Biomedical Applications of Collagen
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, N.F.; Lai, E.S.; Ribeiro, A.J.; Pan, S.; Pruitt, B.L.; Fuller, G.G.; Cooke, J.P. Spatial patterning of endothelium modulates cell morphology, adhesiveness and transcriptional signature. Biomaterials 2013, 34, 2928–2937. [Google Scholar] [CrossRef] [Green Version]
- Lai, E.S.; Huang, N.F.; Cooke, J.P.; Fuller, G.G. Aligned nanofibrillar collagen regulates endothelial organization and migration. Regen. Med. 2012, 7, 649–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, K.H.; Surya, V.N.; Gole, M.; Walker, T.W.; Yang, W.; Lai, E.S.; Ostrowski, M.A.; Fuller, G.G.; Dunn, A.R.; Huang, N.F. Nanoscale Patterning of Extracellular Matrix Alters Endothelial Function under Shear Stress. Nano Lett. 2015, 16, 410–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, K.H.; Hong, G.; Lee, J.C.; Patel, J.; Edwards, B.; Zaitseva, T.S.; Paukshto, M.V.; Dai, H.; Cooke, J.P.; Woo, Y.J.; et al. Aligned-Braided Nanofibrillar Scaffold with Endothelial Cells Enhances Arteriogenesis. ACS Nano 2015, 9, 6900–6908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, N.F.; Okogbaa, J.; Babakhanyan, A.; Cooke, J.P. Bioluminescence Imaging of Stem Cell-Based Therapeutics for Vascular Regeneration. Theranostics 2012, 2, 346–354. [Google Scholar] [CrossRef]
- Mulorz, J.; Shayan, M.; Hu, C.; Alcazar, C.; Chan, A.H.P.; Briggs, M.; Wen, Y.; Walvekar, A.P.; Ramasubramanian, A.K.; Spin, J.M.; et al. peri-Adventitial delivery of smooth muscle cells in porous collagen scaffolds for treatment of experimental abdominal aortic aneurysm. Biomater. Sci. 2021, 9, 6903–6914. [Google Scholar] [CrossRef]
- Hu, C.; Zaitseva, T.S.; Alcazar, C.; Tabada, P.; Sawamura, S.; Yang, G.; Borrelli, M.R.; Wan, D.C.; Nguyen, D.H.; Paukshto, M.V.; et al. Delivery of Human Stromal Vascular Fraction Cells on Nanofibrillar Scaffolds for Treatment of Peripheral Arterial Disease. Front. Bioeng. Biotechnol. 2020, 8, 689. [Google Scholar] [CrossRef]
- Alcazar, C.A.; Hu, C.; Rando, T.A.; Huang, N.F.; Nakayama, K.H. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater. Sci. 2020, 8, 5376–5389. [Google Scholar] [CrossRef]
- Hu, C.; Ayan, B.; Chiang, G.; Chan, A.H.P.; Rando, T.A.; Huang, N.F. Comparative Effects of Basic Fibroblast Growth Factor Delivery or Voluntary Exercise on Muscle Regeneration after Volumetric Muscle Loss. Bioengineering 2022, 9, 37. [Google Scholar] [CrossRef]
- Park, Y.; Lin, S.; Bai, Y.; Moeinzadeh, S.; Kim, S.; Huang, J.; Lee, U.; Huang, N.F.; Yang, Y.P. Dual Delivery of BMP2 and IGF1 Through Injectable Hydrogel Promotes Cranial Bone Defect Healing. Tissue Eng. Part A 2022, 28, 760–769. [Google Scholar] [CrossRef]
- Hadamitzky, C.; Zaitseva, T.S.; Bazalova-Carter, M.; Paukshto, M.V.; Hou, L.; Strassberg, Z.; Ferguson, J.; Matsuura, Y.; Dash, R.; Yang, P.C.; et al. Aligned nanofibrillar collagen scaffolds—Guiding lymphangiogenesis for treatment of acquired lymphedema. Biomaterials 2016, 102, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.H.; Zhou, A.; Posternak, V.; Rochlin, D.H. Nanofibrillar Collagen Scaffold Enhances Edema Reduction and Formation of New Lymphatic Collectors after Lymphedema Surgery. Plast. Reconstr. Surg. 2021, 148, 1382–1393. [Google Scholar] [CrossRef]
- Rochlin, D.H.; Inchauste, S.; Zelones, J.; Nguyen, D.H. The role of adjunct nanofibrillar collagen scaffold implantation in the surgical management of secondary lymphedema: Review of the literature and summary of initial pilot studies. J. Surg. Oncol. 2019, 121, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Dziki, J.; Badylak, S.; Yabroudi, M.; Sicari, B.; Ambrosio, F.; Stearns, K.; Turner, N.; Wyse, A.; Boninger, M.L.; Brown, E.H.P.; et al. An acellular biologic scaffold treatment for volumetric muscle loss: Results of a 13-patient cohort study. NPJ Regen. Med. 2016, 1, 16008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.; Zaitseva, T.S.; Zhou, A.; Rochlin, D.; Sue, G.; Deptula, P.; Tabada, P.; Wan, D.; Loening, A.; Paukshto, M.; et al. Lymphatic regeneration after implantation of aligned nanofibrillar collagen scaffolds: Preliminary preclinical and clinical results. J. Surg. Oncol. 2021, 125, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Hart, C.E.; Loewen-Rodriguez, A.; Lessem, J. Dermagraft: Use in the Treatment of Chronic Wounds. Adv. Wound Care 2012, 1, 138–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenbud, D.; Huang, N.F.; Luke, S.; Silberklang, M. Skin substitutes and wound healing: Current status and challenges. Wounds 2004, 16, 2–17. [Google Scholar]
- Chan, W.W.; Yeo, D.C.L.; Tan, V.; Singh, S.; Choudhury, D.; Naing, M.W. Additive Biomanufacturing with Collagen Inks. Bioengineering 2020, 7, 66. [Google Scholar] [CrossRef]
- Agarwal, T.; Fortunato, G.M.; Hann, S.Y.; Ayan, B.; Vajanthri, K.Y.; Presutti, D.; Cui, H.; Chan, A.H.; Costantini, M.; Onesto, V.; et al. Recent advances in bioprinting technologies for engineering cardiac tissue. Mater. Sci. Eng. C 2021, 124, 112057. [Google Scholar] [CrossRef]
- Blackstone, B.; Gallentine, S.; Powell, H. Collagen-Based Electrospun Materials for Tissue Engineering: A Systematic Review. Bioengineering 2021, 8, 39. [Google Scholar] [CrossRef]
- Paukshto, M.; McMurtry, D.; Bobrov, Y.; Sabelman, E. Oriented Collagen-Based Materials, Films and Methods of Making Same. U.S. Patent 8492332, 21 July 2013. [Google Scholar]
- Paukshto, M.V.; McMurtry, D.H.; Martin, G.R.; Zaitseva, T.; Bobrov, Y.A. Biocomposites and Methods of Making the Same. U.S. Patent 8513382, 20 August 2013. [Google Scholar]
- Paten, J.A.; Siadat, S.M.; Susilo, M.E.; Ismail, E.N.; Stoner, J.L.; Rothstein, J.P.; Ruberti, J.W. Flow-Induced Crystallization of Collagen: A Potentially Critical Mechanism in Early Tissue Formation. ACS Nano 2016, 10, 5027–5040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Rodriguez, B.J.; Sawamura, S.; Paukshto, M.V. Fibril size-dependent control of polar ordering in type i collagen membranes. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1662–1667. [Google Scholar] [CrossRef]
- Nagayama, K. A Loss of Nuclear—Cytoskeletal Interactions in Vascular Smooth Muscle Cell Differentiation Induced by a Micro-Grooved Collagen Substrate Enabling the Modeling of an In Vivo Cell Arrangement. Bioengineering 2021, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Walimbe, T.; Panitch, A. Best of Both Hydrogel Worlds: Harnessing Bioactivity and Tunability by Incorporating Glycosaminoglycans in Collagen Hydrogels. Bioengineering 2020, 7, 156. [Google Scholar] [CrossRef]
- Patil, V.A.; Masters, K.S. Engineered collagen matrices. Bioengineering 2020, 7, 163. [Google Scholar] [CrossRef]
- Xu, Y.; Kirchner, M. Collagen mimetic peptides. Bioengineering 2021, 8, 5. [Google Scholar] [CrossRef]
- Fertala, A. Three decades of research on recombinant collagens: Reinventing the wheel or developing new biomedical products? Bioengineering 2020, 7, 155. [Google Scholar] [CrossRef]
- San Antonio, J.D.; Jacenko, O.; Fertala, A.; Orgel, J. Collagen structure-function mapping informs applications for regenerative medicine. Bioengineering 2020, 8, 3. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in wound healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Yeung, D.A.; Kelly, N.H. The Role of Collagen-Based Biomaterials in Chronic Wound Healing and Sports Medicine Applications. Bioengineering 2021, 8, 8. [Google Scholar] [CrossRef]
- Duan, K.; Dash, B.C.; Sasson, D.C.; Islam, S.; Parker, J.; Hsia, H.C. Human ipsc-derived vascular smooth muscle cells in a fibronectin functionalized collagen hydrogel augment endothelial cell morphogenesis. Bioengineering 2021, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Stephens, B.; Bergman, M.; May, A.; Chiang, T. Role of collagen in airway mechanics. Bioengineering 2021, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, J.; Drifka, C.; Pointer, K.; Liu, Y.; Lieberthal, T.; Kao, W.; Kuo, J.; Loeffler, A.; Eliceiri, K. Navigating the Collagen Jungle: The Biomedical Potential of Fiber Organization in Cancer. Bioengineering 2021, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Avtandilov, G.; Dembo, A.; Komardin, O.; Lazarev, P.; Paukshto, M.; Shkolnik, L.; Zayratiyants, O. Human tissue analysis by small-angle X-ray scattering. J. Appl. Crystallogr. 2000, 33, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Round, A.R.; Wilkinson, S.J.; Hall, C.J.; Rogers, K.D.; Glatter, O.; Wess, T.; Ellis, O.I. A preliminary study of breast cancer diagnosis using laboratory based small angle X-ray scattering. Phys. Med. Biol. 2005, 50, 4159–4168. [Google Scholar] [CrossRef]
- Conceição, A.L.C.; Antoniassi, M.; Poletti, M.E. Analysis of breast cancer by small angle X-ray scattering (SAXS). Analyst 2009, 134, 1077–1082. [Google Scholar] [CrossRef]
- Sibillano, T.; De Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; Di Fabrizio, E.; et al. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter. Sci. Rep. 2014, 4, 6985. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.; Tassone, C.; Ross, E.G.; Lee, J.T.; Zhou, W.; Nelson, D.V. Collagen Fibril Orientation in Tissue Specimens From Atherosclerotic Plaque Explored Using Small Angle X-ray Scattering. J. Biomech. Eng. 2021, 144, 024505. [Google Scholar] [CrossRef]
- Sapudom, J.; Mohamed, W.K.E.; Garcia-Sabaté, A.; Alatoom, A.; Karaman, S.; Mahtani, N.; Teo, J.C.M. Collagen Fibril Density Modulates Macrophage Activation and Cellular Functions during Tissue Repair. Bioengineering 2020, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Newman, K.; Clark, K.; Gurumurthy, B.; Pal, P.; Janorkar, A.V. Elastin-Collagen Based Hydrogels as Model Scaffolds to Induce Three-Dimensional Adipocyte Culture from Adipose Derived Stem Cells. Bioengineering 2020, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, E.; Ramaswamy, A.; Lorentz, K.; Vorp, D.; Weinbaum, J. Extracellular Vesicles Derived from Primary Adipose Stromal Cells Induce Elastin and Collagen Deposition by Smooth Muscle Cells within 3D Fibrin Gel Culture. Bioengineering 2021, 8, 51. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.F.; Zaitseva, T.S.; Paukshto, M.V. Biomedical Applications of Collagen. Bioengineering 2023, 10, 90. https://doi.org/10.3390/bioengineering10010090
Huang NF, Zaitseva TS, Paukshto MV. Biomedical Applications of Collagen. Bioengineering. 2023; 10(1):90. https://doi.org/10.3390/bioengineering10010090
Chicago/Turabian StyleHuang, Ngan F., Tatiana S. Zaitseva, and Michael V. Paukshto. 2023. "Biomedical Applications of Collagen" Bioengineering 10, no. 1: 90. https://doi.org/10.3390/bioengineering10010090
APA StyleHuang, N. F., Zaitseva, T. S., & Paukshto, M. V. (2023). Biomedical Applications of Collagen. Bioengineering, 10(1), 90. https://doi.org/10.3390/bioengineering10010090