Heterologous Production of Isopropanol Using Metabolically Engineered Acetobacterium woodii Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Media
2.2. Construction of Plasmids
Plasmid | Characteristics | Origin |
---|---|---|
pJIR750 | Cmr, pMB1 ori−, lacZ, pIP404 ori+ | Bannam and Rood (1993) [25] |
pJIR750_ac1t1 | pJIR750, PthlA, adc, ctfA/ctfB and thlA of C. acetobutylicum | Arslan et al. (2022) [15] |
pJIR750_ac1t2 | pJIR750, PthlA, adc and ctfA/ctfB of C. acetobutylicum, thlA of C. kluyveri | Arslan et al. (2022) [15] |
pJIR750_ac2t1 | pJIR750, PthlA, adc and thlA of C. acetobutylicum, ctfA/B of C. aceticum | Arslan et al. (2022) [15] |
pJIR750_ac2t2 | pJIR750, PthlA, adc of C. acetobutylicum, ctfA/ctfB of C. aceticum, thlA of C. kluyveri | This work |
pJIR750_ac3t3 | pJIR750, PthlA, adc of C. acetobutylicum, ctfA/ctfB and thlA of C. scatologenes | This work |
pJIR750_ac4t4 | pJIR750, PthlA, adc of C. acetobutylicum, ctfA/ctfB and thlA of C. scatologenes | This work |
pJIR750_ac1t1s1 | pJIR750_ac1t1, sadH of C. beijerinckii DSM 6423 | This work |
pJIR750_ac1t1s2 | pJIR750_ac1t1, sadH of C. beijerinckii DSM 15410 | This work |
pJIR750_ac1t1s3 | pJIR750_ac1t1, sadH of C. ljungdahlii | This work |
pJIR750_ac1t2s1 | pJIR750_ac1t2, sadH of C. beijerinckii DSM 6423 | This work |
pJIR750_ac1t2s2 | pJIR750_ac1t2, sadH of C. beijerinckii DSM 15410 | This work |
pJIR750_ac1t2s3 | pJIR750_ac1t2, sadH of C. ljungdahlii | This work |
pJIR750_ac2t1s1 | pJIR750_ac2t1, sadH of C. beijerinckii DSM 6423 | This work |
pJIR750_ac2t1s2 | pJIR750_ac2t1, sadH of C. beijerinckii DSM 15410 | This work |
pJIR750_ac2t1s3 | pJIR750_ac2t1, sadH of C. ljungdahlii | This work |
pJIR750_ac2t2s1 | pJRI750_ac2t2, sadH of C. beijerinckii DSM 6423 | This work |
pJIR750_ac2t2s2 | pJIR750_ac2t2, sadH of C. beijerinckii DSM 15410 | This work |
pJIR750_ac2t2s3 | pJIR750_ac2t2, sadH of C. ljungdahlii | This work |
pJIR750_ac3t3s1 | pJIR750_ac3t3, sadH of C. beijerinckii DSM 6423 | This work |
pJIR750_ac3t3s2 | pJIR750_ac3t3, sadH of C. beijerinckii DSM 15410 | This work |
pJIR750_ac3t3s3 | pJIR750_ac3t3, sadH of C. ljungdahlii | This work |
pMTL83251 | Emr, ColE1 ori−, lacZ, pCB102 ori+, traJ | Heap et al. (2009) [24] |
pMTL83251_PthlA_h1 | pMTL83251, PthlA, hydG of C. beijerinckii DSM 6423 | This work |
pMTL83251_PthlA_sh1 | pMTL83251, PthlA, sadH-hydG gene cluster with intergenic region of C. beijerinckii DSM 6423 | This work |
pMTL83251_PthlA_sh1c3 | pMTL83251_PthlA_sh1, ctfA/ctfB of C. scatologenes | This work |
2.3. Isolation of Genomic and Plasmid DNA
2.4. Transformation of A. woodii
2.5. Growth Conditions of Batch Experiments
2.6. Analytics
2.6.1. Optical Density and pH Measurements
2.6.2. High-Performance Liquid Chromatography
2.6.3. Gas Chromatography
3. Results
3.1. Isopropanol Production with Recombinant A. woodii Strains
3.1.1. Isopropanol Production with the sadH Gene of C. beijerinckii DSM 6423
3.1.2. Isopropanol Production with the sadH Gene of C. beijerinckii DSM 15410
3.1.3. Isopropanol Production with the sadH Gene of C. ljungdahlii
3.2. Improvement of Isopropanol Production in Recombinant A. woodii Strains
3.2.1. Promotion of Isopropanol Production with the Gene hydG of C. beijerinckii DSM 6423
3.2.2. Overcoming the Bottlenecks of Recombinant Isopropanol Production
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klabunde, J.; Bischoff, C.; Papa, A.J. Propanols. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar] [CrossRef]
- Liew, F.E.; Nogle, R.; Abdalla, T.; Rasor, B.J.; Canter, C.; Jensen, R.O.; Wang, L.; Strutz, J.; Chirania, P.; De Tissera, S.; et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 2022, 40, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Morgott, D.A. The human exposure potential from propylene release to the environment. Int. J. Environ. Res. Public Health 2018, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Drake, H.; Gößner, A.S.; Daniel, S.L. Old acetogens, new light. Ann. N. Y. Acad. Sci. 2008, 1125, 100–128. [Google Scholar] [CrossRef] [PubMed]
- Ljungdahl, L.G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 1986, 40, 415–450. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.D.; Forster, R.L.S.; Tran, P.L.; Rowe, M.J.; Warner, I.L. Bacteria and Methods of Use Thereof. U.S. Patent No. US10494600B2, 3 December 2019. Available online: https://patents.google.com/patent/US10494600B2/en (accessed on 16 October 2023).
- Heijstra, B.D.; Kern, E.; Köpke, M.; Segovia, S.; Liew, F. Novel Bacteria and Methods of Use Thereof. U.S. Patent no. US20130217096A1, 22 August 2013. Available online: https://patents.google.com/patent/US20130217096A1/en (accessed on 16 October 2023).
- Dürre, P. Butanol formation from gaseous substrates. FEMS Microbiol. Lett. 2016, 363, fnw040. [Google Scholar] [CrossRef]
- Balch, W.E.; Schoberth, S.; Tanner, R.S.; Wolfe, R.S. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Sys. Bacteriol. 1977, 27, 355–361. [Google Scholar] [CrossRef]
- Schuchmann, K.; Müller, V. Autotrophy at the thermodynamic limit of life: A model for energy conversation in acetogenic bacteria. Nat. Rev. Microbiol. 2014, 12, 809–821. [Google Scholar] [CrossRef]
- Ragsdale, S.W.; Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. BBA Proteins Proteom. 2008, 1784, 1873–1898. [Google Scholar] [CrossRef] [PubMed]
- Höfele, F.; Dürre, P. Production of potential substitutes for conventional plastics using metabolically engineered Acetobacterium woodii. Fermentation 2023, 9, 799. [Google Scholar] [CrossRef]
- Mook, A.; Beck, M.H.; Baker, J.P.; Minton, N.P.; Dürre, P.; Bengelsdorf, F.R. Autotrophic lactate production from H2 + CO2 using recombinant and fluorescent FAST-tagged Acetobacterium woodii strains. Appl. Microbiol. Biotechnol. 2022, 106, 1447–1458. [Google Scholar] [CrossRef]
- Hoffmeister, S.; Gerdom, M.; Bengelsdorf, F.R.; Linder, S.; Flüchter, S.; Öztürk, H.; Blümke, W.; May, A.; Fischer, R.-J.; Bahl, H.; et al. Acetone production with metabolically engineered strains of Acetobacterium woodii. Metabol. Eng. 2016, 36, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Arslan, K.; Schoch, T.; Höfele, F.; Herrschaft, S.; Oberlies, C.; Bengelsdorf, F.; Veiga, M.C.; Dürre, P.; Kennes, C. Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen. Biotechnol. J. 2022, 17, 2100515. [Google Scholar] [CrossRef] [PubMed]
- Hiu, S.F.; Zhu, C.-X.; Yan, R.-T.; Chen, J.-S. Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: Different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl. Environ. Microbiol. 1987, 53, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, A.A.; Zhu, C.-X.; Colby, G.D.; Chen, J.-S. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J. Bacteriol. 1993, 175, 5097–5105. [Google Scholar] [CrossRef]
- Köpke, M.; Gerth, M.L.; Maddock, D.J.; Mueller, A.P.; Liew, F.; Simpson, S.D.; Patrick, W.M. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl. Environ. Microbiol. 2014, 80, 3394–3403. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Feng, J.; Guo, L.; Fasina, O.; Wang, Y. Engineering Clostridium saccharoperbutylacetonicum for high level isopropanol-butanol-ethanol (IBE) production from acetic acid pretreated switchgrass using the CRISPR-Cas9 system. ACS Sustain. Chem. Eng. 2019, 7, 18153–18164. [Google Scholar] [CrossRef]
- Dusséaux, S.; Croux, C.; Soucaille, P.; Meynial-Salles, I. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metabol. Eng. 2013, 18, 1–8. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012. [Google Scholar]
- Tanner, R.S.; Miller, L.M.; Yang, D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Sys. Bacteriol. 1993, 43, 232–236. [Google Scholar] [CrossRef]
- Heap, J.T.; Pennington, O.J.; Cartman, S.T.; Minton, N. A modular system for Clostridium shuttle plasmids. J. Microbiol. Methods 2009, 78, 79–85. [Google Scholar] [CrossRef]
- Bannam, T.L.; Rood, J.I. Clostridium perfringens-Escherichia coli shuttle vector that carry single antibiotic resistance determinants. Plasmid 1993, 229, 233–235. [Google Scholar] [CrossRef]
- Merrick, M.J. In a class of its own—The RNA polymerase sigma factor σ54 (σN). Mol. Microbiol. 1993, 10, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Thöny, B.; Hennecke, H. The −24/−12 promoter comes of age. FEMS Microbiol. Rev. 1989, 63, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Hudson, P. Rehabilitating the industrial revolution. Econ. Hist. Rev. 1992, 45, 24–50. [Google Scholar] [CrossRef]
- Bach, W. Fossil fuel resources and their impacts on environment and climate. Int. J. Hydrogen Energy 1981, 6, 185–201. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Jain, A.K. Concerns about climate change and the role of fossil fuel use. Fuel Process. Technol. 2001, 71, 99–119. [Google Scholar] [CrossRef]
- Klinenberg, E.; Araos, M.; Koslov, L. Sociology and the climate crisis. Annu. Rev. Sociol. 2020, 46, 649–669. [Google Scholar] [CrossRef]
- Daniell, J.; Köpke, M.; Simpson, S. Commercial biomass syngas fermentation. Energies 2012, 5, 5372–5417. [Google Scholar] [CrossRef]
- Liew, F.E.; Martin, M.E.; Tappel, R.C.; Heijstra, B.D.; Mihalcea, C.; Köpke, M. Gas fermentation—A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 2016, 7, 694. [Google Scholar] [CrossRef]
- Henstra, A.M.; Sipma, J.; Rinzema, A.; Stams, A.J. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 2007, 18, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.R.; Athiyeh, H.K.; Tanner, R.S.; Torres, J.R.; Saxena, J.; Wilkins, M.R. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresour. Technol. 2015, 190, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Leang, C.; Ueki, T.; Nevin, K.P.; Lovley, D.R. A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen. Appl. Environ. Microbiol. 2013, 79, 1102–1109. [Google Scholar] [CrossRef]
- Poulalier-Delavelle, M.; Baker, J.P.; Millard, J.; Winzer, K.; Minton, N.P. Endogenous CRISPR/Cas systems for genome engineering in the acetogens Acetobacterium woodii and Clostridium autoethanogenum. Front. Bioeng. Biotech. 2023, 11, 1213236. [Google Scholar] [CrossRef]
- Buschhorn, H.; Dürre, P.; Gottschalk, G. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 1989, 55, 1835–1840. [Google Scholar] [CrossRef]
- Moon, J.; Müller, V. Physiology and genetics of ethanologenesis in the acetogenic bacterium Acetobacterium woodii. Environ. Microbiol. 2021, 23, 6953–6964. [Google Scholar] [CrossRef]
- George, H.A.; Johnson, J.L.; Moore, W.E.C.; Holdeman, L.V.; Chen, J.S. Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl. Environ. Microbiol. 1983, 45, 1160–1163. [Google Scholar] [CrossRef]
- Schoch, T.; Höfele, F.; Odeh, H.; Winter, L.-M.; Stöferle, S.; Karl, M.; Bengelsdorf, F.R.; Poehlein, A.; Daniel, R.; Dürre, P. Reclassification of Clostridium aurantibutyricum Hellinger 1944 and Clostridium roseum (ex McCoy and McClung 1935) Cato et al. 1988. Int. J. Syst. Evol. Microbiol. 2022, 72, 005589. [Google Scholar] [CrossRef]
- Jones, D.T.; Woods, D.R. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986, 50, 484–524. [Google Scholar] [CrossRef]
- Inokuma, K.; Liao, J.C.; Okamoto, M.; Hanai, T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J. Biosci. Bioeng. 2010, 110, 696–701. [Google Scholar] [CrossRef]
- Wiesenborn, D.P.; Rudolph, F.B.; Papoutsakis, E.T. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl. Environ. Microb. 1988, 54, 2717–2722. [Google Scholar] [CrossRef]
- Kobayashi, H.; Tanizawa, Y.; Sakamoto, M.; Nakamura, Y.; Ohkuma, M.; Tohno, M. Reclassification of Clostridium diolis Biebl and Spröer 2003 as a later heterotypic synonym of Clostridium beijerinckii Donker 1926 (Approved Lists 1980) emend. Keis et al. 2001. Int. J. Syst. Evol. Microbiol. 2020, 70, 2463–2466. [Google Scholar] [CrossRef] [PubMed]
- Flaiz, M.; Baur, T.; Gaibler, J.; Kröly, C.; Dürre, P. Establishment of green- and red-fluorescent reporter proteins based on the fluorescence-activating and absorption-shifting tag for use in acetogenic and solventogenic anaerobes. ACS Synth. Biol. 2022, 11, 953–967. [Google Scholar] [CrossRef] [PubMed]
Strain | Genotype | Origin |
---|---|---|
Escherichia coli XL1-Blue MRF’ | Δ (mcrA)183 Δ (mcrCB-hsd SMR-mrr)173 endA1 supE44 thi-1recA1 gyrA96 relA1 lac [F’proAB lacIq ZΔM15 Tn10 (TetR)] | Agilent Technologies (Santa Clara, CA, USA) |
Acetobacterium woodii DSM 1030 | Type strain | German Collection of Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) |
Clostridium kluyveri DSM 555 | Type strain | German Collection of Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) |
C. scatologenes DSM 757 | Type strain | German Collection of Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) |
C. beijerinckii DSM 6423 | Type strain | German Collection of Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) |
C. beijerinckii DSM 15410 | Type strain | German Collection of Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) |
C. ljungdahlii DSM 13528 | Type strain | German Collection of Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) |
Plasmid | ctfA/ctfB | thlA | sadH |
---|---|---|---|
pJIR750_ac1t1s1 | c1. C. acetobutylicum | t1. C. acetobutylicum | s1. C. beijerinckii DSM 6423 |
pJIR750_ac2t2s2 | c2. C. aceticum | t2. C. kluyveri | s2. C. beijerinckii DSM 15410 |
pJIR750_ac3t3s3 | c3. C. scatologenes | t3. C. scatologenes | s3. C. ljungdahlii |
Backbone | s1 | s2 | s3 |
---|---|---|---|
pJIR750_ac1t1 | 0.76 ± 0.25 | 0.17 ± 0.14 | 0.26 ± 0.07 |
pJIR750_ac1t2 | 0.38 ± 0.09 | 0.83 ± 0.22 | 0.57 ± 0.16 |
pJIR750_ac2t1 | 0.49 ± 0.14 | 0.54 ± 0.02 | 0.72 ± 0.10 |
pJIR750_ac2t2 | 1.57 ± 0.77 | 1.53 ± 0.49 | 4.27 ± 0.50 |
pJIR750_ac3t3 | 5.64 ± 1.08 | 4.20 ± 0.69 | 5.33 ± 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Höfele, F.; Schoch, T.; Oberlies, C.; Dürre, P. Heterologous Production of Isopropanol Using Metabolically Engineered Acetobacterium woodii Strains. Bioengineering 2023, 10, 1381. https://doi.org/10.3390/bioengineering10121381
Höfele F, Schoch T, Oberlies C, Dürre P. Heterologous Production of Isopropanol Using Metabolically Engineered Acetobacterium woodii Strains. Bioengineering. 2023; 10(12):1381. https://doi.org/10.3390/bioengineering10121381
Chicago/Turabian StyleHöfele, Franziska, Teresa Schoch, Catarina Oberlies, and Peter Dürre. 2023. "Heterologous Production of Isopropanol Using Metabolically Engineered Acetobacterium woodii Strains" Bioengineering 10, no. 12: 1381. https://doi.org/10.3390/bioengineering10121381
APA StyleHöfele, F., Schoch, T., Oberlies, C., & Dürre, P. (2023). Heterologous Production of Isopropanol Using Metabolically Engineered Acetobacterium woodii Strains. Bioengineering, 10(12), 1381. https://doi.org/10.3390/bioengineering10121381