Nitrogen Treatment by a Dry Detention Basin with Stormwater Wetland Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Hydrological Monitoring
2.3. Field Readings and Sample Collection
2.4. Laboratory Analyses of Samples
2.5. Statistical Analyses
3. Results and Discussion
3.1. Flow Characterization
3.2. Total Nitrogen Treatment
3.3. Dissolved and Particulate Nitrogen Treatment
3.4. Nitrogen Transformations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.; Johnson, M.-V.V.; Morton, S.L.; Perkins, D.A.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 2016, 35, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Szabo, S.; Scheffer, M.; Roijackers, R.; Waluto, B.; Mihaly, B.; Nagy, P.T.; Borics, G.; Zambrano, L. Strong growth limitation of a floating plant (Lemna gibba) by the submerged macrophyte (Elodea nuttallii) under laboratory conditions. Freshw. Biol. 2010, 55, 681–690. [Google Scholar] [CrossRef]
- Coffin, M.R.S.; Courtenay, S.C.; Pater, C.C.; Heuvel, M.R.V.D. An empirical model using dissolved oxygen as an indicator for eutrophication at a regional scale. Mar. Pollut. Bull. 2018, 133, 261–270. [Google Scholar] [CrossRef]
- Paerl, H.W. Controlling Eutrophication along the Freshwater-Marine Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries Coasts 2009, 32, 593–601. [Google Scholar] [CrossRef] [Green Version]
- McLellan, E.L.; Cassman, K.G.; Eagle, A.J.; Woodbury, P.B.; Sela, S.; Tonitto, C.; Marjerison, R.D.; Es, H.M.V. The nitrogen balancing act: Tracking the environmental performance of food production. BioScience 2018, 68, 194–203. [Google Scholar] [CrossRef]
- LeBleu, C.; Dougherty, M.; Rahn, K.; Wright, A.; Bowen, R.; Wang, R.; Orjuela, J.A.; Britton, K. Quantifying thermal characteristics of stormwater through low impact development systems. Hydrology 2019, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Source Water Protection (SWP): Common Considerations. 2022. Available online: https://www.epa.gov/sourcewaterprotection/common-considerations (accessed on 10 February 2022).
- Bastia, J.; Mishra, B.K.; Kumar, P. Integrative assessment of stormwater infiltration practices in rapidly urbanizing cities: A case of Lucknow City, India. Hydrology 2021, 8, 93. [Google Scholar] [CrossRef]
- Hardison, E.C.; O’Driscoll, M.A.; DeLoatch, J.P.; Howard, R.J.; Brinson, M.M. Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. J. Am. Water Resour. Assoc. 2009, 45, 1032–1046. [Google Scholar] [CrossRef]
- Ballinas-Gonzalez, H.A.; Alcocer-Yamanaka, V.H.; Canto-Rios, J.J.; Simuta-Champo, R. Sensitivity analysis of the rainfall-runoff modeling parameters in data-scarce urban catchment. Hydrology 2020, 7, 73. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. Urban stormwater temperature surges: A central US watershed study. Hydrology 2015, 2, 193–209. [Google Scholar] [CrossRef]
- Beitinger, T.L.; Bennett, W.A.; McCauley, R.W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fish. 2000, 58, 237–275. [Google Scholar] [CrossRef]
- Gaborit, E.; Muschalla, D.; Vallet, B.; Vanrolleghem, P.A.; Anctil, F. Improving the performance of stormwater detention basins by real-time control using rainfall forecasts. Urban Water J. 2013, 10, 230–246. [Google Scholar] [CrossRef]
- McPhillips, L.; Walter, M.T. Hydrologic conditions drive denitrification and greenhouse gas emissions in stormwater detention basins. Ecol. Eng. 2015, 85, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Middleton, J.R.; Barrett, M.E. Water quality performance of a batch-type stormwater detention basin. Water Environ. Res. 2008, 80, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Pezzanti, D.; Beecham, S.; Kandasamy, J. Stormwater detention basin for improving road-runoff quality. Water Manag. 2012, 165, 461–471. [Google Scholar] [CrossRef]
- Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer, T.A.; Grimm, N.B.; Ekberg, M.L.C. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecol. Eng. 2010, 36, 1507–1519. [Google Scholar] [CrossRef]
- Humphrey, C.P., Jr.; Iverson, G. Reduction in nitrogen exports form stormflow after conversion of a dry detention basin to a stormwater wetland. Appl. Sci. 2020, 10, 9024. [Google Scholar] [CrossRef]
- Bettez, N.D.; Groffman, P.M. Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape. Environ. Sci. Technol. 2012, 46, 10909–10917. [Google Scholar] [CrossRef]
- Wissler, A.D.; Hunt, W.F.; McLaughlin, R.A. Hydrologic and water quality performance of two aging and unmaintained dry detention basins receiving highway stormwater runoff. J. Environ. Manag. 2020, 255, 109853. [Google Scholar] [CrossRef]
- Morse, N.R.; McPhillips, L.E.; Shapleigh, J.P.; Walter, M.T. The role of denitrification in stormwater detention basin treatment of nitrogen. Environ. Sci. Technol. 2017, 51, 7928–7935. [Google Scholar] [CrossRef] [PubMed]
- Gold, A.G.; Thompson, S.P.; Piehler, M.F. Seasonal variation in nitrate removal mechanisms in coastal stormwater ponds. Water Resour. Res. 2021, 57, e2021WR029718. [Google Scholar] [CrossRef]
- Iverson, G.; O’Driscoll, M.; Humphrey, C., Jr.; Manda, A.; Anderson-Evans, E. Wastewater nitrogen contributions to coastal plain watersheds, NC, USA. Water Air Soil Pollut. 2015, 226, 325. [Google Scholar] [CrossRef]
- O’Driscoll, M.; DeWalle, D.; Humphrey, C.; Iverson, G. Groundwater seeps: Portholes to evaluate groundwater’s in fluence on stream water quality. J. Contemp. Water Res. Educ. 2019, 166, 55–78. [Google Scholar] [CrossRef] [Green Version]
- Vepraskus, M.J.; Faulkner, S.P. Redox Chemistry of Hydric Soils. In Wetland Soils Genesis, Hydrology, Landscapes, and Classification, 1st ed.; Richardson, J.L., Veprasksus, M.J., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 85–105. [Google Scholar]
- Schlesinger, W.H. Biogeochemistry in freshwater wetlands and lakes. In Biogeochemistry an Analyses of Global Change, 2nd ed.; Academic Press: San Diego, CA, USA, 1997; pp. 224–260. [Google Scholar]
- Koch, B.J.; Febria, C.M.; Gevrey, M.; Wainger, L.A.; Palmer, M.A. Nitrogen removal by stormwater management structures: A data synthesis. J. Am. Water Resour. Assoc. 2014, 50, 1594–1607. [Google Scholar] [CrossRef]
- North Carolina Department of Environmental Quality. Stormwater Control Measure Credit Document. Available online: https://files.nc.gov/ncdeq/Energy%20Mineral%20and%20Land%20Resources/Stormwater/BMP%20Manual/SSW-SCM-Credit-Doc-20170807.pdf (accessed on 15 January 2022).
- Hunt, W.F. Urban Waterways, Urban Stormwater Structural Best Management Practices (BMPs); North Carolina Cooperative Extension Service Publication: Raleigh, NC, USA, 1999. [Google Scholar]
- Weiss, P.T.; Gulliver, J.S.; Erickson, A.J. Cost and pollutant removal of storm-water treatment practices. J. Water Resour. Plan. Manag. 2007, 133, 218–229. [Google Scholar] [CrossRef]
- US Climate Data. Climate Greenville—North Carolina. Available online: https://www.usclimatedata.com/climate/greenville/north-carolina/united-states/usnc0281 (accessed on 24 February 2022).
- Natural Resources Conservation Service. Soils. Official Soil Series Description. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053587 (accessed on 18 April 2022).
- North Carolina Department of Environmental Quality. Integrated Report Files. Available online: https://deq.nc.gov/about/divisions/water-resources/water-planning/modeling-assessment/water-quality-data-assessment/integrated-report-files (accessed on 18 April 2022).
- North Carolina Department of Environmental Quality, Stormwater Calculations. Available online: https://files.nc.gov/ncdeq/Energy%20Mineral%20and%20Land%20Resources/Stormwater/BMP%20Manual/B%20%20Stormwater%20Calculations.pdf (accessed on 24 February 2022).
- USGS National Water Information System: Web Interface. USGS 02084000 Tar River at Greenville, NC. Available online: https://waterdata.usgs.gov/nwis/uv?site_no=02084000 (accessed on 24 February 2022).
- Shimadzu Corporation. Total Organic Carbon Analyzer User’s Manual. TOC-L TOC Analyzer. Available online: https://www.shimadzu.com/an/products/total-organic-carbon-analysis/toc-analysis/toc-l-series/index.html (accessed on 28 April 2022).
- Solorzano, L. Determination of ammonia in natural waters by the phenol-hypochlorite method. Limnol. Oceanogr. 1969, 14, 799–801. [Google Scholar]
- Westco Scientific Instruments, Inc. SmartChem 200 Method 375-100E-1; Westco Scientific Instruments, Inc.: Brookfield, WI, USA, 2008. [Google Scholar]
- Westco Scientific Instruments, Inc. SmartChem 200 Method 390-200E; Westco Scientific Instruments, Inc.: Brookfield, WI, USA, 2008. [Google Scholar]
- Clesceri, L.; Greenberg, A.; Eaton, A. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Brooks, K.N.; Ffolliott, P.F.; Gregersen, H.M.; DeBano, L.F. Hydrology and the Management of Watersheds, 3rd ed.; Iowa State University Press/Ames: Ames, IA, USA, 2003; pp. 47–74. [Google Scholar]
- Samanta, S.; Sheng, Z.; Munster, C.L.; Houtte, E.V. Seasonal variation of infiltration rates through pond bed in a managed aquifer recharge system in St-Andre, Belgium. Hydrol. Processes 2020, 34, 3807–3823. [Google Scholar] [CrossRef]
- Humphrey, C.P., Jr.; O’Driscoll, M.A. Evaluation of soil colors as indicators of the seasonal high water table in coastal North Carolina. Int. J. Soil Sci. 2011, 6, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Sonderup, M.J.; Egemose, S.; Hansen, A.S.; Grudinina, A.; Madsen, M.H.; Flindt, M.R. Factors affecting retention of nutrients and organic matter in stormwater ponds. Ecohydrology 2016, 9, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Mazer, K.E. Converting a Dry Pond to a Constructed Stormwater Wetland to Enhance Water Quality Treatment. A Thesis Submitted to the Graduate Faculty of North Carolina State University. 2018. Available online: https://repository.lib.ncsu.edu/bitstream/handle/1840.20/35788/etd.pdf?sequence=1 (accessed on 28 April 2022).
- Gorgoglione, A.; Gioia, A.; Iacobellis, V. A framework for assessing modeling performance and effects of rainfall-catchment drainage characteristics on nutrient urban runoff in poorly gauged watersheds. Sustainability 2019, 11, 4933. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Ponnada, E.V.; Lynn, T.J.; Ergas, S.J.; Mihelcic, J.R. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff. Water Res. 2020, 170, 115336. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Davis, A.P. Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environ. Sci. Technol. 2014, 48, 3403–3410. [Google Scholar] [CrossRef] [PubMed]
- Hartman, W.H.; Richardson, C.J.; Vilgalys, R.; Bruland, G.L. Environmental and anthropogenic controls over bacterial communities in wetland soils. PNAS 2008, 105, 17842–17847. [Google Scholar] [CrossRef] [Green Version]
- Hunt III, W.F.; Aperson, C.S.; Kennedy, S.G.; Barrison, B.A.; Lord, W.G. Occurrence and relative abundance of moquitoes in stormwater retention facilities in North Carolina, USA. Water Sci. Technol. 2006, 54, 315–321. [Google Scholar] [CrossRef]
Dates | Rain (cm) | Inflow (m3) | Outflow (m3) | Vol. Red. (%) | Temp (°C) | Rain Intensity (cm h−1) | Days Since Last Rain |
---|---|---|---|---|---|---|---|
23–24 July 2020 | 3.58 | 1806 | 1198 | 34 | 25.6 | 0.15 | 12.67 |
4 August 2020 | 5.16 | 2600 | 1611 | 38 | 25.4 | 0.34 | 1.8 |
7–11 August 2020 | 7.29 | 3676 | 3459 | 6 | 25.3 | 0.08 | 3.3 |
15 August 20 | 7.7 | 3881 | 2089 | 46 | 26.1 | 1.18 | 1.4 |
19 August 2020 | 2.29 | 1153 | 468 | 59 | 23.8 | 1.83 | 2.7 |
24 August 2020 | 0.33 | 167 | 45 | 73 | 24.9 | 0.33 | 2.6 |
9 September 2020 | 1.73 | 871 | 444 | 49 | 26.1 | 0.26 | 8.4 |
11 September 2020 | 1.02 | 512 | 198 | 61 | 26.6 | 0.58 | 1.8 |
17–18 September 2020 | 2.79 | 1409 | 959 | 32 | 24.1 | 0.08 | 2.6 |
29 September 2020 | 3.2 | 1614 | 1121 | 31 | 21.9 | 0.16 | 2.9 |
11 October 2020 | 0.38 | 192 | 34 | 82 | 21.5 | 0.03 | 10.5 |
16 October 2020 | 0.28 | 141 | 7 | 95 | 18.3 | 0.02 | 4.6 |
25 October 2020 | 3.53 | 1780 | 1226 | 31 | 19.4 | 0.43 | 8.8 |
1 November 2020 | 1.35 | 679 | 498 | 27 | 19.3 | 1.35 | 2.7 |
11–12 November 2020 | 9.22 | 4650 | 4677 | −1 | 19.5 | 0.41 | 10.1 |
14 December 2020 | 1.57 | 794 | 595 | 25 | 14.8 | 0.18 | 6.6 |
16 December 2020 | 2.59 | 1307 | 1346 | −3 | 9.3 | 0.37 | 1.8 |
20 December 2020 | 1.3 | 653 | 722 | −11 | 7.2 | 0.23 | 3.7 |
24 December 2020 | 1.6 | 807 | 1180 | −46 | 15 | 0.22 | 4.1 |
31 December 2020–3 January 2021 | 5.11 | 2575 | 3396 | −32 | 11.9 | 0.08 | 7.4 |
8 January 2021 | 0.3 | 154 | 625 | −306 | 4.7 | 0.03 | 5.1 |
26–28 January 2021 | 2.44 | 1230 | 1954 | −59 | 7.7 | 0.49 | 10.3 |
31 January 2021 | 2.82 | 1422 | 1539 | −8 | 6.3 | 0.19 | 3.3 |
5 February 2021 | 0.79 | 397 | 528 | −33 | 7.5 | 0.11 | 3.75 |
7 February 2021 | 0.41 | 205 | 502 | −145 | 7 | 0.04 | 1.4 |
11–16 February 2021 | 5.79 | 2920 | 4586 | −57 | 6.9 | 0.83 | 4.2 |
18–19 February 2021 | 4.32 | 2178 | 3213 | −48 | 5.2 | 0.13 | 1.9 |
22 February 2021 | 0.61 | 355 | 355 | −16 | 14.7 | 0.08 | 3 |
26 February 2021 | 1.27 | 895 | 895 | −40 | 8.7 | 0.18 | 3.8 |
16 March 2021 | 4.14 | 2058 | 2058 | 1 | 8.8 | 0.22 | 14.2 |
19 March 2021 | 0.71 | 792 | 792 | −121 | 11.6 | 0.14 | 2.9 |
27 March 2021 | 2.08 | 345 | 345 | 67 | 17.6 | 1.66 | 3.5 |
31 March 2021 | 2.24 | 703 | 703 | 38 | 16.9 | 0.32 | 3.8 |
11 April 2021 | 1.24 | 628 | 301 | 52 | 18.1 | 0.83 | 1.1 |
3–5 May 2021 | 2.9 | 1460 | 1515 | −4 | 22.5 | 0.05 | 7.8 |
29 May 2021 | 0.97 | 487 | 179 | 63 | 21.6 | 0.26 | 1.6 |
30 May 2021 | 0.76 | 384 | 362 | 6 | 18.3 | 0.34 | 0.2 |
Overall | 95.8 | 47880 | 45725 | 5 | 16.5 | 0.38 | 4.7 |
Warm | 43.9 | 22134 | 14913 | 33 | 23.2 | 0.4 | 4.6 |
Cool | 51.9 | 26169 | 30812 | −18 | 11.4 | 0.4 | 4.7 |
Storm | Rain (cm) | Overall Int. (cm h−1) | Peak Int. (cm h−1) | Rain (cm) Prior 7 days | Inflow (m3) | Outflow (m3) | Volume Red. (%) | Temp (°C) | Inlet TN (mg L−1) | Outlet TN (mg L−1) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 5.16 | 0.34 | 1.3 | 0.61 | 2600 | 1611 | 38 | 25.4 | 5.20 | 2.64 |
2 | 2.74 | 0.08 | 0.4 | 1.14 | 1383 | 972 | 30 | 24.1 | 2.47 | 3.53 |
3 | 3.73 | 0.16 | 1.8 | 0.53 | 1883 | 1153 | 39 | 20.4 | 2.48 | 1.76 |
4 | 3.23 | 0.16 | 1.8 | 3.99 | 1627 | 1594 | 2 | 21.9 | 2.66 | 1.70 |
5 | 0.38 | 0.03 | 0.1 | 0.02 | 192 | 34 | 82 | 21.5 | 5.92 | 2.17 |
6 | 0.28 | 0.28 | 0.3 | 0.56 | 141 | 7 | 95 | 18.3 | 2.25 | 3.07 |
7 | 1.35 | 1.35 | 1.3 | 3.63 | 679 | 498 | 27 | 17.6 | 3.36 | 2.02 |
8 | 7.77 | 0.41 | 1.8 | 1.78 | 3920 | 4655 | −19 | 19.5 | 2.63 | 1.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humphrey, C.P., Jr.; Iverson, G.; Nolan, M. Nitrogen Treatment by a Dry Detention Basin with Stormwater Wetland Characteristics. Hydrology 2022, 9, 85. https://doi.org/10.3390/hydrology9050085
Humphrey CP Jr., Iverson G, Nolan M. Nitrogen Treatment by a Dry Detention Basin with Stormwater Wetland Characteristics. Hydrology. 2022; 9(5):85. https://doi.org/10.3390/hydrology9050085
Chicago/Turabian StyleHumphrey, Charles P., Jr., Guy Iverson, and Melissa Nolan. 2022. "Nitrogen Treatment by a Dry Detention Basin with Stormwater Wetland Characteristics" Hydrology 9, no. 5: 85. https://doi.org/10.3390/hydrology9050085
APA StyleHumphrey, C. P., Jr., Iverson, G., & Nolan, M. (2022). Nitrogen Treatment by a Dry Detention Basin with Stormwater Wetland Characteristics. Hydrology, 9(5), 85. https://doi.org/10.3390/hydrology9050085