Portable Iontophoresis Device for Efficient Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Device Analysis
2.3. Numerical Modeling
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reddy, S.; He, L.; Ramakrishana, S. Miniaturized-electroneurostimulators and self-powered/rechargeable implanted devices for electrical-stimulation therapy. Biomed. Signal Process 2018, 41, 255–263. [Google Scholar] [CrossRef]
- Kai, H.; Suda, W.; Yoshida, S.; Nishizawa, M. Organic electrochromic timer for enzymatic skin patches. Biosens. Bioelectron. 2019, 123, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.S.; Park, S.K.; Roh, K.C.; Park, H.S. Electrode materials for biomedical patchable and implantable energy storage devices. Energy Storage Mater. 2020, 24, 113–128. [Google Scholar] [CrossRef]
- Hao, Y.; Li, W.; Zhou, X.; Yang, F.; Qian, Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol. 2017, 13, 1581–1597. [Google Scholar] [CrossRef]
- Szunerits, S.; Boukherroub, R. Heat: A highly efficient skin enhancer for transdermal drug delivery. Front. Bioeng. Biotechnol. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.C.; Kim, D.I.; Kim, S.H.; Wang, H.M.D.; Hwang, B.H. Synergistic transdermal delivery of biomacromolecules using sonophoresis after microneedle treatment. Biotechnol. Bioprocess Eng. 2018, 23, 286–292. [Google Scholar] [CrossRef]
- Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [Google Scholar] [CrossRef]
- Wu, K.S.; van Osdol, W.W.; Dauskardt, R.H. Mechanical properties of human stratum corneum: Effects of temperature, hydration, and chemical treatment. Biomaterials 2006, 27, 785–795. [Google Scholar] [CrossRef]
- Puri, A.; Murnane, K.S.; Blough, B.E.; Banga, A.K. Effects of chemical and physical enhancement techniques on transdermal delivery of 3-fluoroamphetamine hydrochloride. Int. J. Pharm. 2017, 528, 452–462. [Google Scholar] [CrossRef]
- Voshavar, C.; Kumar Vemula, P.; Marepally, S. 2019 Topical and transdermal delivery with chemical enhancers and nanoparticles. In Imaging Technologies and Transdermal Delivery in Skin Disorders; Wang, X., Pramanik, M., Xu, C., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; p. 169. [Google Scholar]
- Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010, 17, 187–207. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Woolfson, A.D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 2012, 22, 4879–4890. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Dugansani, S.R.; Jeon, S.H.; Hwang, S.H.; Kim, J.H.; Park, S.H.; Jeong, J.H. Drug-delivery system based on salmon DNA nano-and micro-scale structures. Sci. Rep. 2017, 7, 9724. [Google Scholar] [CrossRef]
- Bok, M.; Lee, Y.; Park, D.; Shin, S.; Zhao, Z.J.; Hwang, B.; Nah, J.; Lim, E. Microneedles integrated with a triboelectric nanogenerator: An electrically active drug delivery system. Nanoscale 2018, 10, 13502–13510. [Google Scholar] [CrossRef]
- Bok, M.; Zhao, Z.J.; Jeon, S.; Jeong, J.H.; Lim, E. Ultrasonically and iontophoretically enhanced drug-delivery system based on dissolving microneedle patches. Sci. Rep. 2020, 10, 2027. [Google Scholar] [CrossRef] [Green Version]
- Bok, M.; Zhao, Z.J.; Hwang, H.; Kang, H.J.; Jeon, S.; Ko, J.; Jeong, J.; Song, Y.S.; Lim, E.; Jeong, J.H. Effective Dispensing Methods for Loading Drugs Only to the Tip of DNA Microneedles. Pharmaceutics 2020, 12, 954. [Google Scholar] [CrossRef]
- Kalia, Y.N.; Naik, A.; Garrison, J.; Guy, R.H. Iontophoretic drug delivery. Adv. Drug Delivery Rev. 2004, 56, 619–658. [Google Scholar] [CrossRef]
- Banga, A.K.; Chien, Y.W. Iontophoretic delivery of drugs: Fundamentals, developments and biomedical applications. J. Control. Release 1988, 7, 1–24. [Google Scholar] [CrossRef]
- Singh, P.; Maibach, H.I. Iontophoresis in drug delivery: Basic principles and applications. Crit. Rev. Ther. Drug Carrier Syst. 1994, 11, 161–213. [Google Scholar]
- Prausnitz, M.R. The effects of electric current applied to skin: A review for transdermal drug delivery. Adv. Drug Deliv. Rev. 1996, 18, 395–425. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Banga, A.K. Electrically and ultrasonically enhanced transdermal delivery of methotrexate. Pharmaceutics 2018, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Saunier, V.; Flahaut, E.; Blatché, M.-C.; Bergaud, C.; Maziz, A. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosens. Bioelectron. 2020, 165, 112413. [Google Scholar] [CrossRef] [PubMed]
- Boehler, C.; Kleber, C.; Martini, N.; Xie, Y.; Dryg, I.; Stieglitz, T.; Asplund, M. Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 2017, 129, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Gao, J.; Fang, C.; Zhou, Y.; Li, X.; Han, G. Porous Pt nanospheres incorporated with GOx to enable synergistic oxygen-inductive starvation/electrodynamic tumor therapy. Adv. Sci. 2020, 7, 2001223. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Sun, Y.; Tang, M.; Yue, Z.; Ni, J.; Zhao, J.; Wang, L. Polyoxometalate modified by zeolite imidazole framework for the pH-responsive electrodynamic/chemodynamic therapy. ACS Appl. Mater. Interfaces 2022, 14, 4914–4920. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, Q.; Feng, Z.; Xu, Q.; Zhang, X.; Yang, Y.; Yu, M. Glutamine antagonist synergizes with electrodynamic therapy to induce tumor regression and systemic antitumor immunity. ACS Nano 2022, 16, 951–962. [Google Scholar] [CrossRef]
- Baji, S.; Hegde, A.R.; Kulkarni, M.; Raut, S.Y.; Manikkath, J.; Reddy, M.S.; Mutalik, S. Skin permeation of gemcitabine hydrochloride by passive diffusion, iontophoresis and sonophoresis: In vitro and in vivo evaluations. J. Drug Deliv. Sci. Technol. 2018, 47, 49–54. [Google Scholar] [CrossRef]
- Banerjee, A.; Chen, R.; Arafin, S.; Mitragotri, S. Intestinal iontophoresis from mucoadhesive patches: A strategy for oral delivery. J. Control. Release 2019, 297, 71–78. [Google Scholar] [CrossRef]
- Yang, B.; Fang, X.; Kong, J. Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Adv. Funct. Mater. 2020, 2020, 2000591. [Google Scholar] [CrossRef]
- Kwon, Y.I.; Song, Y.S. Application of injection-compression molding to thin-walled polymeric parts. Korea-Aust. Rheol. J. 2018, 30, 161–167. [Google Scholar] [CrossRef]
- Oh, H.J.; Song, Y.S. Precise nanoinjection molding through local film heating system. RSC Adv. 2015, 5, 99797–99805. [Google Scholar] [CrossRef]
- Songlin, L.; Kenneth, B.T.; Stephen, J.K.; Mark, J.J. Vitamin C inhibits the enzymatic activity of streptococcus pneumoniae hyaluronate lyase. J. Biol. Chem. 2001, 276, 15125–15130. [Google Scholar]
- Padayatty, S.; Levine, M. Vitamin C: The known and the unknown and Goldilocks (invited medical review). Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bok, M.; Kwon, Y.I.; Huang, Z.M.; Lim, E. Portable Iontophoresis Device for Efficient Drug Delivery. Bioengineering 2023, 10, 88. https://doi.org/10.3390/bioengineering10010088
Bok M, Kwon YI, Huang ZM, Lim E. Portable Iontophoresis Device for Efficient Drug Delivery. Bioengineering. 2023; 10(1):88. https://doi.org/10.3390/bioengineering10010088
Chicago/Turabian StyleBok, Moonjeong, Young Il Kwon, Zheng Min Huang, and Eunju Lim. 2023. "Portable Iontophoresis Device for Efficient Drug Delivery" Bioengineering 10, no. 1: 88. https://doi.org/10.3390/bioengineering10010088
APA StyleBok, M., Kwon, Y. I., Huang, Z. M., & Lim, E. (2023). Portable Iontophoresis Device for Efficient Drug Delivery. Bioengineering, 10(1), 88. https://doi.org/10.3390/bioengineering10010088