Long Term (1998–2019) Changes in Water Quality Parameters as a Function of Freshwater Inflow in a River–Bay Continuum
Abstract
:Highlights
- Water quality parameters were studied in the Delaware Inland Bays watersheds.
- Freshwater inflow (FWI) had the greatest effect on dissolved N in the Inland Bays.
- Dissolved P depended on the combined effects of FWI and metabolic processes.
- Dissolved N and P were higher than the respective standard during the growing seasons of submerged aquatic vegetation.
- Coastal developments and changing land use had effects on load transport.
Abstract
1. Introduction
2. Site Descriptions
3. Methods
3.1. Data
3.2. Statistical Analysis
3.3. Land Use Changes
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffam, I.; Galloway, J.N.; Blum, L.K.; McGlathery, K.J. A stormflow/baseflow comparison of dissolved organic matter concentration and bioavailability in an Appalachian stream. Biogeochemistry 2001, 53, 269–306. [Google Scholar] [CrossRef]
- Paudel, B.; Velinsky, D.J.; Belton, T.; Pang, H. Spatial variability of estuarine environmental drivers and response by phytoplankton: A multivariate modeling approach. Ecol. Inform. 2016, 34, 1–12. [Google Scholar] [CrossRef]
- Rogers, C.S. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 1990, 62, 185–202. [Google Scholar] [CrossRef]
- Longstaff, B.J.; Dennison, W.C. Seagrass survival during pulsed turbidity events: The effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquat. Bot. 1999, 65, 105–121. [Google Scholar] [CrossRef]
- Wilber, D.H.; Clarke, D.G. Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. N. Am. J. Fish Manag. 2001, 2, 855–875. [Google Scholar] [CrossRef]
- Rodriguez, W.; August, P.V.; Wang, Y.; Paul, J.F.; Gold, A.; Rubinstein, N. Empirical relationships between landuse/cover and estuarine condition in the Northeastern United States. Landsc. Ecol. 2007, 22, 403–417. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, H.; Li, H.; Main, C.; Anton, J.; Jaisi, D.P. Tracing the sources of phosphorus along salinity gradient in a coastal estuary using multi-isotope proxies. Sci. Total Environ. 2021, 792, 148353. [Google Scholar] [CrossRef] [PubMed]
- Cerco, C.F.; Bunch, B.; Cialone, M.A.; Wang, H. Hydrodynamics and Eutrophication Model Study of Indian River and Rehoboth Bay, Delaware; Final Report; Army Engineer Waterways Experiment Station Vicksburg MS Environmental Lab: Philadelphia, PA, USA, 1994; 264p, Available online: https://apps.dtic.mil/sti/citations/ADA282922 (accessed on 1 August 2021).
- Price, K.S. A framework for a Delaware Inland Bays environmental classification. Environ. Monit. Assess. 1998, 51, 285–298. [Google Scholar] [CrossRef]
- Kauffman, G.J.; Belden, A.C. Water quality trends (1970 to 2005) along Delaware streams in the Delaware and Chesapeake Bay watersheds, USA. Water Air Soil Pollut. 2010, 208, 345–375. [Google Scholar] [CrossRef]
- Ritter, W.F. Delaware’s Inland bays: A case study. J. Environ. Sci. Health. Part A Environ. Sci. Eng. Toxicol. 1992, 27, 63–88. [Google Scholar] [CrossRef]
- Volk, J.A.; Savidge, K.B.; Scudlark, J.R.; Andres, A.S.; Ullman, W.J. Nitrogen loads through baseflow, stormflow, and underflow to Rehoboth Bay, Delaware. J. Environ. Qual. 2006, 35, 1742–1755. [Google Scholar] [CrossRef]
- Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J. Intra-and inter-annual trends in phosphorus loads and comparison with nitrogen loads to Rehoboth Bay, Delaware (USA). Estuar. Coast. Shelf Sci. 2012, 96, 139–150. [Google Scholar] [CrossRef]
- USDA. Census of Agriculture; Geographic Area Series, US Summary and State Data; USDA: Washington, DC, USA, 2017; Volume 1, Part 51. [Google Scholar]
- Delaware Department of Natural Resources and Environmental Control (DNREC). Total Maximum Daily Load (TMDL) Analysis for Indian River, Indian River Bay, and Rehoboth Bay, Delaware. 1998; 99p. Available online: http://www.dnrec.delaware.gov/swc/wa/Documents/TMDL_TechnicalAnalysisDocuments/19_InlandBaysTMDLAnalysis.pdf (accessed on 1 August 2021).
- CCMP. Chapters 1–5 of the Delaware Inland Bays Comprehensive Conservation Management Plan; CCMP: Rehoboth, DE, USA, 1995; 172p. [Google Scholar]
- Montagna, P.A.; Hu, X.; Palmer, T.A.; Wetz, M. Effect of hydrological variability on the biogeochemistry of estuaries across a regional climatic gradient. Limnol. Oceanogr. 2018, 63, 2465–2478. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.-C. The effect of coastal sea level forcing to Indian River Bay and Rehoboth Bay, Delaware. Estuar. Coast. Shelf Sci. 1991, 32, 213–229. [Google Scholar] [CrossRef]
- Karpas, R.M. The Hydrography of Indian River and Rehoboth-Delaware’s Small Bays. Master’s Thesis, University of Delaware, Newark, DE, USA, 1978; 179p. [Google Scholar]
- Karpas, R.M.; Jensen, P. Hydrodynamics of Coastal Sussex County Estuaries, Report on Task 2331 for the Coastal Sussex County Water Quality Analysis; Delaware Sea Grant College Program, University of Delaware: Newark, DE, USA, 1977. [Google Scholar]
- Montagna, P.A. Using PROC STANDARD and PROC SCORE to Impute Missing Multivariate Values; South Central SAS Users Group: San Antonio, TX, USA, 2013; Available online: https://www.scsug.org/wp-content/uploads/2013/11/Using-PROC-STANDARD-and-PROC-SCORE-to-impute-missing-multivariate-values-Paul-Montagna.pdf (accessed on 13 September 2021).
- SAS Institute Inc. SAS/STAT® 13.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Cerco, C.F. Response of Chesapeake Bay to nutrient load reductions. J. Environ. Eng. 1995, 121, 549. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. Phytoplankton, dissolved oxygen, and nutrient patterns along a eutrophic river-estuary continuum: Observation and modeling. J. Environ. Manag. 2020, 261, 110460. [Google Scholar] [CrossRef]
- Montagna, P.A.; Palmer, T.A.; Pollack, J.B. Hydrological Changes and Estuarine Dynamics; SpringerBriefs in Environmental Sciences; Springer: New York, NY, USA, 2013. [Google Scholar]
- Palmer, T.A.; Montagna, P.A.; Chamberlain, R.H.; Doering, P.H.; Wan, Y.; Haunert, K.M.; Crean, D.J. Determining the effects of freshwater inflow on benthic macrofauna in the Caloosahatchee Estuary, Florida. Integr. Environ. Assess. Manag. 2015, 12, 529–539. [Google Scholar] [CrossRef]
- Li, X.; Weller, D.E.; Gallegos, L.; Jordan, T.E.; Kim, H. Effects of watershed and estuarine characteristics on the abundance of submerged aquatic vegetation in Chesapeake Bay subestuaries. Estuaries Coasts 2007, 30, 840–854. [Google Scholar] [CrossRef] [Green Version]
- Paudel, B.; Montagna, P.A.; Adams, L. The relationship between suspended solids and nutrients with variable hydrologic flow regimes. Reg. Stud. Mar. Sci. 2019, 29, 100657. [Google Scholar] [CrossRef]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 1988, 33, 649–668. [Google Scholar] [CrossRef]
- Hartzell, J.L.; Jordan, T.E.; Cornwell, J.C. Phosphorus burial in sediments along the salinity gradient of the Patuxent River, a subestuary of the Chesapeake Bay (USA). Estuaries Coasts 2010, 33, 92–106. [Google Scholar] [CrossRef]
- Paudel, B.; Weston, N.; O’Connor, J.; Suttor, L.; Velinsky, D. Phosphorus dynamics in the water column and sediments of Barnegat Bay, New Jersey. J. Coast. Res. 2017, 78, 60–69. [Google Scholar] [CrossRef]
- Scudlark, J.R.; Jennings, J.A.; Roadman, M.J.; Savidge, K.B.; Ullman, W.J. Atmospheric nitrogen inputs to the Delaware Inland Bays: The role of ammonia. Environ. Pollut. 2005, 135, 433–443. [Google Scholar] [CrossRef] [PubMed]
Year | ‘98 | ‘99 | ‘00 | ‘01 | ‘02 | ‘03 | ‘04 | ‘05 | ‘06 | ‘07 | ‘08 | ‘09 | ‘10 | ‘11 | ‘12 | ‘13 | ‘14 | ‘15 | ‘16 | ‘17 | ‘18 | ‘19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | 3.5 | 1.9 | 2.6 | 2.3 | 1.9 | 5.2 | 2.9 | 3.0 | 2.8 | 2.0 | 1.6 | 3.8 | 2.9 | 1.3 | 1.6 | 3.7 | 2.5 | 2.2 | 2.9 | 2.3 | 3.9 | 2.6 |
Watershed Basins | Flow N-NO2_3 (r; p) | Flow P-PO4 (r; p) | ||||||||||||||||||||
Indian River | 0.49; 0.005 | 0.12; 0.54 | ||||||||||||||||||||
Indian River Bay | 0.39; 0.01 | 0.06; 0.76 | ||||||||||||||||||||
Lewes-Rehoboth Canal | −0.01; 0.002 | −0.06; 0.95 | ||||||||||||||||||||
Little Assawoman | 0.50; 0.0002 | −0.11; 0.91 | ||||||||||||||||||||
Rehoboth Bay | 0.46; 0.001 | 0.16; 0.41 |
Indian River | Indian River Bay | Lewes-Rehoboth Canal | Little Assawoman | Rehoboth Bay | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Std Dev | Mean | Std Dev | Mean | Std Dev | Mean | Std Dev | Mean | Std Dev |
Secchi Depth | 4.1 | 10.1 | 5.6 | 16.2 | 5.1 | 13.2 | 3.4 | 8.7 | 5.8 | 14.8 |
Chlorophyll-a | 59.2 | 130.3 | 10.3 | 11.6 | 11.9 | 8.4 | 31.5 | 70.9 | 22.3 | 48.1 |
Chloride | 9819 | 3522 | 12594 | 6949 | 14182 | 2346 | 9759 | 5496 | 9398 | 6657 |
Salinity | 17.7 | 5.5 | 23.1 | 10.5 | 24.7 | 3.5 | 17.8 | 8.8 | 17.18 | 11.4 |
Water Temperature | 19.0 | 8.5 | 15.1 | 7.6 | 15.4 | 8.0 | 15.9 | 8.5 | 16.6 | 7.9 |
Dissolved Oxygen | 8.1 | 2.2 | 8.1 | 2.3 | 7.1 | 2.6 | 8.1 | 2.5 | 8.2 | 2.1 |
Nitrite+Nitrate | 0.83 | 0.80 | 0.79 | 1.68 | 0.21 | 0.44 | 0.49 | 0.92 | 1.0 | 1.1 |
Ammonia-N | 0.14 | 0.15 | 0.10 | 0.13 | 0.15 | 0.17 | 0.10 | 0.10 | 0.08 | 0.1 |
Phosphate-P | 0.11 | 0.10 | 0.06 | 0.06 | 0.09 | 0.05 | 0.11 | 0.14 | 0.07 | 0.06 |
TSS | 33.3 | 27.5 | 22.5 | 31.5 | 31.3 | 27.5 | 20.2 | 18.9 | 20.1 | 19.2 |
pH | 7.6 | 0.4 | 7.6 | 0.5 | 7.5 | 0.35 | 7.9 | 0.3 | 7.08 | 0.7 |
Variable | DF | p-Value | Variance Component (%) |
---|---|---|---|
Secchi | 4 | <0.001 | 88 |
Chl_a | 4 | <0.001 | 44 |
Cl | 4 | <0.001 | 34 |
Sal | 4 | <0.001 | 33 |
TempWater | 4 | <0.001 | 21 |
DO | 4 | <0.001 | 12 |
N-NO2_3 | 4 | <0.001 | 95 |
N-NH3 | 4 | <0.001 | 95 |
P-PO4 | 4 | <0.001 | 87 |
TSS | 4 | <0.001 | 28 |
pH | 4 | <0.001 | 3 |
Watersheds | Chl_a and P-PO4 | TSS and P-PO4 | Chl_a and N-NO2_3 | TSS and N-NO2_3 |
---|---|---|---|---|
Indian River | 0.61 | 0.49 | −0.22 | −0.28 |
Indian River Bay | 0.30 | 0.27 | −0.17 | −0.14 |
Rehoboth Bay | 0.56 | 0.38 | −0.18 | −0.18 |
Little Assawoman Bay | 0.59 | 0.36 | −0.07 | −0.05 |
Lewes-Rehoboth Canal | 0.08 | 0.50 | 0.05 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paudel, B.; Brown, L.M. Long Term (1998–2019) Changes in Water Quality Parameters as a Function of Freshwater Inflow in a River–Bay Continuum. Hydrology 2022, 9, 138. https://doi.org/10.3390/hydrology9080138
Paudel B, Brown LM. Long Term (1998–2019) Changes in Water Quality Parameters as a Function of Freshwater Inflow in a River–Bay Continuum. Hydrology. 2022; 9(8):138. https://doi.org/10.3390/hydrology9080138
Chicago/Turabian StylePaudel, Bhanu, and Lori M. Brown. 2022. "Long Term (1998–2019) Changes in Water Quality Parameters as a Function of Freshwater Inflow in a River–Bay Continuum" Hydrology 9, no. 8: 138. https://doi.org/10.3390/hydrology9080138
APA StylePaudel, B., & Brown, L. M. (2022). Long Term (1998–2019) Changes in Water Quality Parameters as a Function of Freshwater Inflow in a River–Bay Continuum. Hydrology, 9(8), 138. https://doi.org/10.3390/hydrology9080138