Modeling the Hydrologic Performance and Cost-Effectiveness of LID in a Residential Park Area Using a Decentralized Design Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Design Rainfall Scenarios
2.3. Hydrologic Model
2.4. Low Impact Development Strategies
2.5. Cost-Effectiveness Analysis
3. Results and Discussion
3.1. Runoff Reduction with Respect to Design Rainfall
3.2. Sizing Selection Based on Cost-Effectiveness Analysis
3.3. Rainfall-Runoff Characteristics of Each LID Scenario
3.4. Hydrologic and Hydraulic Performance of the Optimal Scenarios
3.4.1. Flow Reduction
3.4.2. Infiltration Improvement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brueckner, J.K.; Lall, S.V. Chapter 21—Cities in Developing Countries: Fueled by Rural–Urban Migration, Lacking in Tenure Security, and Short of Affordable Housing. In Handbook of Regional and Urban Economics; Duranton, G., Henderson, J.V., Strange, W.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 1399–1455. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2014 Revision. 2014. Available online: https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.Pdf (accessed on 13 March 2022).
- Butera, F.M. 1.3—Sustainable Neighborhood Design in Tropical Climates. In Urban Energy Transition, 2nd ed.; Droege, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 51–73. [Google Scholar] [CrossRef]
- Goonetilleke, A.; Lampard, J. Stormwater Quality, Pollutant Sources, Processes, and Treatment Options. In Approaches Water Sensitive Urban Des; Sharma, A.K., Gardner, T., Begbie, D., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 49–74. [Google Scholar] [CrossRef]
- Todeschini, S. Hydrologic and Environmental Impacts of Imperviousness in an Industrial Catchment of Northern Italy. J. Hydrol. Eng. 2016, 21, 05016013. [Google Scholar] [CrossRef]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Bolisetti, T.; Eckart, K.; McPhee, Z. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef]
- York, C.R.H.; Jacob, J.S. Chapter 8—Harnessing Green Infrastructure for Resilient, Natural Solutions. In Optimizing Community Infrastructure; Colker, R., Ed.; Butterworth-Heinemann: Woburn, MA, USA, 2020; pp. 147–164. [Google Scholar] [CrossRef]
- Newman, G.D. Chapter 5—Discovery initiatives. In Engaged Research for Community Resilience to Climate Change; Zandt, S.V., Masterson, J.H., Newman, G.D., Meyer, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–73. [Google Scholar] [CrossRef]
- Manda, A.K.; Klein, W.A. Chapter 17—Adaptation Strategies to Address Rising Water Tables in Coastal Environments Under Future Climate and Sea-Level Rise Scenarios. In Coastal Zone Management; Ramkumar, M., James, R.A., Menier, D., Kumaraswamy, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 403–409. [Google Scholar] [CrossRef]
- Dos Santos, M.F.N.; Barbassa, A.P.; Vasconcelos, A.F. Low impact development strategies for a low-income settlement: Balancing flood protection and life cycle costs in Brazil. Sustain. Cities Soc. 2021, 65, 102650. [Google Scholar] [CrossRef]
- Ariaratnam, S. Life cycle cost savings analysis on traditional drainage systems from low impact development strategies. Front. Eng. Manag. 2020, 8, 88–97. [Google Scholar] [CrossRef]
- Yang, W.; Brüggemann, K.; Seguya, K.D.; Ahmed, E.; Kaeseberg, T.; Dai, H.; Hua, P.; Zhang, J.; Krebs, P. Measuring performance of low impact development practices for the surface runoff management. Environ. Sci. Ecotechnol. 2020, 1, 100010. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Sci. Total Environ. 2018, 621, 915–929. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Nowak, W. Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework. J. Environ. Manag. 2019, 249, 109364. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Zhang, D.; Zheng, Y.; Li, S.; Tan, S.K. Life-cycle cost analysis and resilience consideration for coupled grey infrastructure and low-impact development practices. Sustain. Cities Soc. 2021, 75, 103358. [Google Scholar] [CrossRef]
- Roseen, R.; Ballestero, T.; Houle, J.; Avelleneda, P.; Wildey, R.; Briggs, J. Storm Water Low-Impact Development, Conventional Structural, and Manufactured Treatment Strategies for Parking Lot Runoff: Performance Evaluations Under Varied Mass Loading Conditions. Transp. Res. Rec. 2006, 1984, 135–147. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Multiobjective optimization of low impact development stormwater controls. J. Hydrol. 2018, 562, 564–576. [Google Scholar] [CrossRef]
- Saadatpour, M.; Delkhosh, F.; Afshar, A.; Solis, S.S. Developing a simulation-optimization approach to allocate low impact development practices for managing hydrological alterations in urban watershed. Sustain. Cities Soc. 2020, 61, 102334. [Google Scholar] [CrossRef]
- Islam, A.; Hassini, S.; El-Dakhakhni, W. A systematic bibliometric review of optimization and resilience within low impact development stormwater management practices. J. Hydrol. 2021, 599, 126457. [Google Scholar] [CrossRef]
- Amoruso, F.M.; Hwang, K.; Schuetze, T. Flood Resilient and Sustainable Urban Regeneration Using the Example of an Industrial Compound Conversion in Seoul, South Korea. Sustainability 2020, 12, 918. [Google Scholar] [CrossRef] [Green Version]
- Tobio, J.A.S.; Maniquiz-Redillas, M.C.; Kim, L.H. Application of SWMM in Evaluating the Reduction Performance of Urban Runoff Treatment Systems with Varying Land Use. In International Low Impact Development Conference 2015; American Society of Civil Engineers/ASCE: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Bae, C.; Lee, D.K. Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area. Int. J. Disaster Risk Reduct. 2020, 44, 101412. [Google Scholar] [CrossRef]
- Rong, G.; Hu, L.; Wang, X.; Jiang, H.; Gan, D.; Li, S. Simulation and evaluation of low-impact development practices in university construction: A case study of Anhui University of Science and Technology. J. Clean. Prod. 2021, 294, 126232. [Google Scholar] [CrossRef]
- City of Bacoor. Comprehensive Land Use Plan (2015–2024) and the Comprehensive Development Plan (2015–2020) of the City of Bacoor, Cavite. 2015. Available online: https://bacoor.gov.ph/wp-content/uploads/2017/04/CLUP-VOLUME-1-2015.pdf (accessed on 14 April 2021).
- Frias, R.A.; Maniquiz-Redillas, M. Modelling the applicability of Low Impact Development (LID) technologies in a university campus in the Philippines using Storm Water Management Model (SWMM). IOP Conf. Ser. Mater. Sci. Eng. 2021, 1153, 012009. [Google Scholar] [CrossRef]
- Murugappan, A.; Sivaprakasam, S.; Mohan, S. Ranking of Plotting Position Formulae in Frequency Analysis of Annual and Seasonal Rainfall at Puducherry, South India. Glob. J. Eng. Sci. Res. 2017, 4, 67–76. [Google Scholar] [CrossRef]
- Adeboye, O.; Alatise, M. Performance of Probability Distributions and Plotting Positions in Estimating the Flood of River Osun at Apoje Sub-Basin, Nigeria. Agric. Eng. Int. CIGR J. 2007, 9. Available online: https://cigrjournal.org/index.php/Ejounral/article/download/879/873/0 (accessed on 18 April 2021).
- Rossman, L.A. Storm Water Management Model. User’s Manual Version 5.1. U.S. Environmental Protection Agency. 2015. Available online: https://www.epa.gov/sites/default/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (accessed on 18 April 2021).
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. J. Flood Risk Manag. 2020, 13, 12625. [Google Scholar] [CrossRef]
- Guo, X.; Guo, Q.; Zhou, Z.; Du, P.; Zhao, D. Degrees of hydrologic restoration by low impact development practices under different runoff volume capture goals. J. Hydrol. 2019, 578, 124069. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Luan, Q.; Fu, X.; Song, C.; Wang, H.; Liu, J.; Wang, Y. Runoff Effect Evaluation of LID through SWMM in Typical Mountainous, Low-Lying Urban Areas: A Case Study in China. Water 2017, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Randall, M.; Sun, F.; Zhang, Y.; Jensen, M.B. Evaluating Sponge City volume capture ratio at the catchment scale using SWMM. J. Environ. Manag. 2019, 246, 745–757. [Google Scholar] [CrossRef]
- Dell, T.; Razzaghmanesh, M.; Sharvelle, S.; Arabi, M. Development and application of a SWMM-Based simulation model for municipal scale hydrologic assessments. Water 2021, 13, 1644. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Saleh, F. Sources and Impacts of Uncertainty in Uncalibrated Bioretention Models Using SWMM 5.1.012. J. Sustain. Water Built Environ. 2021, 7, 04021006. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Bombardelli, F.A.; Pitton, B.J.L.; Oki, L.R.; Haver, D.L.; Young, T.M. Uncertainty in the parameterization of sediment build-up and wash-off processes in the simulation of sediment transport in urban areas. Environ. Model. Softw. 2019, 111, 170–181. [Google Scholar] [CrossRef]
- Leimgruber, J.; Krebs, G.; Camhy, D.; Muschalla, D. Model-Based Selection of Cost-Effective Low Impact Development Strategies to Control Water Balance. Sustainability 2019, 11, 2440. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Broesicke, O.; Drew, B.; Li, D.; Crittenden, J. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia. Front. Environ. Sci. Eng. 2016, 10, 1. [Google Scholar] [CrossRef]
- Shannak, S. Assessment of Low-Impact development for managing aquatic ecosystem. Ecol. Indic. 2021, 132, 108235. [Google Scholar] [CrossRef]
- WorldBank. GDP (Current US$)—Philippines; WorldBank: Washington, DC, USA, 2020; Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=PH (accessed on 1 April 2022).
- Lee, S.; Maniquiz-Redillas, M.; Lee, J.; Mun, H.; Kim, L.-H. Lifecycle cost assessment of best management practices for diffuse pollution control in Han River Basin. J. Wetl. Res. 2016, 18, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Jawad, D.; Ozbay, K. The Discount Rate in Life Cycle Cost Analysis of Transportation Projects. National Academy of Science. 2006. Available online: https://www.rits.rutgers.edu/files/discountrate_lifecycle.pdf (accessed on 18 September 2021).
- Choi, J.; Maniquiz-Redillas, M.; Geronimo, F.K.; Lee, S.; Lee, B.; Kim, L.-H. Development of a horizontal subsurface flow modular constructed wetland for urban runoff treatment. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2012, 66, 1950–1957. [Google Scholar] [CrossRef]
- Maniquiz-Redillas, M.C.; Choi, J.; Jeon, J.C.; Hong, J.; Flores, P.E.; Noh, T.; Lee, S.T.; Choi, H.; Alihan, J.C.; Kim, L. Low impact stormwater management in urban landuses using small-decentralized system approach: Features of the first ‘green’ campus in Korea. In Proceedings of the 9th International Conference on Planning and Technologies for Sustainable Management of Water in the City, Lyon, France, 1–5 July 2016. [Google Scholar]
- Rezazadeh Helmi, N.; Verbeiren, B.; Mijic, A.; van Griensven, A.; Bauwens, W. Developing a modeling tool to allocate Low Impact Development practices in a cost-optimized method. J. Hydrol. 2019, 573, 98–108. [Google Scholar] [CrossRef]
- Ben-Daoud, A.; Ben-Daoud, M.; Moroșanu, G.A.; M’Rabet, S. The use of low impact development technologies in the attenuation of flood flows in an urban area: Settat city (Morocco) as a case. Environ. Chall. 2022, 6, 100403. [Google Scholar] [CrossRef]
- Son, C.; Hyun, K.; Kim, D.; Baek, J.; Ban, Y. Development and Application of a Low Impact Development (LID)-Based District Unit Planning Model. Sustainability 2017, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Li, S.; Cui, C.-H.; Yang, S.-S.; Ding, J.; Wang, G.-Y.; Bai, S.-W.; Zhao, L.; Cao, G.-L.; Ren, N.-Q. Runoff control simulation and comprehensive benefit evaluation of low-impact development strategies in a typical cold climate area. Environ. Res. 2022, 206, 112630. [Google Scholar] [CrossRef]
- Locatelli, L.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Deletic, A.; Roldin, M.; Binning, P.J. Hydrologic impact of urbanization with extensive stormwater infiltration. J. Hydrol. 2017, 544, 524–537. [Google Scholar] [CrossRef] [Green Version]
Sub-Catchment Name | Approximate Area (m2) | Impervious Cover (%) | Average Slope (%) | Overland Flow Width (m) |
---|---|---|---|---|
S1 | 119.4 | 87 | 0.1 | 10.93 |
S2 | 220.2 | 76 | 0.1 | 14.84 |
S3 | 137.9 | 80 | 0.1 | 11.74 |
S4 | 460.2 | 42 | 0.1 | 21.45 |
S5 | 75.80 | 100 | 0.1 | 8.706 |
S6 | 76.42 | 100 | 0.1 | 8.742 |
Scenario Code | Applied LID Control | Placement on the Site | Percentage of the Park Captured (%) |
---|---|---|---|
BR | Bioretention | Lawn | 43.8 |
IT | Infiltration Trench | Greeneries | 42.2 |
PP | Permeable Pavement | Parking Lot | 14.0 |
BR + IT | Bioretention and Infiltration Trench | Lawn and Greeneries | 86.0 |
BR + PP | Bioretention and Permeable Pavement | Parking Lot and Lawn | 57.8 |
IT + PP | Infiltration Trench and Permeable Pavement | Parking Lot, Greeneries, and Lawn | 56.2 |
BR + IT + PP | Bioretention, Infiltration Trench, and Permeable Pavement | Lawn, Greeneries, and Parking Lot | 100 |
Plotting Position | 80th Percentile (mm) | 90th Percentile (mm) | 95th Percentile (mm) | 99th Percentile (mm) |
---|---|---|---|---|
California | 4.386 | 16.08 | 33.93 | 86.14 |
Hazen | 4.473 | 16.41 | 34.73 | 91.90 |
Weibull | 4.517 | 16.64 | 35.44 | 99.44 |
Chegodayev | 4.488 | 16.49 | 35.01 | 94.51 |
Blom | 4.474 | 16.42 | 34.81 | 92.66 |
Scenario | Rainfall Percentile | Optimistic Cost Estimate | Pessimistic Cost Estimate | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR | IT | PP | BR | IT | PP | ||||||||
Approx. SA/CA | Approx. Size (m2) | Approx. SA/CA | Approx. Size (m2) | Approx. SA/CA | Approx. Size (m2) | Approx. SA/CA | Approx. Size (m2) | Approx. SA/CA | Approx. Size (m2) | Approx. SA/CA | Approx. Size (m2) | ||
BR | 80% | 0.011 | 5 | - | - | - | - | 0.011 | 5 | - | - | - | - |
90% | 0.011 | 5 | - | - | - | - | 0.011 | 5 | - | - | - | - | |
95% | 0.011 | 5 | - | - | - | - | 0.011 | 5 | - | - | - | - | |
99% | 0.011 | 5 | - | - | - | - | 0.011 | 5 | - | - | - | - | |
IT | 80% | - | - | 0.010 | 5 | - | - | - | - | 0.010 | 5 | - | - |
90% | - | - | 0.010 | 5 | - | - | - | - | 0.010 | 5 | - | - | |
95% | - | - | 0.010 | 5 | - | - | - | - | 0.010 | 5 | - | - | |
99% | - | - | 0.010 | 5 | - | - | - | - | 0.010 | 5 | - | - | |
PP | 80% | - | - | - | - | 0.033 | 5 | - | - | - | - | 0.033 | 5 |
90% | - | - | - | - | 0.066 | 10 | - | - | - | - | 0.066 | 10 | |
95% | - | - | - | - | 0.033 | 5 | - | - | - | - | 0.033 | 5 | |
99% | - | - | - | - | 0.066 | 10 | - | - | - | - | 0.066 | 10 | |
BR + IT | 80% | 0.011 | 5 | 0.010 | 5 | - | - | 0.011 | 5 | 0.010 | 5 | - | - |
90% | 0.011 | 5 | 0.021 | 10 | - | - | 0.011 | 5 | 0.021 | 10 | - | - | |
95% | 0.011 | 5 | 0.031 | 15 | - | - | 0.011 | 5 | 0.031 | 15 | - | - | |
99% | 0.011 | 5 | 0.084 | 40 | - | - | 0.011 | 5 | 0.084 | 40 | - | - | |
BR + PP | 80% | 0.011 | 5 | - | - | 0.066 | 10 | 0.011 | 5 | - | - | 0.066 | 10 |
90% | 0.011 | 5 | - | - | 0.131 | 20 | 0.011 | 5 | - | - | 0.131 | 20 | |
95% | 0.011 | 5 | - | - | 0.263 | 40 | 0.011 | 5 | - | - | 0.263 | 40 | |
99% | 0.011 | 5 | - | - | 0.657 | 100 | 0.011 | 5 | - | - | 0.657 | 100 | |
PP + IT | 80% | - | - | 0.010 | 5 | 0.033 | 5 | - | - | 0.010 | 5 | 0.033 | 5 |
90% | - | - | 0.010 | 5 | 0.131 | 20 | - | - | 0.010 | 5 | 0.131 | 20 | |
95% | - | - | 0.010 | 5 | 0.131 | 20 | - | - | 0.010 | 5 | 0.131 | 20 | |
99% | - | - | 0.010 | 5 | 0.263 | 40 | - | - | 0.010 | 5 | 0.263 | 40 | |
BR + IT + PP | 80% | 0.011 | 5 | 0.010 | 5 | 0.033 | 5 | 0.011 | 5 | 0.010 | 5 | 0.033 | 5 |
90% | 0.011 | 5 | 0.010 | 5 | 0.131 | 20 | 0.011 | 5 | 0.010 | 5 | 0.131 | 20 | |
95% | 0.011 | 5 | 0.010 | 5 | 0.328 | 50 | 0.011 | 5 | 0.010 | 5 | 0.328 | 50 | |
99% | 0.011 | 5 | 0.010 | 5 | 0.328 | 50 | 0.011 | 5 | 0.010 | 5 | 0.328 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbanzos, S.; Maniquiz-Redillas, M. Modeling the Hydrologic Performance and Cost-Effectiveness of LID in a Residential Park Area Using a Decentralized Design Approach. Hydrology 2022, 9, 62. https://doi.org/10.3390/hydrology9040062
Garbanzos S, Maniquiz-Redillas M. Modeling the Hydrologic Performance and Cost-Effectiveness of LID in a Residential Park Area Using a Decentralized Design Approach. Hydrology. 2022; 9(4):62. https://doi.org/10.3390/hydrology9040062
Chicago/Turabian StyleGarbanzos, Sergi, and Marla Maniquiz-Redillas. 2022. "Modeling the Hydrologic Performance and Cost-Effectiveness of LID in a Residential Park Area Using a Decentralized Design Approach" Hydrology 9, no. 4: 62. https://doi.org/10.3390/hydrology9040062
APA StyleGarbanzos, S., & Maniquiz-Redillas, M. (2022). Modeling the Hydrologic Performance and Cost-Effectiveness of LID in a Residential Park Area Using a Decentralized Design Approach. Hydrology, 9(4), 62. https://doi.org/10.3390/hydrology9040062