A Comparative Evaluation of Lumped and Semi-Distributed Conceptual Hydrological Models: Does Model Complexity Enhance Hydrograph Prediction?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tank Model
2.3. TOPMODEL
2.4. Data Requirement for Tank Model and TOPMODEL
2.5. Calibration, Validation and Evaluation of Tank Model and TOPMODEL Efficiency
3. Results
3.1. MC Calibration Procedure
3.2. TOPMODEL
3.3. Tank Model
3.4. Comparison between Tank Model and TOPMODEL
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guswa, A.J.; Brauman, K.A.; Brown, C.; Hamel, P.; Keeler, B.L.; Sayre, S.S. Ecosystem Services: Challenges and Opportunities for Hydrologic Modeling to Support Decision Making. Water Resour. Res. 2014, 50, 4535–4544. [Google Scholar] [CrossRef] [Green Version]
- Hamel, P.; Bremer, L.L.; Ponette-González, A.G.; Acosta, E.; Fisher, J.R.B.; Steele, B.; Cavassani, A.T.; Klemz, C.; Blainski, E.; Brauman, K.A. The Value of Hydrologic Information for Watershed Management Programs: The Case of Camboriú, Brazil. Sci. Total Environ. 2020, 705, 135871. [Google Scholar] [CrossRef] [PubMed]
- Okiria, E.; Khoiru Zaki, M.; Noda, K. A Review of Payment for Ecosystem Services (PES) in Agricultural Water: Are PES from the Operation of Agricultural Water Control Structures Ubiquitous? Sustainability 2021, 13, 12624. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Model Development: A User’s Perspective. In Handbook of Erosion Modelling; Morgan, R.P.C., Nearing, M.A., Eds.; Blackwell Publishing Ltd.: West Sussex, UK, 2011; pp. 9–32. ISBN 9781405190107. [Google Scholar]
- Fekete, B.M.; Vörösmarty, C.J. The Current Status of Global River Discharge Monitoring and Potential New Technologies Complementing Traditional Discharge Measurements. IAHS Publ. 2007, 309, 129–136. [Google Scholar]
- MWE. National Water Resources Assessment; Ministry of Water and Environment: Kampala, Uganda, 2013; ISBN 9789970467006. [Google Scholar]
- Japan International Cooperation Agency (JICA). The Project on Irrigation Scheme Development in Central and Eastern Uganda: Final Report; Japan International Cooperation Agency: Tokyo, Japan, 2017. [Google Scholar]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer, 2nd ed.; Wiley-Blackwell: West Sussex, UK, 2012; ISBN 978-0-470-71459-1. [Google Scholar]
- Singh, V.P. Watershed Modeling. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1995; pp. 1–20. ISBN 0-918334-91-8. [Google Scholar]
- Sakuma, K.; Machida, M.; Kurikami, H.; Iwata, A.; Yamada, S.; Iijima, K. A Modeling Approach to Estimate 3H Discharge from Rivers: Comparison of Discharge from the Fukushima Dai-Ichi and Inventory in Seawater in the Fukushima Coastal Region. Sci. Total Environ. 2022, 806, 151344. [Google Scholar] [CrossRef]
- Fukuda, A.; Tabata, T.; Hiramatsu, K.; Harada, M. Analysis of Salinity Behavior in Hakata Bay after Heavy Rainfall Using a Three-Dimensional σ-Coordinate Model. Jpn. Agric. Res. Q. JARQ 2021, 55, 137–146. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, R.; Hong, Y.; Zhang, L.; Cui, S.; Luo, Y.; Nie, W. Development of Modified Tank Model for Reservoir Storage Prediction: Case Study of Huanggang Reservoir, Fujian, China. J. Hydrol. Eng. 2021, 26, 05021012. [Google Scholar] [CrossRef]
- Kwak, J.; Han, H.; Kim, S.; Kim, H.S. Is the Deep-Learning Technique a Completely Alternative for the Hydrological Model?: A Case Study on Hyeongsan River Basin, Korea. Stoch. Environ. Res. Risk Assess. 2021. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Lin, S.-E.; Chen, R.-F.; Hsu, Y.-J.; Chang, K.-J.; Lee, S.-P.; Wu, R.-Y.; Lin, C.-W.; Chan, Y.-H. Occurrences of Deep-Seated Creeping Landslides in Accordance with Hydrological Water Storage in Catchments. Front. Earth Sci. 2021, 9, 1029. [Google Scholar] [CrossRef]
- Chen, S.K.; Chen, R.S.; Yang, T.Y. Application of a Tank Model to Assess the Flood-Control Function of a Terraced Paddy Field. Hydrol. Sci. J. 2014, 59, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.S.; Yang, K.H. Terraced Paddy Field Rainfall-Runoff Mechanism and Simulation Using a Revised Tank Model. Paddy Water Environ. 2011, 9, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-C.; Kan, C.-E.; Chen, C.-T.; Kuo, S.-F. Ehancement of Water Storage Capacity in Wetland Rice Fields through Deep Water Management Practice. Irrig. Drain. 2007, 56, 79–86. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Kan, C.-E.; Lin, G.-F.; Chiu, C.-L.; Lee, Y.-C. Potential Benefits of Increased Application of Water to Paddy Fields in Taiwan. Hydrol. Process. 2001, 15, 1515–1524. [Google Scholar] [CrossRef]
- Chikita, K.A.; Tomoyuki, W.; Kudo, I.; Kido, D.; Narita, Y.I.; Kim, Y. Modelling Discharge, Water Chemistry and Sediment Load from a Subarctic River Basin: The Tanana River, Alaska. IAHS-AISH Publ. 2007, 314, 45–56. [Google Scholar]
- Sugawara, M. Tank Model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1995; pp. 165–214. ISBN 0-918334-91-8. [Google Scholar]
- Hong, N.; Hama, T.; Kitajima, T.; Aquili, S.W.; Huang, X.; Wei, Q.; Kawagoshi, Y. Simulation of Groundwater Levels Using Tank Model with Consideration of Mixed Hydrological Structure in Kumamoto City. J. Water Environ. Technol. 2015, 13, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Onyutha, C. Influence of Hydrological Model Selection on Simulation of Moderate and Extreme Flow Events: A Case Study of the Blue Nile Basin. Adv. Meteorol. 2016, 2016, 7148326. [Google Scholar] [CrossRef] [Green Version]
- Onyutha, C. Hydrological Model Supported by a Step-Wise Calibration against Sub-Flows and Validation of Extreme Flow Events. Water 2019, 11, 244. [Google Scholar] [CrossRef] [Green Version]
- Japan International Cooperation Agency (JICA). The Preparatory Survey Report on Land Husbandry, Water Harvesting and Hillside Irrigation Project in the Republic of Rwanda; Japan International Cooperation Agency: Tokyo, Japan, 2014. [Google Scholar]
- Okiria, E.; Okazawa, H.; Yamazaki, Y.; Kobayashi, Y.; Suzuki, S. Applicability of Tank Model in Mid-Sized Catchments in Eastern Uganda. Int. J. Environ. Rural Dev. 2020, 11, 31–37. [Google Scholar]
- Mubialiwo, A.; Abebe, A.; Onyutha, C. Performance of Rainfall-Runoff Models in Reproducing Hydrological Extremes: A Case of the River Malaba Sub-Catchment. SN Appl. Sci. 2021, 3, 515. [Google Scholar] [CrossRef]
- Hankin, B.; Page, T.J.C.; Chappell, N.A.; Beven, K.J.; Smith, P.J.; Kretzschmar, A.; Lamb, R. Using Micro-Catchment Experiments for Multi-Local Scale Modelling of Nature-Based Solutions Dynamic Topmodel, Hydrology, Natural Flood Management, Nature-Based Solutions, Uncertainty. Hydrol. Process. 2021, 35, e14418. [Google Scholar] [CrossRef]
- Goudarzi, S.; Milledge, D.G.; Holden, J.; Evans, M.G.; Allott, T.E.H.; Shuttleworth, E.L.; Pilkington, M.; Walker, J. Blanket Peat Restoration: Numerical Study of the Underlying Processes Delivering Natural Flood Management Benefits. Water Resour. Res. 2021, 57, e2020WR029209. [Google Scholar] [CrossRef]
- Artinyan, E.; Vincendon, B.; Kroumova, K.; Nedkov, N.; Tsarev, P.; Balabanova, S.; Koshinchanov, G. Flood Forecasting and Alert System for Arda River Basin. J. Hydrol. 2016, 541, 457–470. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Guo, A.; Li, Z.; Chang, J.; Meng, D. Impacts of Changes in the Watershed Partitioning Level and Optimization Algorithm on Runoff Simulation: Decomposition of Uncertainties. Stoch. Environ. Res. Risk Assess. 2020, 34, 1909–1923. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Liu, S.; Zhang, S.; Jin, S.; Li, D.; Wu, X.; Liu, X.; Li, T.; Li, H. Ensemble Learning of Daily River Discharge Modeling for Two Watersheds with Different Climates. Atmos. Sci. Lett. 2020, 2, e1000. [Google Scholar] [CrossRef]
- Abou-shanab, R.; Jha, R.; Raghavulu, S.V.; Jeon, B. Applicability of TOPMODEL in the Catchments of Nepal: Bagmati River Basin. Geosyst. Eng. 2011, 14, 181–190. [Google Scholar] [CrossRef]
- Vincendon, B.; Ducrocq, V.; Saulnier, G.; Bouilloud, L. Benefit of Coupling the ISBA Land Surface Model with a TOPMODEL Hydrological Model Version Dedicated to Mediterranean Flash-Floods. J. Hydrol. 2010, 394, 256–266. [Google Scholar] [CrossRef]
- Pinol, J.; Beven, K.; Freer, J. Modelling the Hydrological Response of Mediterranean Catchments, Prades, Catalonia: The Use of Distributed Models as Aids to Hypothesis Formulation. Hydrol. Process. 1997, 11, 1287–1306. [Google Scholar] [CrossRef]
- Campling, P.; Gobin, A.; Beven, K.; Feyen, J. Rainfall-Runoff Modelling of a Humid Tropical Catchment: The TOPMODEL Approach. Hydrol. Process. 2002, 16, 231–253. [Google Scholar] [CrossRef]
- Quinn, P.; Beven, K.; Chevallier, P.; Planchon, O. The Prediction of Hillslope Flow Paths for Distributed Hydrological Modelling Using Digital Terrain Models. Hydrol. Process. 1991, 5, 59–79. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rientjes, T.H.M.; Haile, A.T.; Dube, T. Predicting Streamflow for Land Cover Changes in the Upper Gilgel Abay River Basin, Ethiopia: A TOPMODEL Based Approach. Phys. Chem. Earth 2014, 76–78, 3–15. [Google Scholar] [CrossRef]
- Li, W.; Laskey, K.B.; Muluneh, M.; Douglas-Bate, R.; Purohit, H.; Houser, P. Using AI to Identify Optimal Drilling Locations for Sustainable Irrigation for Subsistence Agriculture. CEUR Workshop Proc. 2020, 2884. [Google Scholar]
- Okiria, E.; Okazawa, H.; Yamazaki, Y.; Kobayashi, Y.; Suzuki, S. Identifying the Minimum Number of Observed Rainfall Events Required for Optimal TOPMODEL Parameters in Mid-Sized Equatorial Catchments. Int. J. Environ. Rural. Dev. 2019, 10, 117–124. [Google Scholar]
- NASA/METI/AIST/Japan Spacesystems. U.S./Japan ASTER Science Team ASTER Global Digital Elevation Model; LP DAAC: Sioux Falls, SD, USA, 2009. [Google Scholar] [CrossRef]
- Uganda National Forestry Authority Uganda Land Use/Land Cover. Available online: https://nfm.review.fao.org/nfm/catalog/srv/api/records/42e3ed00-a597-402b-8e08-3eb3a6135b04 (accessed on May 2018).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evaporation–Guidelines for Computing Crop Water Requirements–FAO Irrigation and Drainage Paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Sugawara, M. On the Analysis of Runoff Structure of Several Japanese Rivers. Jpn. J. Geophys. 1961, 2. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Coles, N.A.; Sivapalan, M.; Larsen, J.E.; Linnet, P.E.; Fahrner, C.K. Modelling Runoff Generation on Small Agricultural Catchments: Can Real World Runoff Responses Be Captured? Hydrol. Process. 1997, 11, 111–136. [Google Scholar] [CrossRef]
- Mukae, K.; Miwa, K.; Okazawa, H.; Yamamoto, T.; Inoue, T. Application of TOPMODEL for Assessment of Ecosystem Services: Regulating Service in Agricultural and Forest Watershed. Int. J. Environ. Rural Dev. 2018, 9, 43–50. [Google Scholar] [CrossRef]
- Mukae, K.; Miwa, K.; Okazawa, H. Ecosystem Service Assessment in Agricultural Watershed by Using TOPMODEL. AGROFO Int. J. 2017, 2, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Watanabe, F.; Suzuki, S.; Okiria, E.; Kanyike, T. Verification of Availability of GSMaP Rainfall Data Based on the Comparison of Observed Rainfall Data in Africa. J. Arid Land Stud. 2018, 28, 85–88. [Google Scholar] [CrossRef]
- Takido, K.; Saavedra Valeriano, O.C.; Ryo, M.; Tanuma, K.; Ushio, T.; Kubota, T. Spatiotemporal Evaluation of the Gauge-Adjusted Global Satellite Mapping of Precipitation at the Basin Scale. J. Meteorol. Soc. Jpn. 2016, 94, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, M. Automatic Calibration of the Tank Model/L’étalonnage Automatique d’un Modèle à Cisterne Automatic Calibration of the Tank Model. Hydrol. Sci. Bull. 1979, 24, 375–388. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Papers); Allen, G.A., Pereira, L.S., Raes, D., Smith, M., Eds.; FAO: Rome, Italy, 2004; ISBN 9251042195. [Google Scholar]
- Sorooshian, S.; Gupta, V.K.; Fulton, J.L. Evaluation of Maximum Likelihood Parameter Estimation Techniques for Conceptual Rainfall-runoff Models: Influence of Calibration Data Variability and Length on Model Credibility. Water Resour. Res. 1983, 19, 251–259. [Google Scholar] [CrossRef]
- Sorooshian, S.; Gupta, V.K. Model Calibration. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1995; pp. 23–68. ISBN 0-918334-91-8. [Google Scholar]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic Calibration of Conceptual Rainfall-Runoff Models: Sensitivity to Calibration Data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Stefnisdóttir, S.; Sikorska-Senoner, A.; Ásgeirsson, E.; Finger, D. Improving the Pareto Frontier in Multi-Dataset Calibration of Hydrological Models Using Metaheuristics. Hydrol. Earth Syst. Sci. Discuss. 2021, 1–30. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Foglia, L.; Hill, M.C.; Mehl, S.W.; Burlando, P. Sensitivity Analysis, Calibration, and Testing of a Distributed Hydrological Model Using Error-Based Weighting and One Objective Function. Water Resour. Res. 2009, 45, W06427. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Am. Soc. Agric. Eng. 2007, 50, 885–900. [Google Scholar]
- Kastridis, A.; Theodosiou, G.; Fotiadis, G. Investigation of Flood Management and Mitigation Measures in Ungauged NATURA Protected Watersheds. Hydrology 2021, 8, 170. [Google Scholar] [CrossRef]
- Beven, K. Prophecy, Reality and Uncertainty in Distributed Hydrological Modelling. Adv. Water Resour. 1993, 16, 41–51. [Google Scholar] [CrossRef]
- Beven, K. TOPMODEL: A Critique. Hydrol. Process 1997, 11, 1069–1085. [Google Scholar] [CrossRef]
Year | m (mm) | Te × 109 (mm2/day) | td (day/mm) | SRZinitial (mm) | SRZmax (mm) | NSE | RSR |
---|---|---|---|---|---|---|---|
2015 | 30 | 9.510 | 0.008 | 0.100 | 0.020 | 0.631 | 0.608 |
Year | m (mm) | Te × 109 (mm2/day) | td (day/mm) | SRZinitial (mm) | SRZmax (mm) | |
---|---|---|---|---|---|---|
2015 | Maximum | 50 | 10.000 | 0.020 | 0.100 | 0.100 |
Minimum | 20 | 0.002 | 0.004 | 0.100 | 0.002 | |
Mean | 32 | 4.790 | 0.009 | 0.100 | 0.051 | |
STD + | 8 | 2.920 | 0.003 | 0.000 | 0.028 | |
Cov * (%) | 25.361 | 60.969 | 33.718 | 0.000 | 54.992 |
Tank Model | TOPMODEL | |||||||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||||
Year | NSE | RSR | NSE | RSR | NSE | RSR | NSE | RSR |
2015 | 0.737 | 0.513 | 0.631 | 0.608 | ||||
2016 | 0.396 | 0.778 | 0.677 | 0.568 |
Year | A1 | A2 | A0 | B1 | B0 | C1 | C0 | D1 | SA0 (mm) | SB0 (mm) | SC0 (mm) | SD0 (mm) | AH1 (mm) | AH2 (mm) | BH (mm) | CH (mm) | NSE | RSR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 0.026 | 0.020 | 0.011 | 0.017 | 0.003 | 0.014 | 0.001 | 0.003 | 79 | 926 | 100 | 19 | 508 | 26 | 3880 | 392 | 0.737 | 0.513 |
Year | A1 | A2 | A0 | B1 | B0 | C1 | C0 | D1 | SA0 (mm) | SB0 (mm) | SC0 (mm) | SD0 (mm) | AH1 (mm) | AH2 (mm) | BH (mm) | CH (mm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | Maximum | 0.100 | 0.075 | 0.064 | 0.069 | 0.054 | 0.060 | 0.027 | 0.042 | 100 | 1000 | 100 | 100 | 1000 | 100 | 10000 | 10000 |
Minimum | 0.007 | 0.006 | 0.003 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 10 | 192 | 100 | 0 | 1.587 | 0.002 | 166 | 0.641 | |
Average | 0.055 | 0.027 | 0.019 | 0.016 | 0.011 | 0.009 | 0.007 | 0.005 | 55 | 740 | 100 | 47 | 564 | 40 | 5290 | 5060 | |
STD | 0.022 | 0.009 | 0.008 | 0.008 | 0.005 | 0.005 | 0.003 | 0.003 | 26 | 175 | 0 | 29 | 253 | 24 | 2718 | 2855 | |
CoV (%) | 41 | 34 | 42 | 51 | 46 | 61 | 51 | 61 | 46 | 24 | 0 | 60 | 45 | 59 | 51 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okiria, E.; Okazawa, H.; Noda, K.; Kobayashi, Y.; Suzuki, S.; Yamazaki, Y. A Comparative Evaluation of Lumped and Semi-Distributed Conceptual Hydrological Models: Does Model Complexity Enhance Hydrograph Prediction? Hydrology 2022, 9, 89. https://doi.org/10.3390/hydrology9050089
Okiria E, Okazawa H, Noda K, Kobayashi Y, Suzuki S, Yamazaki Y. A Comparative Evaluation of Lumped and Semi-Distributed Conceptual Hydrological Models: Does Model Complexity Enhance Hydrograph Prediction? Hydrology. 2022; 9(5):89. https://doi.org/10.3390/hydrology9050089
Chicago/Turabian StyleOkiria, Emmanuel, Hiromu Okazawa, Keigo Noda, Yukimitsu Kobayashi, Shinji Suzuki, and Yuri Yamazaki. 2022. "A Comparative Evaluation of Lumped and Semi-Distributed Conceptual Hydrological Models: Does Model Complexity Enhance Hydrograph Prediction?" Hydrology 9, no. 5: 89. https://doi.org/10.3390/hydrology9050089
APA StyleOkiria, E., Okazawa, H., Noda, K., Kobayashi, Y., Suzuki, S., & Yamazaki, Y. (2022). A Comparative Evaluation of Lumped and Semi-Distributed Conceptual Hydrological Models: Does Model Complexity Enhance Hydrograph Prediction? Hydrology, 9(5), 89. https://doi.org/10.3390/hydrology9050089