Change in Winter Precipitation Regime across Ontario, Canada
Abstract
:1. Introduction
2. Methodology
2.1. Selection of Stations and Periods of Record
2.2. Description of Statistical Analysis
2.2.1. Mann–Kendall Test
2.2.2. Alexandersson’s Standard Normal Homogeneity Test (SNHT)
2.2.3. Linear Regression Analysis
2.2.4. Correlation Analysis
2.2.5. Pre-Whitening and Sen’s Slope Techniques
3. Results and Discussion
3.1. Spatial Trend in Winter Precipitation, Snowfall, and Rainfall during Winter
3.1.1. Spatial Variation of Winter Precipitation
3.1.2. Spatial Variation in Winter Snowfall
3.1.3. Spatial Variation of Winter Rainfall
3.2. Effects of Variations in Winter Temperature on Precipitation, Snowfall, and Rainfall
3.2.1. Temporal Variation in Winter Precipitation
3.2.2. Temporal Trend of Winter Snowfall
3.2.3. Temporal Trend of Winter Rainfall
3.3. Variations in Winter Temperature and Precipitation
3.3.1. Trend of Winter Precipitation, Rainfall, and Snowfall
3.3.2. Spatial Variability in Winter Temperature
3.3.3. Temporal Trends of Winter Minimum Mean Temperature
3.3.4. Correlations of Daily Mean Temperature and Winter Precipitation
3.3.5. Variability of Number of Snowy days
3.3.6. Number of Rainy Days in Space and Time
3.4. Central Tendency and Variability in the Proportions of Winter Rainfall and Snowfall
4. Possible Hydrological Implications
5. Conclusions
- (a)
- There is a significant spatial variation in the total winter precipitation in Ontario. There are also significant temporal trends in the total winter precipitation. At some stations, there is a slight increase and at other stations a slight decrease in the total precipitation. Essentially, the total winter precipitation remained unchanged during the study period.
- (b)
- The mean winter snowfall across the province shows a large scatter ranging from 119.2 mm to 330.6 mm. The scatter is much greater for the southwestern region. The winter rainfall across the province varies from 39.6 mm to 316.9 mm with a coefficient of variation ranging from 0.20 to 0.69, with a mean of 0.33, revealing that at each station about two-thirds of the time, the annual winter rainfall values are within ± 33% of the mean. The snowfall is decreasing and winter rainfall is increasing at most of the stations. The winter mean rainfall decreases northward in the province.
- (c)
- The snowy day analysis depicts a large scatter across the province, with the average number varying from 40 days to 80 days; this analysis also shows that the number of snowy days varies considerably from year to year at all stations.
- (d)
- The changes in the precipitation regime will have future hydrological implications for water management.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Environmental Protection Agency. 2010. Available online: https://www.epa.gov/climate-indicators (accessed on 5 March 2021).
- USEPA (U.S. Environmental Protection Agency). Available online: www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 23 June 2021).
- Nerantzaki, S.D.; Efstathiou, D.; Giannakis, G.V.; Kritsotakis, M.; Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K.; Nikolaidis, N.P. Climate change impact on the hydrological budget of a large Mediterranean island. Hydrol. Sci. J. 2019, 64, 1190–1203. [Google Scholar] [CrossRef]
- Cunderlik, J.M.; Simonovic, S.P. Hydrological Extremes in a Southwestern Ontario River Basin under Future Climate Conditions. J. Hydrol. Sci. 2005, 50, 631–654. [Google Scholar] [CrossRef]
- Bonsal, B.R.; Zhang, X.; Vincent, L.A.; Hogg, W.D. Characteristics of Daily and Extreme Temperatures Over Canada. J. Clim. 2001, 14, 1959–1976. [Google Scholar] [CrossRef]
- Bonell, M.; Sumner, G. Autumn and Winter Daily Precipitation in Wales, 1982–1983 to 1986–1987. Int. J. Climatol. 1992, 12, 77–102. [Google Scholar] [CrossRef]
- Folland, C.K.; Karl, T.R.; Vinnikov, K.Y. Observed Climate Variations and Change. In Climate Change: The Scientific Basis; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK, 1993; pp. 195–238. [Google Scholar]
- Jones, P.D.; Conway, D. Precipitation in the British Isles: An Analysis of the Area-Average Data Updated to 1995. Int. J. Climatol. 1997, 17, 427–438. [Google Scholar] [CrossRef]
- Vega, A.J.; Sui, C.H.; Lau, K.M. Interannual to Interdecadal Variations of the Regionalized Surface Climate of the United States and Relationships to Generalized Flow Parameters. Phys. Geogr. 1998, 19, 271–291. [Google Scholar] [CrossRef]
- Salinger, M.J.; Mullan, A.B. New Zealand: Temperature and precipitation variations and their links with atmospheric circulation 1930–1994. Int. J. Climatol. 1999, 18, 1049–1071. [Google Scholar] [CrossRef]
- Lee, S.E.; Press, M.C.; Lee, J.A. Observed Climate Variations During the Last 100 Years in Lapland, Northern Finland. Int. J. Climatol. 2000, 20, 329–346. [Google Scholar] [CrossRef]
- Osborn, T.J.; Hulme, M.; Jones, P.D.; Basnett, T.A. Observed Trends in the Daily Intensity of United Kingdom Precipitation. Int. J. Climatol. 2000, 20, 347–364. [Google Scholar] [CrossRef]
- Zhang, X.; Vincent, L.A.; Hogg, W.D.; Niitsoo, A. Temperature and Precipitation Trends in Canada during the 20th Century. Atmos. Ocean 2000, 38, 395–429. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Udall, B. Climate change and the aridification of North America. Proc. Natl. Acad. Sci. USA 2020, 117, 11856–11858. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate change and drought: From past to future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Padrón, R.S.; Gudmundsson, L.; Decharme, B.; Ducharne, A.; Lawrence, D.M.; Mao, J.; Peano, D.; Krinner, G.; Kim, H.; Seneviratne, S.I. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 2020, 13, 477–481. [Google Scholar] [CrossRef]
- Mekis, E.; Hogg, W.D. Rehabilitation and Analysis of Canadian Daily Precipitation Time Series. Atmos. Ocean 1999, 37, 53–85. [Google Scholar] [CrossRef]
- Vincent, L.A.; Mekis, É. Changes in Daily and Extreme Temperature and Precipitation Indices for Canada Over the Twentieth Century. Atmos. Ocean 2006, 44, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Krasting, J.P.; Broccoli, A.J.; Dixon, K.W.; Lanzante, J.R. Future changes in Northern Hemisphere snowfall. J. Clim. 2013, 26, 7813–7828. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, P.A. Contrasting responses of mean and extreme snowfall to climate change. Nature 2014, 512, 416–418. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.P.; Huang, Y.; Li, Z.; Chen, M. Drought Monitoring of Southwestern China Using Insufficient GRACE Data for the Long-term Mean Reference Frame under Global Change. J. Clim. 2018, 31, 6897–6911. [Google Scholar] [CrossRef]
- Homsi, R.; Shiru, M.S.; Shahid, S.; Ismail, T.; Harun, S.B.; Al-Ansari, N.; Chau, K.W.; Yaseen, Z.M. Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Eng. Appl. Comput. Fluid Mech. 2020, 14, 90–106. [Google Scholar] [CrossRef]
- Sharafati, A.; Elnaz, P. A strategy to assess the uncertainty of a climate change impact on extreme hydrological events in the semi-arid Dehbar catchment in Iran. Theor. Appl. Climatol. 2020, 139, 389–402. [Google Scholar] [CrossRef]
- Government of Canada. Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/quarterly-bulletins/great-lakes-march-2015.html (accessed on 14 July 2020).
- Vincent, L.A.; Wang, X.L.; Milewska, E.J.; Wan, H.; Yang, F.; Swail, V. A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J. Geophys. Res. Atmos. 2012, 117, 1–13. [Google Scholar] [CrossRef]
- Allen, M.J.S.; William, A.; Mohsin, T. Changes in the frequency of extreme temperature records for Toronto, Ontario, Canada. Theor. Appl. Climatol. 2015, 119, 481–491. [Google Scholar] [CrossRef]
- Mekis, É.; Vincent, L.A. An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos. Ocean 2011, 49, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Vincent, L.A.; Zhang, X.; Mekis, É.; Wan, H.; Bush, E.J. Changes in Canada’s Climate: Trends in Indices Based on Daily Temperature and Precipitation Data. Atmos. Ocean 2018, 56, 332–349. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Gan, T.Y. Contribution of human and climate change impacts to changes in streamflow of Canada. Sci. Rep. 2015, 5, 17767. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [Google Scholar] [CrossRef]
- Wang, X.; Huang, G.; Liu, J. Observed regional climatic changes over Ontario, Canada, in response to global warming. Meteorol. Appl. 2016, 23, 140–149. [Google Scholar] [CrossRef]
- Suriano, Z.J.; Leathers, D.J. Synoptic climatology of lake-effect snowfall conditions in the eastern Great Lakes region. Int. J. Climatol. 2017, 37, 4377–4389. [Google Scholar] [CrossRef]
- Pope, A.W. Ontario’s Water Resources; Ontario Government: Ontario, ON, Canada, 1984; pp. 34–42.
- Marwaha, T. Change in Minimum Temperature and Frost Free Days Across Southern Ontario; School of Engineering, University of Guelph: Guelph, ON, Canada, 2011. [Google Scholar]
- Goossens, C.; Berger, A. Annual and Seasonal Climatic Variations over the Northern Hemisphere and Europe during the Last Century. Ann. Geophys. 1986, 4, 385–399. [Google Scholar]
- Önöz, B.; Bayazit, M. The Power of Statistical Tests for Trend Detection. Turk. J. Eng. Environ. Sci. 2003, 2, 247–251. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; p. 202. [Google Scholar]
- Weather Phenomenon and Elements. Available online: www.heidorn.info/keith/weather/elements/lkefsnw3.htm (accessed on 13 April 2021).
- Ahmed, S.I.; Rudra, R.; Dickinson, T.; Ahmed, M. Trend and Periodicity of Temperature Time Series in Ontario. Am. J. Clim. Chang. 2014, 3, 272–288. [Google Scholar] [CrossRef] [Green Version]
S. No. | Station | Latitude | Longitude | Altitude | Daily Record Period |
---|---|---|---|---|---|
1 | Sioux Lookout | 50.12 | −91.90 | 383.4 | 1939–2008 |
2 | Kenora | 49.79 | −94.37 | 409.7 | 1939–2008 |
3 | Thunder Bay | 48.37 | −89.33 | 199 | 1942–1992 |
4 | North Bay | 46.36 | −79.42 | 370.3 | 1940–2008 |
5 | Ottawa | 45.38 | −75.72 | 79.2 | 1939–2006 |
6 | Brockville | 44.6 | −75.67 | 96 | 1966–2006 |
7 | Owen Sound | 44.58 | −80.93 | 178.9 | 1965–2006 |
8 | Kingston | 44.24 | −76.48 | 76.5 | 1978–2006 |
9 | Fergus | 43.73 | −80.33 | 417.6 | 1940–2006 |
10 | Toronto Pearson | 43.68 | −79.63 | 173.4 | 1940–2008 |
11 | Stratford | 43.37 | −81 | 345 | 1960–2006 |
12 | London | 43.03 | −81.15 | 278 | 1941–2001 |
13 | Windsor | 42.28 | −82.96 | 189.6 | 1941–2008 |
Station | No. of Readings (n) | Mann–Kendall Trend Analysis | ||
---|---|---|---|---|
p-Value | Sen’s Slope (°C/year) | Trend | ||
Sioux Lookout | 70 | 0.07 | 0.02 | No Trend |
Kenora | 70 | 0.02 | 0.02 | Positive |
Thunder Bay | 51 | 0.67 | 0.01 | No Trend |
North Bay | 69 | 0.09 | 0.01 | No Trend |
Ottawa | 68 | 0.001 | 0.01 | Positive |
Brockville | 41 | 0.001 | 0.06 | Positive |
Owen Sound | 42 | 0.03 | 0.03 | Positive |
Kingston | 29 | 0.13 | 0.05 | No Trend |
Fergus | 67 | 0.00 | 0.02 | Positive |
Toronto | 69 | 0.10 | 0.02 | No Trend |
Stratford | 47 | <0.0001 | 0.04 | Positive |
London | 61 | 0.35 | 0.01 | No Trend |
Windsor | 68 | 0.02 | 0.02 | Positive |
Station | Statistics | ||||||||
---|---|---|---|---|---|---|---|---|---|
Precipitation | Snowfall | Rainfall | |||||||
Mean | Sd * | Cv ** | Mean | Sd | Cv | Mean | Sd | Cv | |
Sioux Lookout | 229.5 | 48.2 | 0.21 | 190 | 45.16 | 0.24 | 39.6 | 27.23 | 0.69 |
Kenora | 190.8 | 45.93 | 0.24 | 150.9 | 43.43 | 0.29 | 39.9 | 23.4 | 0.59 |
Thunder Bay | 261.3 | 76.48 | 0.29 | 175.9 | 71.47 | 0.41 | 85.4 | 40.58 | 0.48 |
North Bay | 434.3 | 73.3 | 0.17 | 251.5 | 56.92 | 0.23 | 182.9 | 59.69 | 0.33 |
Ottawa | 397.0 | 55.21 | 0.14 | 174.8 | 47.95 | 0.27 | 215.4 | 58.24 | 0.27 |
Brockville | 466.4 | 72.77 | 0.16 | 195.6 | 62.71 | 0.32 | 270.9 | 69.12 | 0.26 |
Owen Sound | 579.6 | 100 | 0.17 | 330.6 | 94.48 | 0.29 | 249 | 67.94 | 0.27 |
Kingston | 476.6 | 59.67 | 0.13 | 159.7 | 50.03 | 0.31 | 316.9 | 64.55 | 0.2 |
Fergus | 417.1 | 84.31 | 0.2 | 164.4 | 52.7 | 0.32 | 252.7 | 66.55 | 0.26 |
Toronto Pearson | 353.2 | 57.96 | 0.16 | 119.2 | 36.24 | 0.3 | 234 | 52.97 | 0.23 |
Stratford | 530.5 | 101.1 | 0.19 | 237.1 | 76.97 | 0.32 | 293.3 | 66.41 | 0.23 |
London | 468.1 | 79.65 | 0.17 | 293.52 | 68.09 | 0.23 | 174.62 | 45.68 | 0.26 |
Windsor | 406.9 | 79.22 | 0.19 | 299.38 | 69.34 | 0.23 | 107.48 | 36.69 | 0.34 |
Station | Linear Regression | Mann–Kendall Statistics | ||||
---|---|---|---|---|---|---|
Precipitation | Snowfall | Rainfall | Precipitation | Snowfall | Rainfall | |
Slope (mm/year) | Slope (mm/year) | Slope (mm/year) | Trend | Trend | Trend | |
Sioux Lookout | −0.08 | −0.40 | 0.32 | D * | D * | I * |
Kenora | −0.66 | −0.84 | 0.18 | D † | D † | I * |
Thunder Bay | −2.11 | −2.23 | 0.12 | D † | D * | I * |
North Bay | 0.04 | −0.93 | 0.97 | I * | I * | I † |
Ottawa | 0.08 | −0.60 | 0.67 | I * | D † | I * |
Brockville | −0.44 | −1.73 | 1.29 | D * | D † | I * |
Owen Sound | 2.77 | 0.05 | 2.71 | I † | I * | I † |
Kingston | −1.17 | −0.63 | −0.55 | D * | D * | D * |
Fergus | 0.28 | −0.69 | 0.97 | I * | D † | I † |
Toronto Pearson | 0.19 | −0.48 | 0.67 | I * | D † | I † |
Stratford | 0.45 | −0.91 | 1.36 | I * | D * | I † |
London | 0.23 | −0.64 | 0.87 | I * | I * | I * |
Windsor | 1.21 | 0.68 | 0.9 | I † | I † | I † |
Station | Winter Rainfall versus Winter Mean Minimum Temperature | Winter Snowfall versus Winter Mean Minimum Temperature | ||||
---|---|---|---|---|---|---|
Slope (mm/°C) | R-Square | Trend | Slope mm/°C | R-Square | Trend | |
Sioux Lookout | 1.74 | 0.01 | I † | −7.74 | 0.10 | D ‡ |
Kenora | 2.55 | 0.04 | I | −9.85 | 0.18 | D |
Thunder Bay | 9.61 | 0.13 | I | −17.28 | 0.24 | D |
North Bay | 15.94 | 0.13 | I | −15.85 | 0.13 | D |
Ottawa | 19.07 | 0.24 | I | −18.95 | 0.32 | D |
Brockville | 11.86 | 0.06 | I | −25.72 | 0.35 | D |
Owen Sound | 23.87 | 0.21 | I | −30.69 | 0.17 | D |
Kingston | 6.77 | 0.02 | I | −16.15 | 0.17 | D |
Fergus | 19.59 | 0.19 | I | −10.70 | 0.12 | D |
Toronto Pearson | 14.85 | 0.13 | I | −11.66 | 0.23 | D |
Stratford | 22.89 | 0.21 | I | −24.02 | 0.17 | D |
London | 11.18 | 0.04 | I | −12.18 | 0.17 | D |
Windsor | 22.16 | 0.13 | I | −8.26 | 0.08 | D |
Station | Snowy Day | Rainy Day | ||||
---|---|---|---|---|---|---|
Mean 1 | Sd 2 | Cv 3 | Mean 1 | Sd 2 | Cv 3 | |
Sioux Lookout | 74 | 11.28 | 0.15 | 13 | 4.95 | 0.38 |
Kenora | 67 | 9.82 | 0.15 | 12 | 3.96 | 0.33 |
Thunder Bay | 60 | 8.84 | 0.15 | 18 | 4.9 | 0.27 |
North Bay | 80 | 10.17 | 0.13 | 34 | 8.6 | 0.25 |
Ottawa | 50 | 9.96 | 0.20 | 38 | 8.26 | 0.22 |
Brockville | 43 | 8.95 | 0.21 | 45 | 7.75 | 0.17 |
Owen Sound | 63 | 13.96 | 0.22 | 44 | 8.24 | 0.19 |
Kingston | 40 | 8.64 | 0.22 | 52 | 9.54 | 0.18 |
Fergus | 51 | 13.26 | 0.26 | 40 | 10.89 | 0.27 |
Toronto Pearson | 46 | 9.64 | 0.21 | 43 | 7.49 | 0.17 |
Stratford | 57 | 13 | 0.23 | 43 | 7.77 | 0.18 |
London | 65 | 12.71 | 0.20 | 48 | 7.05 | 0.15 |
Windsor | 44 | 9.64 | 0.22 | 48 | 8.53 | 0.18 |
Station | Snowy Day | Rainy Day | ||||||
---|---|---|---|---|---|---|---|---|
Linear Regression | Mann–Kendall | Linear Regression | Mann–Kendall | |||||
Slope (day/year) | R2 | Trend | Slope (day/year) | R2 | Trend | |||
Sneyers (1990) | Onoz & Bayazit (2003) | Sneyers (1990) | Onoz & Bayazit (2003) | |||||
Sioux Lookout | −0.02 | 0.00 | D * | D † | −0.01 | 0.00 | D † | D † |
Kenora | −0.01 | 0.00 | D * | D * | 0.06 | 0.09 | I * | I * |
Thunder Bay | −0.07 | 0.01 | D * | D * | 0.08 | 0.05 | I * | I * |
North Bay | −0.15 | 0.04 | D * | D * | 0.02 | 0.00 | I * | I * |
Ottawa | 0.06 | 0.02 | I * | I * | 0.16 | 0.15 | I † | I † |
Brockville | 0.03 | 0.00 | I * | I * | 0.19 | 0.08 | I * | I * |
Owen Sound | −0.25 | 0.05 | D * | D * | 0.35 | 0.27 | I * | I * |
Kingston | −0.08 | 0.01 | D * | D * | −0.12 | 0.01 | D * | I * |
Fergus | 0.40 | 0.34 | I † | I † | 0.43 | 0.59 | I † | I † |
Toronto | 0.12 | 0.03 | I * | I * | 0.19 | 0.14 | I † | I † |
Stratford | −0.35 | 0.14 | D † | D † | 0.11 | 0.04 | I * | I * |
London | −0.03 | 0.00 | D * | D * | 0.10 | 0.07 | I * | I * |
Windsor | 0.14 | 0.05 | I * | I * | 0.09 | 0.03 | I † | I † |
Station | Winter Rainfall/Precipitation (R/P) | Winter Snowfall/Precipitation (S/P) | ||||
---|---|---|---|---|---|---|
Mean | Sd | Cv | Mean | Sd | Cv | |
Sioux Lookout | 0.17 | 0.11 | 0.65 | 0.86 | 0.11 | 0.13 |
Kenora | 0.21 | 0.11 | 0.52 | 0.85 | 0.13 | 0.15 |
Thunder Bay | 0.33 | 0.14 | 0.42 | 0.78 | 0.18 | 0.23 |
North Bay | 0.42 | 0.11 | 0.26 | 0.65 | 0.11 | 0.17 |
Ottawa | 0.55 | 0.12 | 0.22 | 0.50 | 0.13 | 0.26 |
Brockville | 0.58 | 0.11 | 0.19 | 0.42 | 0.12 | 0.29 |
Owen Sound | 0.43 | 0.11 | 0.26 | 0.57 | 0.11 | 0.19 |
Kingston | 0.66 | 0.10 | 0.15 | 0.34 | 0.10 | 0.29 |
Fergus | 0.61 | 0.10 | 0.16 | 0.40 | 0.10 | 0.25 |
Toronto Pearson | 0.66 | 0.09 | 0.14 | 0.35 | 0.09 | 0.26 |
Stratford | 0.56 | 0.10 | 0.18 | 0.44 | 0.09 | 0.20 |
London | 0.62 | 0.09 | 0.15 | 0.43 | 0.10 | 0.23 |
Windsor | 0.73 | 0.08 | 0.11 | 0.29 | 0.09 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.I.; Rudra, R.; Goel, P.; Amili, A.; Dickinson, T.; Singh, K.; Khan, A. Change in Winter Precipitation Regime across Ontario, Canada. Hydrology 2022, 9, 81. https://doi.org/10.3390/hydrology9050081
Ahmed SI, Rudra R, Goel P, Amili A, Dickinson T, Singh K, Khan A. Change in Winter Precipitation Regime across Ontario, Canada. Hydrology. 2022; 9(5):81. https://doi.org/10.3390/hydrology9050081
Chicago/Turabian StyleAhmed, Syed Imran, Ramesh Rudra, Pradeep Goel, Arezoo Amili, Trevor Dickinson, Kamal Singh, and Alamgir Khan. 2022. "Change in Winter Precipitation Regime across Ontario, Canada" Hydrology 9, no. 5: 81. https://doi.org/10.3390/hydrology9050081
APA StyleAhmed, S. I., Rudra, R., Goel, P., Amili, A., Dickinson, T., Singh, K., & Khan, A. (2022). Change in Winter Precipitation Regime across Ontario, Canada. Hydrology, 9(5), 81. https://doi.org/10.3390/hydrology9050081