition. Sedimentology 2003, 50, 279–301. [Google Scholar] [CrossRef]
- Zanke, U.C.E. On the influence of turbulence on the initiation of sediment motion. Int. J. Sediment Res. 2003, 18, 17–31. [Google Scholar]
- Wu, F.C.; Yang, K.H. Entrainment probabilities of mixed-size sediment incorporating near-bed coherent flow structures. J. Hydraul. Eng. 2004, 130, 1187–1197. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, S.; Kleinhans, M.G. Predicting incipient motion, including the effect of turbulent pressure fluctuations in the bed. Water Resour. Res. 2007, 43, W05410. [Google Scholar] [CrossRef] [Green Version]
River | Location | No. of Profiles | Avg. Depth (cm) | Avg. Umean (cm/s) | Avg. d50 (mm) | Avg. Fr | Avg. f | Average f’ (Keulegan) | Avg. Sf |
---|---|---|---|---|---|---|---|---|---|
Melodari | Italy | 14 | 13.6 | 64.9 | 20 | 0.554 | 1.204 | 0.101 | 0.038 |
Cerasia | Italy | 15 | 19.5 | 56 | 47 | 0.416 | 0.78 | 0.072 | 0.016 |
Valanidi | Italy | 8 | 15.8 | 61.4 | 35 | 0.502 | 1.089 | 0.086 | 0.026 |
Gallico | Italy | 13 | 24.5 | 72.2 | 52 | 0.470 | 1.182 | 0.088 | 0.028 |
Zayanderud | Iran | 5 | 73 | 77 | 10 | 0.291 | 0.092 | 0.044 | 0.001 |
Kaj | Iran | 8 | 27 | 63.9 | 10 | 0.396 | 0.153 | 0.042 | 0.004 |
Gamasyab | Iran | 24 | 30 | 84.2 | 19 | 0.287 | 0.107 | 0.043 | 0.003 |
Marbor | Iran | 13 | 22 | 92.6 | 17 | 0.433 | 0.116 | 0.050 | 0.006 |
ks | m | c1 | c2 | c3 | c4 | Pearson Correlation Coefficient | Equivalent Equation for Skin Friction Factor |
D50 | 0.013 | 0 | −0.8 | 0 | 0 | 0.89 | |
1.5 D50 | 0.014 | 0 | −0.85 | 0 | 0 | 0.93 | |
2 D50 | 0.015 | 0 | −0.9 | 0 | 0 | 0.94 | |
Lamb–Shields Method (Equation (13)) | 0.225 | 0 | −0.33 | 0.33 | 0 | 0.80 |
Station | IA | IC | IIA | IIB | IIC | IIIA | IIIB | IIIC | IVA | IVB | IVC | VA | VB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d50 (mm) | 20 | 22 | 21 | 17 | 23 | 17 | 13 | 16 | 20 | 16 | 19 | 19 | 16 |
d (cm) | 21 | 23 | 21 | 21 | 17 | 23 | 21 | 17 | 29 | 23 | 11 | 33 | 25 |
Umean (m/s) | 1.26 | 1.22 | 0.94 | 1.11 | 0.58 | 1.16 | 1.08 | 0.94 | 0.94 | 0.76 | 0.46 | 0.88 | 0.71 |
u* (m/s) | 0.16 | 0.17 | 0.14 | 0.162 | 0.092 | 0.098 | 0.086 | 0.074 | 0.095 | 0.094 | 0.036 | 0.14 | 0.075 |
Fr | 0.88 | 0.81 | 0.65 | 0.77 | 0.45 | 0.77 | 0.75 | 0.73 | 0.56 | 0.51 | 0.44 | 0.49 | 0.45 |
(m) | 0.034 | 0.043 | 0.049 | 0.048 | 0.038 | 0.024 | 0.024 | 0.014 | 0.049 | 0.033 | 0.008 | 0.082 | 0.043 |
(m) | 0.019 | 0.023 | 0.025 | 0.027 | 0.018 | 0.016 | 0.017 | 0.01 | 0.028 | 0.022 | 0.006 | 0.043 | 0.028 |
(-) | 0.123 | 0.153 | 0.175 | 0.168 | 0.199 | 0.056 | 0.050 | 0.049 | 0.082 | 0.123 | 0.048 | 0.195 | 0.090 |
(-) | 0.066 | 0.067 | 0.061 | 0.067 | 0.050 | 0.047 | 0.045 | 0.044 | 0.040 | 0.040 | 0.034 | 0.052 | 0.040 |
(-) | 0.057 | 0.086 | 0.114 | 0.101 | 0.148 | 0.009 | 0.005 | 0.005 | 0.042 | 0.083 | 0.014 | 0.143 | 0.049 |
Uniform (-) | 0.062 | 0.062 | 0.063 | 0.059 | 0.070 | 0.057 | 0.054 | 0.062 | 0.056 | 0.056 | 0.076 | 0.053 | 0.055 |
Section | I | II | III | IV | V | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Station | Left | Right | Left | Cent. | Right | Left | Cent. | Right | Left | Cent. | Right | Left | Cent. |
Calculated | 1.21 | 1.14 | 0.85 | 0.95 | 0.72 | 1.23 | 1.07 | 1.30 | 0.85 | 0.90 | 0.81 | 0.82 | 0.68 |
Measured | 1.18 | 1.11 | 0.83 | 0.93 | 0.71 | 1.22 | 1.07 | 1.30 | 0.78 | 0.77 | 0.87 | 0.81 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazem, M.; Afzalimehr, H.; Nazari-Sharabian, M.; Karakouzian, M. Determination of Skin Friction Factor in Gravel Bed Rivers: Considering the Effect of Large-Scale Topographic Forms in Non-Uniform Flows. Hydrology 2022, 9, 58. https://doi.org/10.3390/hydrology9040058
Kazem M, Afzalimehr H, Nazari-Sharabian M, Karakouzian M. Determination of Skin Friction Factor in Gravel Bed Rivers: Considering the Effect of Large-Scale Topographic Forms in Non-Uniform Flows. Hydrology. 2022; 9(4):58. https://doi.org/10.3390/hydrology9040058
Chicago/Turabian StyleKazem, Masoud, Hossein Afzalimehr, Mohammad Nazari-Sharabian, and Moses Karakouzian. 2022. "Determination of Skin Friction Factor in Gravel Bed Rivers: Considering the Effect of Large-Scale Topographic Forms in Non-Uniform Flows" Hydrology 9, no. 4: 58. https://doi.org/10.3390/hydrology9040058
APA StyleKazem, M., Afzalimehr, H., Nazari-Sharabian, M., & Karakouzian, M. (2022). Determination of Skin Friction Factor in Gravel Bed Rivers: Considering the Effect of Large-Scale Topographic Forms in Non-Uniform Flows. Hydrology, 9(4), 58. https://doi.org/10.3390/hydrology9040058