Brain Active Areas Associated with a Mental Arithmetic Task: An eLORETA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Brain Source Localization with eLORETA
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eysenck, M.W.; Brysbaert, M. Fundamentals of Cognition; Routledge: Abingdon-on-Thames, UK, 2018. [Google Scholar]
- Banich, M.T.; Compton, R.J. Cognitive Neuroscience; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Bherer, L. Cognitive plasticity in older adults: Effects of cognitive training and physical exercise. Ann. N. Y. Acad. Sci. 2015, 1337, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Vogel, S.E.; De Smedt, B. Developmental brain dynamics of numerical and arithmetic abilities. NPJ Sci. Learn. 2021, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, C. Understanding the complexities of mathematical cognition: A multi-level framework. Q. J. Exp. Psychol. 2023, 76, 1953–1972. [Google Scholar] [CrossRef]
- Campbell, J.I. Handbook of Mathematical Cognition; Psychology Press: New York, NY, USA, 2005. [Google Scholar]
- Chang, T.T.; Chen, N.F.; Fan, Y.T. Uncovering sex/gender differences of arithmetic in the human brain: Insights from fMRI studies. Brain Behav. 2022, 12, e2775. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro-Chagas, P.; Piazza, M.; Dehaene, S. Decoding the processing stages of mental arithmetic with magnetoencephalography. Cortex 2019, 114, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Khramova, M.V.; Kuc, A.K.; Maksimenko, V.A.; Frolov, N.S.; Grubov, V.V.; Kurkin, S.A.; Pisarchik, A.N.; Shusharina, N.N.; Fedorov, A.A.; Hramov, A.E. Monitoring the cortical activity of children and adults during cognitive task completion. Sensors 2021, 21, 6021. [Google Scholar] [CrossRef]
- Hinault, T.; Lemaire, P. What does EEG tell us about arithmetic strategies? A review. Int. J. Psychophysiol. 2016, 106, 115–126. [Google Scholar] [CrossRef]
- Lemaire, P. Age-related differences in arithmetic strategy sequential effects. Can. J. Exp. Psychol./Rev. Can. Psychol. Exp. 2016, 70, 24. [Google Scholar] [CrossRef] [PubMed]
- Hinault, T.; Lemaire, P. Age-related changes in strategic variations during arithmetic problem solving: The role of executive control. Prog. Brain Res. 2016, 227, 257–276. [Google Scholar]
- Chen, E.H.; Bailey, D.H. Dual-task studies of working memory and arithmetic performance: A meta-analysis. J. Exp. Psychol. Learn. Mem. Cogn. 2021, 47, 220. [Google Scholar] [CrossRef]
- Zhang, Y.; Tolmie, A.; Gordon, R. The Relationship Between Working Memory and Arithmetic in Primary School Children: A Meta-Analysis. Brain Sci. 2022, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Skagerlund, K.; Östergren, R.; Västfjäll, D.; Träff, U. How does mathematics anxiety impair mathematical abilities? Investigating the link between math anxiety, working memory, and number processing. PLoS ONE 2019, 14, e0211283. [Google Scholar] [CrossRef] [PubMed]
- Kyttälä, M.; Lehto, J.E. Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. Eur. J. Psychol. Educ. 2008, 23, 77–94. [Google Scholar] [CrossRef]
- Van Dooren, W.; Inglis, M. Inhibitory control in mathematical thinking, learning and problem solving: A survey. ZDM 2015, 47, 713–721. [Google Scholar] [CrossRef]
- Lemaire, P.; Lee, K. How do distracting events influence children’s arithmetic performance? J. Exp. Child Psychol. 2023, 225, 105531. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.; De Smedt, B. Arithmetic in the developing brain: A review of brain imaging studies. Dev. Cogn. Neurosci. 2018, 30, 265–279. [Google Scholar] [CrossRef]
- Tsang, J.M.; Dougherty, R.F.; Deutsch, G.K.; Wandell, B.A.; Ben-Shachar, M. Frontoparietal white matter diffusion properties predict mental arithmetic skills in children. Proc. Natl. Acad. Sci. USA 2009, 106, 22546–22551. [Google Scholar] [CrossRef]
- Artemenko, C.; Soltanlou, M.; Ehlis, A.C.; Nuerk, H.C.; Dresler, T. The neural correlates of mental arithmetic in adolescents: A longitudinal fNIRS study. Behav. Brain Funct. 2018, 14, 1–13. [Google Scholar] [CrossRef]
- Artemenko, C. Developmental fronto-parietal shift of brain activation during mental arithmetic across the lifespan: A registered report protocol. PLoS ONE 2021, 16, e0256232. [Google Scholar] [CrossRef]
- Mishra, A.; Khan, A. Domain-general and domain-specific cognitive correlates of developmental dyscalculia: A systematic review of the last two decades’ literature. Child Neuropsychol. 2022, 29, 1–51. [Google Scholar] [CrossRef]
- Lenartowicz, A.; Poldrack, R. Brain imaging. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Tudor, M.; Tudor, L.; Tudor, K.I. Hans Berger (1873–1941)–The history of electroencephalography. Acta Medica Croat. Cas. Hravatske Akad. Med. Znan. 2005, 59, 307–313. [Google Scholar]
- Kim, K.; Duc, N.T.; Choi, M.; Lee, B. EEG microstate features according to performance on a mental arithmetic task. Sci. Rep. 2021, 11, 343. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, A.; Shalbaf, A. Mental arithmetic task recognition using effective connectivity and hierarchical feature selection from EEG Signals. Basic Clin. Neurosci. 2021, 12, 817. [Google Scholar] [CrossRef]
- Hoda Edris, A.; Mohammad Karimi, M.; Mahshid, M. Mental arithmetic task detection using geometric features extraction of EEG signal based on machine learning. Bratisl. Med. J./Bratisl. Lek. Listy 2022, 123, 408–420. [Google Scholar]
- Dutta, S.; Singh, M.; Kumar, A. Automated classification of non-motor mental task in electroencephalogram based brain-computer interface using multivariate autoregressive model in the intrinsic mode function domain. Biomed. Signal Process. Control 2018, 43, 174–182. [Google Scholar] [CrossRef]
- Mohanchandra, K.; Saha, S.; Murthy, K.S.; Lingaraju, G. Distinct adoption of k-nearest neighbour and support vector machine in classifying EEG signals of mental tasks. Int. J. Intell. Eng. Inform. 2015, 3, 313–329. [Google Scholar] [CrossRef]
- Wang, Q.; Sourina, O. Real-time mental arithmetic task recognition from EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 225–232. [Google Scholar] [CrossRef]
- Chatterjee, D.; Gavas, R.; Samanta, R.; Saha, S.K. Electroencephalogram-based cognitive performance evaluation for mental arithmetic task. In Cognitive Computing for Human-Robot Interaction; Elsevier: Amsterdam, The Netherlands, 2021; pp. 85–101. [Google Scholar]
- Demir, S.; Türker, İ. Arithmetic success and gender-based characterization of brain connectivity across EEG bands. Biomed. Signal Process. Control 2021, 64, 102222. [Google Scholar] [CrossRef]
- Kitaura, Y.; Nishida, K.; Yoshimura, M.; Mii, H.; Katsura, K.; Ueda, S.; Ikeda, S.; Pascual-Marqui, R.D.; Ishii, R.; Kinoshita, T. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task. Clin. Neurophysiol. Pract. 2017, 2, 193–200. [Google Scholar] [CrossRef]
- Hawes, Z.; Sokolowski, H.M.; Ononye, C.B.; Ansari, D. Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci. Biobehav. Rev. 2019, 103, 316–336. [Google Scholar] [CrossRef]
- Zyma, I.; Tukaev, S.; Seleznov, I.; Kiyono, K.; Popov, A.; Chernykh, M.; Shpenkov, O. Electroencephalograms during mental arithmetic task performance. Data 2019, 4, 14. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Baillet, S. Forward and Inverse Problems of MEG/EEG. Encycl. Comput. Neurosci. 2015, 1226–1233. [Google Scholar]
- Dattola, S.; Morabito, F.C.; Mammone, N.; La Foresta, F. Findings about loreta applied to high-density eeg—A review. Electronics 2020, 9, 660. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. arXiv 2007, arXiv:0710.3341. [Google Scholar]
- Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2001, 356, 1293–1322. [Google Scholar] [CrossRef] [PubMed]
- Mulert, C.; Jäger, L.; Schmitt, R.; Bussfeld, P.; Pogarell, O.; Möller, H.J.; Juckel, G.; Hegerl, U. Integration of fMRI and simultaneous EEG: Towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 2004, 22, 83–94. [Google Scholar] [CrossRef]
- Mulert, C.; Jäger, L.; Propp, S.; Karch, S.; Störmann, S.; Pogarell, O.; Möller, H.J.; Juckel, G.; Hegerl, U. Sound level dependence of the primary auditory cortex: Simultaneous measurement with 61-channel EEG and fMRI. Neuroimage 2005, 28, 49–58. [Google Scholar] [CrossRef]
- Corrigan, N.M.; Richards, T.; Webb, S.J.; Murias, M.; Merkle, K.; Kleinhans, N.M.; Johnson, L.C.; Poliakov, A.; Aylward, E.; Dawson, G. An investigation of the relationship between fMRI and ERP source localized measurements of brain activity during face processing. Brain Topogr. 2009, 22, 83–96. [Google Scholar] [CrossRef]
- Ostwald, D.; Porcaro, C.; Bagshaw, A.P. Voxel-wise information theoretic EEG-fMRI feature integration. Neuroimage 2011, 55, 1270–1286. [Google Scholar] [CrossRef]
- Halder, T.; Talwar, S.; Jaiswal, A.K.; Banerjee, A. Quantitative evaluation in estimating sources underlying brain oscillations using current source density methods and beamformer approaches. Eneuro 2019, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find Exp. Clin. Pharmacol. 2002, 24, 5–12. [Google Scholar]
- Dale, A.M.; Liu, A.K.; Fischl, B.R.; Buckner, R.L.; Belliveau, J.W.; Lewine, J.D.; Halgren, E. Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000, 26, 55–67. [Google Scholar] [CrossRef]
- Jatoi, M.A.; Kamel, N.; Malik, A.S.; Faye, I. EEG based brain source localization comparison of sLORETA and eLORETA. Australas. Phys. Eng. Sci. Med. 2014, 37, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference; CRC Press: New York, NY, USA, 2020. [Google Scholar]
- Holmes, A.P.; Blair, R.; Watson, J.; Ford, I. Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 1996, 16, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Nichols, T.E.; Holmes, A.P. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum. Brain Mapp. 2002, 15, 1–25. [Google Scholar] [CrossRef]
- Thatcher, R.W.; North, D.; Biver, C. Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA). Clin. EEG Neurosci. 2005, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Matejko, A.A.; Ansari, D. Drawing connections between white matter and numerical and mathematical cognition: A literature review. Neurosci. Biobehav. Rev. 2015, 48, 35–52. [Google Scholar] [CrossRef]
- Aminoff, E.M.; Kveraga, K.; Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 2013, 17, 379–390. [Google Scholar] [CrossRef]
- Bloechle, J.; Huber, S.; Bahnmueller, J.; Rennig, J.; Willmes, K.; Cavdaroglu, S.; Moeller, K.; Klein, E. Fact learning in complex arithmetic—the role of the angular gyrus revisited. Hum. Brain Mapp. 2016, 37, 3061–3079. [Google Scholar] [CrossRef]
- Klein, E.; Willmes, K.; Bieck, S.M.; Bloechle, J.; Moeller, K. White matter neuro-plasticity in mental arithmetic: Changes in hippocampal connectivity following arithmetic drill training. Cortex 2019, 114, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.I.; Greenwald, M.; Lin, Y.Y.; Bowyer, S.M. Music, Math, and Working Memory: Magnetoencephalography Mapping of Brain Activation in Musicians. Front. Hum. Neurosci. 2022, 16, 866256. [Google Scholar] [CrossRef] [PubMed]
- Arsalidou, M.; Taylor, M.J. Is 2+ 2= 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 2011, 54, 2382–2393. [Google Scholar] [CrossRef]
- Arsalidou, M.; Pascual-Leone, J. Constructivist developmental theory is needed in developmental neuroscience. NPJ Sci. Learn. 2016, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, J.; Pascual-Leone, A.; Arsalidou, M. Neuropsychology still needs to model organismic processes “from within”. Behav. Brain Sci. 2015, 38, 33–35. [Google Scholar] [CrossRef]
- Catani, M.; Dell’Acqua, F.; De Schotten, M.T. A revised limbic system model for memory, emotion and behaviour. Neurosci. Biobehav. Rev. 2013, 37, 1724–1737. [Google Scholar] [CrossRef]
- Chauhan, P.; Jethwa, K.; Rathawa, A.; Girish Chauhan, B.; Mehra, S. The Anatomy of the Hippocampus; Exon Publications: Brisbane, Australia, 2021; pp. 17–30. [Google Scholar]
- Miller, E.K.; Lundqvist, M.; Bastos, A.M. Working Memory 2.0. Neuron 2018, 100, 463–475. [Google Scholar] [CrossRef]
- Kilavik, B.E.; Zaepffel, M.; Brovelli, A.; MacKay, W.A.; Riehle, A. The ups and downs of beta oscillations in sensorimotor cortex. Exp. Neurol. 2013, 245, 15–26. [Google Scholar] [CrossRef]
- Barone, J.; Rossiter, H.E. Understanding the role of sensorimotor beta oscillations. Front. Syst. Neurosci. 2021, 15, 655886. [Google Scholar] [CrossRef]
- Inamoto, T.; Ueda, M.; Ueno, K.; Shiroma, C.; Morita, R.; Naito, Y.; Ishii, R. Motor-Related Mu/Beta Rhythm in Older Adults: A Comprehensive Review. Brain Sci. 2023, 13, 751. [Google Scholar] [CrossRef]
- György Buzsáki, M. The Brain from Inside out; Oxford University Press: New York, NY, USA, 2019. [Google Scholar]
- Pavão, S.L.; Lima, C.R.G.; Rocha, N.A.C.F. Effects of motor and cognitive manipulation on the dual-task costs of center of pressure displacement in children, adolescents and young adults: A cross-sectional study. Clin. Biomech. 2021, 84, 105344. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Gentile, A.; Mani, D.; Pajaujiene, S.; Zanotto, T.; Thomas, E.; Paoli, A.; Palma, A.; Bianco, A. Dual-task conditions on static postural control in older adults: A systematic review and meta-analysis. J. Aging Phys. Act. 2020, 29, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Raffegeau, T.E.; Krehbiel, L.M.; Kang, N.; Thijs, F.J.; Altmann, L.J.; Cauraugh, J.H.; Hass, C.J. A meta-analysis: Parkinson’s disease and dual-task walking. Park. Relat. Disord. 2019, 62, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Bensoussan, L.; Duclos, Y.; Rossi-Durand, C. Modulation of human motoneuron activity by a mental arithmetic task. Hum. Mov. Sci. 2012, 31, 999–1013. [Google Scholar] [CrossRef]
- Bensoussan, L.; Viton, J.M.; Schieppati, M.; Collado, H.; de Bovis, V.M.; Mesure, S.; Delarque, A. Changes in postural control in hemiplegic patients after stroke performing a dual task. Arch. Phys. Med. Rehabil. 2007, 88, 1009–1015. [Google Scholar] [CrossRef]
- Vuillerme, N.; Vincent, H. How performing a mental arithmetic task modify the regulation of centre of foot pressure displacements during bipedal quiet standing. Exp. Brain Res. 2006, 169, 130–134. [Google Scholar] [CrossRef]
- Kang, H.G.; Lipsitz, L.A. Stiffness control of balance during quiet standing and dual task in older adults: The MOBILIZE Boston Study. J. Neurophysiol. 2010, 104, 3510–3517. [Google Scholar] [CrossRef]
All | Male | Female | |
---|---|---|---|
Participants | 35 | 9 (25.7%) | 26 (74.3%) |
Age (years) | 18.23 ± 2.20 | 19.67 ± 3.46 | 17.73 ± 1.31 |
Occupation | |||
Student | 35 | 9 (25.7%) | 26 (74.3%) |
Count quality | |||
Good | 25 | 6 (24%) | 19 (76%) |
Bad | 10 | 3 (30%) | 7 (70%) |
Brodmann Areas | Structure | Lobe | Number of Voxels | p-Values |
---|---|---|---|---|
20, 28, 34, 36, 38 | Uncus | Limbic | 29 | 0.0178 |
28, 34, 35, 36 | Parahippocampal gyrus | Limbic | 23 | 0.0134 |
13 | Insula | Sub-Lobar | 12 | 0.0178 |
20 | Inferior Temporal Gyrus | Temporal, Limbic | 4 | 0.0178 |
34 | Subcallosal Gyrus | Frontal | 3 | 0.0178 |
13, 21 | Sub-Gyral | Temporal | 2 | 0.0228 |
38 | Superior Temporal Gyrus | Temporal | 2 | 0.0228 |
Structure | Brodmann Area | MNI Coordinates | ||
---|---|---|---|---|
x | y | z | ||
Uncus | 34 | −15 | −5 | −25 |
Parahippocampal gyrus | 28 | −15 | −10 | −15 |
Insula | 13 | −35 | 5 | 15 |
Inferior Temporal Gyrus | 20 | −30 | −5 | −45 |
Subcallosal Gyrus | 34 | −25 | 5 | −15 |
Sub-Gyral | 13 | −40 | 0 | −10 |
Superior Temporal Gyrus | 38 | −35 | 5 | −15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dattola, S.; Bonanno, L.; Ielo, A.; Quercia, A.; Quartarone, A.; La Foresta, F. Brain Active Areas Associated with a Mental Arithmetic Task: An eLORETA Study. Bioengineering 2023, 10, 1388. https://doi.org/10.3390/bioengineering10121388
Dattola S, Bonanno L, Ielo A, Quercia A, Quartarone A, La Foresta F. Brain Active Areas Associated with a Mental Arithmetic Task: An eLORETA Study. Bioengineering. 2023; 10(12):1388. https://doi.org/10.3390/bioengineering10121388
Chicago/Turabian StyleDattola, Serena, Lilla Bonanno, Augusto Ielo, Angelica Quercia, Angelo Quartarone, and Fabio La Foresta. 2023. "Brain Active Areas Associated with a Mental Arithmetic Task: An eLORETA Study" Bioengineering 10, no. 12: 1388. https://doi.org/10.3390/bioengineering10121388
APA StyleDattola, S., Bonanno, L., Ielo, A., Quercia, A., Quartarone, A., & La Foresta, F. (2023). Brain Active Areas Associated with a Mental Arithmetic Task: An eLORETA Study. Bioengineering, 10(12), 1388. https://doi.org/10.3390/bioengineering10121388