Assessment of Deep Convective Systems in the Colombian Andean Region
Abstract
:1. Introduction
2. Data and Information
2.1. Radar Data
2.2. Topography and Wind Data
3. Methodology
3.1. Systems’ Classification and Analysis
3.1.1. Convective and Stratiform Systems’ Classifications
3.1.2. Enveloped and Unenveloped Convective Systems
- First, we separated convective and stratiform objects into two binary images ( and , respectively). is equal to one where there are stratiform formations and zero elsewhere. is equal to two in regions with convective systems and zero elsewhere. Figure 2a presents a schematic of (left) and (right).
- Then, we eroded using a 3 × 3 kernel. In the erosion, each element with a value of one and at least one neighbor equal to zero in the kernel became zero. From the erosion, we obtained (light blue image in the left panel in Figure 2b).
- After the erosion, we filled the holes left in . From this procedure, we obtained the eroded and then filled stratiform binary (Figure 2b, right).
- Then, we computed the superposition between and as (Figure 2c). In , values equal to 1 correspond to stratiform formations, 2 to unenveloped convective systems, and 3 to enveloped convective systems.
- Finally, we classified each convective system as enveloped or unenveloped using their corresponding modal values in . For example, if 90 pixels of a convective storm were 2 and 10 pixels were 3, the system was considered unenveloped (or 2).
3.1.3. Reflectivity Statistics and Morphometrics
3.2. Watersheds Analysis
4. Results and Discussion
4.1. Convective Systems Analyses
4.2. Spatiotemporal Behavior
4.3. Connections with the Topography
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agyakwah, W.; Lin, Y.-L. Generation and enhancement mechanisms for extreme orographic rainfall associated with Typhoon Morakot (2009) over the Central Mountain Range of Taiwan. Atmospheric Res. 2020, 247, 105160. [Google Scholar] [CrossRef]
- Anders, A.M.; Roe, G.H.; Hallet, B.; Montgomery, D.R.; Finnegan, N.J.; Putkonen, J. Spatial Patterns of Precipitation and Topography in the Himalaya. Geol. Soc. Am. 2006, 2398, 39–53. [Google Scholar]
- Barrett, B.S.; Garreaud, R.; Falvey, M. Effect of the Andes Cordillera on Precipitation from a Midlatitude Cold Front. Mon. WeatherRev. 2009, 137, 3092–3109. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.P.; Kim, G.; Frajka-Williams, E.; Nesbitt, S. Probing Orographic Controls in the Himalayas during the Monsoon Using Satellite Imagery. Nat. Hazards Earth Syst. Sci. 2004, 4, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.P.; Joshi, M.; Putkonen, J.; Burbank, D.W. A Study of the 1999 Monsoon Rainfall in a Mountainous Region in Central Nepal Using TRMM Products and Rain Gauge Observations. Geophys. Res. Lett. 2000, 15, 3683–3686. [Google Scholar] [CrossRef]
- Barros, A.P.; Lang, T.J. Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001. Mon. Weather Rev. 2003, 131, 1408–1427. [Google Scholar] [CrossRef]
- Bedoya-Soto, J.M.; Aristizábal, E.; Carmona, A.M.; Poveda, G. Seasonal Shift of the Diurnal Cycle of Rainfall Over Medellin’s Valley, Central Andes of Colombia (1998–2005). Front. Earth Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Bowman, K.P.; Fowler, M.D. The Diurnal Cycle of Precipitation in Tropical Cyclones. J. Clim. 2015, 28, 5325–5334. [Google Scholar] [CrossRef]
- Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; et al. Multi-Scale Hydrometeorological Observation and Modelling for Flash Flood Understanding. Hydrol. Earth Syst. Sci. 2014, 18, 3733–3761. [Google Scholar] [CrossRef] [Green Version]
- Camarasa-Belmonte, A.M. Flash Floods in Mediterranean Ephemeral Streams in Valencia Region (Spain). J. Hydrol. 2016, 541, 99–115. [Google Scholar] [CrossRef]
- Dixon, M.; Wiener, G. TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting-A Radar-Based Methodology. J. Atmos. Ocean. Technol. 1993, 10, 785–797. [Google Scholar] [CrossRef]
- Doswell, C.A.; Harold, E.B.; Robert, A.M. Flash Flood Forecasting: An Ingredients-Based Methodology. Weather Forecast. 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Dowell, D.C. Severe Convective Storms; American Meteorological Society: Boston, MA, USA, 2001. [Google Scholar]
- Ehlschlaeger, C. Using the AT Search Algorithm to Develop Hydrologic Models from Digital Elevation Data. In Proceedings of the International Geographic Information Systems (IGIS) Symposium’89, Baltimore, MD, USA, March 1989; Volume 56, pp. 275–281. [Google Scholar]
- Froidevaux, P.; Martius, O. Exceptional integrated vapour transport toward orography: An important precursor to severe floods in Switzerland. Q. J. R. Meteorol. Soc. 2016, 142, 1997–2012. [Google Scholar] [CrossRef] [Green Version]
- Futyan, J.M.; Del Genio, A.D. Deep Convective System Evolution over Africa and the Tropical Atlantic. J. Clim. 2007, 20, 5041–5060. [Google Scholar] [CrossRef]
- Garreaud, R.; Rutllant, J. Coastal Lows in North-Central Chile: Numerical Simulation of a Typical Case. Mon. Weather Rev. 2003, 131, 891–908. [Google Scholar] [CrossRef]
- Garreaud, R.; Fuenzalida, H.A. The Influence of the Andes on Cutoff Lows: A Modeling Study*. Mon. Weather Rev. 2007, 135, 1596–1613. [Google Scholar] [CrossRef] [Green Version]
- Garrote, J.; Alvarenga, F.; Diez-Herrero, A. Quantification of Flash Flood Economic Risk Using Ultra-Detailed Stage–Damage Functions and 2-D Hydraulic Models. J. Hydrol. 2016, 541, 611–625. [Google Scholar] [CrossRef]
- Gultepe, I. 56 Advances in Geophysics. In Mountain Weather Observation and Modeling; Elsevier Ltd.: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Hilgendorf, E.R.; Johnson, R.H. A Study of the Evolution of Mesoscale Convective Systems Using WSR-88D Data. Weather Forecast. 1998, 13, 437–452. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Mesoscale Convective Systems. Rev. Geophys. 2004, 42, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A. Orographic Control of Precipitation: What Are We Learning from MAP. MAP Newsl. 2001, 14, 3–5. [Google Scholar]
- Orographic Effects on Precipitating Clouds. Rev. Geophys. 2012, 50, 1–47.
- Houze, R.A., Jr.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef] [PubMed]
- Hoyos, C.D.; Ceballos, L.I.; Pérez-Carrasquilla, J.S.; Sepúlveda, J.; López-Zapata, S.M.; Zuluaga, M.D.; Velásquez, N.; Herrera-Mejía, L.; Hernández, O.; Guzmán-Echavarría, G.; et al. Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Nat. Hazards Earth Syst. Sci. 2019, 19, 2635–2665. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, L.; Poveda, G.; Mejía, J.F. Mesoscale Convective Systems and Other Precipitation Features over the Tropical Americas and Surrounding Seas as Seen by TRMM. Int. J. Climatol. 2017, 37, 380–397. [Google Scholar] [CrossRef]
- Kingsmill, D.E.; Persson, P.O.G.; Haimov, S.; Shupe, M.D. Mountain Waves and Orographic Precipitation in a Northern Colorado Winter Storm. Q. J. R. Meteorol. Soc. 2015, 142, 836–853. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Doviak, R.J.; Lei, L.; Cao, Q. A New Approach to Detect Ground Clutter Mixed with WeatherSignals. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2373–2387. [Google Scholar] [CrossRef]
- Lilly, D.K. A Severe Downslope Windstorm and Aircraft Turbulence Event Induced by a Mountain Wave. J. Atmos. Sci. 1978, 35, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Chiao, S.; Wang, T.-A.; Kaplan, M.L.; Weglarz, R.P. Some Common Ingredients for Heavy Orographic Rainfall. Weather Forecast. 2001, 16, 633–660. [Google Scholar] [CrossRef]
- Llasat, M.C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in Flash Flood Events versus Convective Precipitation in the Mediterranean Region: The Case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Maddox, R.A.; Hoxit, L.R.; Chappell, C.F.; Caracena, F. Comparison of Meteorological Aspects of the Big Thompson and Rapid City Flash Floods. Mon. Weather Rev. 1978, 106, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Mohr, K.I.; Slayback, D.; Yager, K. Characteristics of Precipitation Features and Annual Rainfall during the TRMM Era in the Central Andes. J. Clim. 2014, 27, 3982–4001. [Google Scholar] [CrossRef] [Green Version]
- Posada-Marín, J.A.; Rendón, A.M.; Salazar, J.F.; Mejía, J.F.; Villegas, J.C. WRF Downscaling Improves ERA-Interim Representation of Precipitation around a Tropical Andean Valley during El Niño: Implications for GCM-Scale Simulation of Precipitation over Complex Terrain. Clim. Dyn. 2019, 52, 3609–3629. [Google Scholar] [CrossRef]
- Poveda, G.; Jaramillo, A.; Gil, M.M.; Quiceno, N.; Mantilla, R. Seasonally in ENSO-Related Precipitation, River Discharges, Soil Moisture, and Vegetation Index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [Google Scholar] [CrossRef]
- Poveda, G.; Alvaro, J.; Marta, M.G.; Natalia, Q.; Ricardo, M. Water Resources Research—2001—Poveda—Seasonally in ENSO-related Precipitation River Discharges Soil Moisture and.Pdf. Water Resour. Reseach 2001, 37, 20169–20178. [Google Scholar]
- Germán, P.; Oscar, M.; Paula, A.; Juan, Á.; Paola, A.; Hernán, M.; Luis, S.; Vladimir, T.; Sara, V. Influencia Del ENSO, Oscilación Madden-Julian, Ondas Del Este, Huracanes y Fases de La Luna En El Ciclo Diurno de Precipitación En Los Andes Tropicales de Colombia. Meteorol. Colomb. 2002, 5, 3–12. [Google Scholar]
- La Hidroclimatología De Colombia: Una Síntesis Desde La Escala Inter-Decadal Hasta La Escala Diurna. Rev. De La Acad. Colomb. De Cienc. 2004, XXVIII, 201–222.
- Purnell, D.J.; Kirshbaum, D.J. Synoptic Control over Orographic Precipitation Distributions during the Olympics Mountains Experiment (OLYMPEX). Mon. Weather Rev. 2018, 146, 1023–1044. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Chaplin, M.M.; Zuluaga, M.; Houze, R.A., Jr. Contribution of Extreme Convective Storms to Rainfall in South America. J. Hydrometeorol. 2015, 17, 353–367. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Houze, R.A. Convective Initiation near the Andes in Subtropical South America. Mon. Weather Rev. 2016, 144, 2351–2374. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Robert, A.H. A Flash-Flooding Storm at the Steep Edge of High Terrain. Bull. Am. Meteorol. Soc. 2012, 93, 1713–1724. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.L.; Zuluaga, M.D.; Houze, R.A., Jr. Severe Convection and Lightning in Subtropical South America. Geophys. Res. Lett. 2014, 41, 7359–7366. [Google Scholar] [CrossRef]
- Roe, G.H. Orographic Precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
- Romatschke, U.; Houze, R.A. Characteristics of Precipitating Convective Systems in the South Asian Monsoon. J. Hydrometeorol. 2001, 12, 3–26. [Google Scholar] [CrossRef]
- Romatschke, U.; Medina, S.; Houze, R.A. Regional, Seasonal, and Diurnal Variations of Extreme Convection in the South Asian Region. J. Clim. 2010, 23, 419–439. [Google Scholar] [CrossRef] [Green Version]
- Roy Bhowmik, S.K.; Roy, S.S.; Kundu, P.K. Analysis of Large-Scale Conditions Associated with Convection over the Indian Monson Region. Int. J. Climatol. 2008, 4, 797–821. [Google Scholar] [CrossRef]
- Rozalis, S.; Morin, E.; Yair, Y.; Price, C. Flash Flood Prediction Using an Uncalibrated Hydrological Model and Radar Rainfall Data in a Mediterranean Watershed under Changing Hydrological Conditions. J. Hydrol. 2010, 394, 245–255. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Borga, M.; Zoccatelli, D.; Marchi, L.; Gaume, E.; Ehret, U. Extreme Flood Response to Short-Duration Convective Rainfall in South-West Germany. Hydrol. Earth Syst. Sci. 2012, 16, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Characterisation of Flash Floods in Small Ungauged Mountain Basins of Central Spain Using an Integrated Approach. Catena 2013, 110, 32–43. [CrossRef]
- Schumacher, R.; Johnson, R.H. Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems. Mon. Weather Rev. 2005, 133, 961–976. [Google Scholar] [CrossRef]
- Chumchean, S.; Seed, A.; Sharma, A. An Operational Approach for Classifying Storms in Real-Time Radar Rainfall Estimation. J. Hydrol. 2008, 363, 1–17. [Google Scholar] [CrossRef]
- Smith, R.B.; Barstad, I.; Bonneau, L. Orographic Precipitation and Oregon’s Climate Transition. J. Atmos. Sci. 2005, 62, 177–191. [Google Scholar] [CrossRef]
- Steiner, M.; Houze, R.A.; Yuter, S. Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteorol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Urrea, V.; Andrés, O.; Oscar, M. Seasonality of Rainfall in Colombia. Water Resour. Res. 2019, 55, 4149–4162. [Google Scholar] [CrossRef]
- Valenzuela, R.A.; David, E.K. Terrain-Trapped Airflows and Orographic Rainfall along the Coast of Northern California. Part II: Horizontal and Vertical Structures Observed by a Scanning Doppler Radar. Mon. Weather Rev. 2018, 146, 2381–2402. [Google Scholar] [CrossRef]
- Vargas, G.; Hernández, Y.; Pabón, J.D. La Niña Event 2010–2011: Hydroclimatic Effects and Socioeconomic Impacts in Colombia. In Climate Change, Extreme Events and Disaster Risk Reduction: Towards Sustainable Development Goals; Mal, S., Singh, R.B., Huggel, C., Eds.; Springer International Publishing: Cham, Switerland, 2018; pp. 217–232. [Google Scholar] [CrossRef]
- Velásquez, N.; Hoyos, C.D.; Vélez, J.I.; Zapata, E. Reconstructing the 2015 Salgar Flash Flood Using Radar Retrievals and a Conceptual Modeling Framework in an Ungauged Basin. Hydrol. Earth Syst. Sci. 2020, 24, 1367–1392. [Google Scholar] [CrossRef] [Green Version]
- Vivekanandan, J.; Yates, D.N.; Brandes, E.A. The Influence of Terrain on Rainfall Estimates from Radar Reflectivity and Specific Propagation Phase Observations. J. Atmos. Ocean. Technol. 1999, 16, 837–845. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, L.; Chang, P.-L.; Tang, Y.-S. Separation of Convective and Stratiform Precipitation Using Polarimetric Radar Data with a Support Vector Machine Method. Atmos. Meas. Tech. 2021, 14, 185–197. [Google Scholar] [CrossRef]
- Xie, S.-P.; Xu, H.; Saji, N.H.; Wang, Y.; Liu, W.T. Role of Narrow Mountains in Large-Scale Organization of Asian Monsoon Convection. J. Clim. 2006, 19, 3420–3429. [Google Scholar] [CrossRef]
- Yu, C.-K.; Smull, B.F. Airborne Doppler Observations of a Landfalling Cold Front Upstream of Steep Coastal Orography. Mon. Weather Rev. 2000, 128, 1577–1603. [Google Scholar] [CrossRef]
- Zuluaga, M.; Houze, R.A. Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as Seen by TRMM. Mon. Weather Rev. 2015, 143, 298–316. [Google Scholar] [CrossRef] [Green Version]
Feature | Stratiform | Convective | Unenveloped | Enveloped |
---|---|---|---|---|
] | 43,000 | 14,000 | 14,000 | 13,200 |
] | 47 | 24 | 30 | 15 |
] | 445 | 160 | 180 | 131 |
] | 1.50 | 1.43 | 1.52 | 1.34 |
] | 60 | 33 | 43 | 16 |
] | 40 | 60 | 60 | 46 |
] | 0.26 | 22 | 22 | 22 |
] | 16 | 30 | 32 | 28 |
] | 6.6 | 3.7 | 4.1 | 1.6 |
] | 10 | 27 | 27 | 27 |
] | 27 | 36 | 38 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez, N. Assessment of Deep Convective Systems in the Colombian Andean Region. Hydrology 2022, 9, 119. https://doi.org/10.3390/hydrology9070119
Velásquez N. Assessment of Deep Convective Systems in the Colombian Andean Region. Hydrology. 2022; 9(7):119. https://doi.org/10.3390/hydrology9070119
Chicago/Turabian StyleVelásquez, Nicolás. 2022. "Assessment of Deep Convective Systems in the Colombian Andean Region" Hydrology 9, no. 7: 119. https://doi.org/10.3390/hydrology9070119
APA StyleVelásquez, N. (2022). Assessment of Deep Convective Systems in the Colombian Andean Region. Hydrology, 9(7), 119. https://doi.org/10.3390/hydrology9070119