Comparison of SWAT and MODIS Evapotranspiration Data for Multiple Timescales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate of the Study
2.3. Evapotranspiration Data
2.4. Generation of Sub-Basin Wise ET Timeseries
2.5. SWAT Model
2.6. SWAT Model Setup
2.7. SWAT Calibration and Validation
2.7.1. Hydrology
2.7.2. Crop Yield
2.8. Comparison of SWAT Simulated and MODIS Derived ET
3. Results
3.1. SWAT Calibration and Validation
3.1.1. Streamflow Calibration and Validation
3.1.2. Crop Yield Calibration and Validation
3.2. Comparison between SWAT-Simulated and MODIS-Derived ET
3.2.1. Eight-Day ET
3.2.2. Monthly ET
3.2.3. Seasonal ET
3.2.4. Annual ET
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- L’vovich, M.I.; White, G.F.; Belyaev, A.V.; Kindler, J.; Koronkevic, N.I.; Lee, T.R.; Voropaev, G.V. Use and Transformation of Terrestrial Water Systems. In The Earth as Transformed by Human Action; Cambridge University Press: Cambridge, UK, 1990; pp. 235–252. [Google Scholar]
- Parajuli, P.B.; Jayakody, P.; Ouyang, Y. Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT. Water Resour. Manag. 2018, 32, 985–996. [Google Scholar] [CrossRef]
- Hanson, R.L. Evapotranspiration and Droughts. In National Water Summary 1988–89: Hydrologic Events and Floods and Droughts (US Geological Survey Water-Supply Paper 2375); 1991; pp. 99–104. Available online: https://geochange.er.usgs.gov/sw/changes/natural/et/ (accessed on 20 April 2022).
- Abiodun, O.O.; Guan, H.; Post, V.E.A.; Batelaan, O. Comparison of MODIS and SWAT Evapotranspiration over a Complex Terrain at Different Spatial Scales. Hydrol. Earth Syst. Sci. 2018, 22, 2775–2794. [Google Scholar] [CrossRef] [Green Version]
- Martel, M.; Glenn, A.; Wilson, H.; Kröbel, R. Simulation of Actual Evapotranspiration from Agricultural Landscapes in the Canadian Prairies. J. Hydrol. Reg. Stud. 2018, 15, 105–118. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Reference evapotranspiration (ETo) methods implemented as ArcMap models with remote-sensed and ground-based inputs, examined along with MODIS ET, for peloponnese, greece. ISPRS Int. J. Geo-Inf. 2021, 10, 390. [Google Scholar] [CrossRef]
- Hemakumara, H.M.; Chandrapala, L.; Moene, A.F. Evapotranspiration Fluxes over Mixed Vegetation Areas Measured from Large Aperture Scintillometer. Agric. Water Manag. 2003, 58, 109–122. [Google Scholar] [CrossRef]
- Howell, T.A.; Schneider, A.D.; Jensen, M.E. History of Lysimeter Design and Use for Evapotranspiration Measurements. In Lysimeters for Evapotranspiration and Environmental Measurements; ASCE: New York, NY, USA, 1991; pp. 1–9. [Google Scholar]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative Analysis of 31 Reference Evapotranspiration Methods under Humid Conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Larsen, M.A.D.; Refsgaard, J.C.; Jensen, K.H.; Butts, M.B.; Stisen, S.; Mollerup, M. Calibration of a Distributed Hydrology and Land Surface Model Using Energy Flux Measurements. Agric. For. Meteorol. 2016, 217, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Webster, E.; Ramp, D.; Kingsford, R.T. Incorporating an Iterative Energy Restraint for the Surface Energy Balance System SEBS. Remote Sens. Environ. 2017, 198, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.; Anderson, M.C.; Sadeghi, A.M.; Hain, C.R.; Sharifi, A. Evaluating the Role of Evapotranspiration Remote Sensing Data in Improving Hydrological Modeling Predictability. J. Hydrol. 2018, 556, 39–49. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. In Symposia of the Society for Experimental Biology; Cambridge University Press CUP: Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Immerzeel, W.W.; Gaur, A.; Zwart, S.J. Integrating Remote Sensing and a Process-Based Hydrological Model to Evaluate Water Use and Productivity in a South Indian Catchment. Agric. Water Manag. 2008, 95, 11–24. [Google Scholar] [CrossRef]
- Odusanya, A.E.; Mehdi, B.; Schürz, C.; Oke, A.O.; Awokola, O.S.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-Site Calibration and Validation of SWAT with Satellite-Based Evapotranspiration in a Data-Sparse Catchment in Southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.; Gupta, H.V.; Serrat-Capdevila, A.; Valdes, J.B. Using Satellite-Based Evapotranspiration Estimates to Improve the Structure of a Simple Conceptual Rainfall–Runoff Model. Hydrol. Earth Syst. Sci. 2017, 21, 879–896. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.S.; Sahoo, B.; Raghuwanshi, N.S. How Reliable Are the Evapotranspiration Estimates by Soil and Water Assessment Tool SWAT. and Variable Infiltration Capacity VIC. Models for Catchment-Scale Drought Assessment and Irrigation Planning? J. Hydrol. 2021, 592, 125838. [Google Scholar] [CrossRef]
- Rajib, A.; Evenson, G.R.; Golden, H.E.; Lane, C.R. Hydrologic Model Predictability Improves with Spatially Explicit Calibration Using Remotely Sensed Evapotranspiration and Biophysical Parameters. J. Hydrol. 2018, 567, 668–683. [Google Scholar] [CrossRef] [PubMed]
- Ayana, E.K.; Dile, Y.T.; Narasimhan, B.; Srinivasan, R. Dividends in Flow Prediction Improvement Using High-Resolution Soil Database. J. Hydrol. Reg. Stud. 2019, 21, 159–175. [Google Scholar] [CrossRef]
- Dile, Y.T.; Ayana, E.K.; Worqlul, A.W.; Xie, H.; Srinivasan, R.; Lefore, N.; You, L.; Clarke, N. Evaluating Satellite-Based Evapotranspiration Estimates for Hydrological Applications in Data-Scarce Regions: A Case in Ethiopia. Sci. Total Environ. 2020, 743, 140702. [Google Scholar] [CrossRef]
- Ferguson, C.R.; Sheffield, J.; Wood, E.F.; Gao, H. Quantifying Uncertainty in a Remote Sensing-Based Estimate of Evapotranspiration over Continental USA. Int. J. Remote Sens. 2010, 31, 3821–3865. [Google Scholar] [CrossRef]
- Wanders, N.; Bierkens, M.F.P.; de Jong, S.M.; de Roo, A.; Karssenberg, D. The Benefits of Using Remotely Sensed Soil Moisture in Parameter Identification of Large-scale Hydrological Models. Water Resour. Res. 2014, 50, 6874–6891. [Google Scholar] [CrossRef] [Green Version]
- Hendricks Franssen, H.-J.; Kaiser, H.P.; Kuhlmann, U.; Bauser, G.; Stauffer, F.; Müller, R.; Kinzelbach, W. Operational Real-time Modeling with Ensemble Kalman Filter of Variably Saturated Subsurface Flow Including Stream-aquifer Interaction and Parameter Updating. Water Resour. Res. 2011, 47, 1–20. [Google Scholar] [CrossRef]
- Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W. Assimilation of ASCAT Near-Surface Soil Moisture into the SIM Hydrological Model over France. Hydrol. Earth Syst. Sci. 2011, 15, 3829–3841. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Long, D. Intercomparison of Remote Sensing-based Models for Estimation of Evapotranspiration and Accuracy Assessment Based on SWAT. Hydrol. Processes Int. J. 2008, 22, 4850–4869. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration ET. Product NASA MOD16A2/A3. Algorithm Theor. Basis Doc. Collect. 2013, 5, 600. [Google Scholar]
- Dakhlalla, A.O.; Parajuli, P.B. Assessing Model Parameters Sensitivity and Uncertainty of Streamflow, Sediment, and Nutrient Transport Using SWAT. Inf. Process. Agric. 2019, 6, 61–72. [Google Scholar] [CrossRef]
- Broxton, P.D.; Zeng, X.; Scheftic, W.; Troch, P.A. A MODIS-Based Global 1-Km Maximum Green Vegetation Fraction Dataset. J. Appl. Meteorol. Climatol. 2014, 53, 1996–2004. [Google Scholar] [CrossRef]
- Ouyang, Y. A Potential Approach for Low Flow Selection in Water Resource Supply and Management. J. Hydrol. 2012, 454–455, 56–63. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B.; Dash, P.; Ouyang, Y.; Linhoss, A. Sensitivity of Hydrology and Water Quality to Variation in Land Use and Land Cover Data. Agric. Water Manag. 2020, 241, 106366. [Google Scholar] [CrossRef]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. MODIS Global Terrestrial Evapotranspiration ET. Product MOD16A2/A3 and Year-End Gap-Filled MOD16A2GF/A3GF. NASA Earth Observing System MODIS Land Algorithm For Collection 6. 2019. Available online: https://cupdf.com/document/useras-guide-modis-global-terrestrial-evapotranspiration-modis-global.html?page=1 (accessed on 20 April 2020).
- USGS. United States Geological Survey, Global Visualization GLOVIS. Portal. Available online: http://earthexplorer.usgs.gov/ (accessed on 20 April 2020).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development 1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool SWAT. Model: Current Developments and Applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- USGS. United States Geological Survey. Available online: https://www.usgs.gov/ (accessed on 20 April 2020).
- NRCS. United States Department of Agriculture, Natural Resource Conservation Service. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/ (accessed on 20 April 2020).
- NAAS. United States Department of Agriculture, National Agricultural Statistics Service USDA, NASS. Cropland Data Layer. Available online: https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php (accessed on 20 April 2020).
- NOAA NCEI. National Oceanic and Atmospheric Administration, National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/ (accessed on 20 April 2020).
- Snipes, C.E.; Nichols, S.P.; Poston, D.H.; Walker, T.W.; Evans, L.P.; Robinson, H.R. Current Agricultural Practices of the Mississippi Delta Mississippi. Agric. For. Exp. Station. Bull. 2005, 1143, 1–18. [Google Scholar]
- MAFES. Mississippi State University Agricultural And Forestry Experiment Station MAFES. Available online: http://mafes.msstate.edu/variety-trials/ (accessed on 20 April 2020).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment Tool Theoretical Documentation, Version 2005. Temple, Tex.: USDA-ARS Grassland. Soil Water Res. Lab. Available online: https://swat.tamu.edu/media/1292/swat2005theory.pdf (accessed on 20 April 2020).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual Version 2000. GSWRL Rep. 2002, 202, 2–6. [Google Scholar]
- Strauch, M.; Volk, M. SWAT Plant Growth Modification for Improved Modeling of Perennial Vegetation in the Tropics. Ecol. Modell. 2013, 269, 98–112. [Google Scholar] [CrossRef]
- Abbaspour, K.C. User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs. Swiss Fed. Inst. Aquat. Sci. Technol. Eawag Duebendorf Switz. 2007. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 20 April 2020).
- Risal, A.; Parajuli, P.B. Quantification and Simulation of Nutrient Sources at Watershed Scale in Mississippi. Sci. Total Environ. 2019, 670, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the Swat Model on a Large RWER Basin with Point and Nonpoint Sources 1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Khan, M.S.; Liaqat, U.W.; Baik, J.; Choi, M. Stand-Alone Uncertainty Characterization of GLEAM, GLDAS and MOD16 Evapotranspiration Products Using an Extended Triple Collocation Approach. Agric. For. Meteorol. 2018, 252, 256–268. [Google Scholar] [CrossRef]
- Khalil, A.A. Effect of Climate Change on Evapotranspiration in Egypt. Researcher 2013, 5, 7–12. [Google Scholar]
Date | Operation |
---|---|
April 26 | Tillage |
May 6 | Planting |
June 14 | Auto-Irrigation |
June 20 | Auto-Fertilization |
October 20 | Harvest and Kill |
Parameter | Description | Minimum Value | Maximum Value |
---|---|---|---|
CH_N2.RTE | Manning’s roughness coefficient for channel | 0.2 | 0.4 |
CN2.MGT | Initial SCS runoff curve number | −40% | 4% |
GWQMN.GW | Threshold depth of water in the shallow aquifer for return flow | 2376.1 | 7128.9 |
SURLAG.BSN | Surface runoff lag time | 5.3 | 13.8 |
ALPHA_BF.GW | Base flow alpha factor | 0.3 | 0.7 |
GW_DELAY.GW | Ground water delay | 154.8 | 462.5 |
SOL_AWC.SOL | Available water capacity of soil layer | −26% | 24% |
GW_REVAP.GW | Groundwater re-evaporation coefficient | 0.021 | 0.140 |
ESCO.HRU | Soil evaporation compensation factor | 37% | 112% |
Parameter | Description | Calibrated Value | Default | Range |
---|---|---|---|---|
BIO_E | Radiation-use efficiency or Biomass-energy ratio (kg/ha)/(MJ/m2) | 30 | 39 | 30–39 |
HVSTI | Harvest index | 0.35 | 0.50 | 0.30–0.50 |
WSYF | Lower limit of harvest index | 0.25 | 0.30 | 0.25–0.35 |
BLAI | Maximum potential leaf area index | 5 | 6 | 4–6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parajuli, P.B.; Risal, A.; Ouyang, Y.; Thompson, A. Comparison of SWAT and MODIS Evapotranspiration Data for Multiple Timescales. Hydrology 2022, 9, 103. https://doi.org/10.3390/hydrology9060103
Parajuli PB, Risal A, Ouyang Y, Thompson A. Comparison of SWAT and MODIS Evapotranspiration Data for Multiple Timescales. Hydrology. 2022; 9(6):103. https://doi.org/10.3390/hydrology9060103
Chicago/Turabian StyleParajuli, Prem B., Avay Risal, Ying Ouyang, and Anita Thompson. 2022. "Comparison of SWAT and MODIS Evapotranspiration Data for Multiple Timescales" Hydrology 9, no. 6: 103. https://doi.org/10.3390/hydrology9060103
APA StyleParajuli, P. B., Risal, A., Ouyang, Y., & Thompson, A. (2022). Comparison of SWAT and MODIS Evapotranspiration Data for Multiple Timescales. Hydrology, 9(6), 103. https://doi.org/10.3390/hydrology9060103