Biomechanics of Hollow Organs: Experimental Testing and Computational Modeling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Treuting, P.M.; Dintzis, S.N.; Montine, K.S. Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas, 2nd ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Shadden, S.C.; Taylor, C.A. Characterization of Coherent Structures in the Cardiovascular System. Ann. Biomed. Eng. 2008, 36, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.H.; Zhao, J.B.; Gregersen, H. Gastrointestinal Tract Modelling in Health and Disease. World J. Gastroenterol. 2009, 15, 169–176. [Google Scholar] [CrossRef]
- Carniel, E.L.; Fontanella, C.G.; Polese, L.; Merigliano, S.; Natali, A.N. Computational Tools for the Analysis of Mechanical Functionality of Gastrointestinal Structures. Technol. Health Care 2013, 21, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, C.G.; Carniel, E.L. Computational Tools for the Investigation of the Male Lower Urinary Tract Functionality in Health and Disease. J. Med. Biol. Eng. 2021, 41, 203–215. [Google Scholar] [CrossRef]
- Carniel, E.L.; Toniolo, I.; Fontanella, C.G. Computational Biomechanics: In-Silico Tools for the Investigation of Surgical Procedures and Devices. Bioengineering 2020, 7, 48. [Google Scholar] [CrossRef]
- Payan, Y. Biomechanics Applied to Computer Assisted Surgery; Research Signpost: Kerala, India, 2005. [Google Scholar]
- Carniel, E.L.; Frigo, A.; Fontanella, C.G.; De Benedictis, G.M.; Rubini, A.; Barp, L.; Pluchino, G.; Sabbadini, B.; Polese, L. A Biomechanical Approach to the Analysis of Methods and Procedures of Bariatric Surgery. J. Biomech. 2017, 56, 32–41. [Google Scholar] [CrossRef]
- Natali, A.N.; Fontanella, C.G.; Carniel, E.L. Biomechanical Analysis of the Interaction Phenomena between Artificial Urinary Sphincter and Urethral Duct. Int. J. Numer. Methods Biomed. Eng. 2020, 36, e3308. [Google Scholar] [CrossRef]
- Toniolo, I.; Berardo, A.; Foletto, M.; Fiorillo, C.; Quero, G.; Perretta, S.; Carniel, E.L. Patient-Specific Stomach Biomechanics before and after Laparoscopic Sleeve Gastrectomy. Surg. Endosc. 2022, 36, 7998–8011. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Fontanella, C.G. Investigation of Interaction Phenomena between Lower Urinary Tract and Artificial Urinary Sphincter in Consideration of Urethral Tissues Degeneration. Biomech. Model. Mechanobiol. 2020, 19, 2099–2109. [Google Scholar] [CrossRef]
- Grytsan, A.; Eriksson, T.S.E.; Watton, P.N.; Christian Gasser, T. Growth Description for VesselWall Adaptation: A Thick-Walled Mixture Model of Abdominal Aortic Aneurysm Evolution. Materials 2017, 10, 994. [Google Scholar] [CrossRef]
- Feng, B.; Guo, T. Visceral Pain from Colon and Rectum: The Mechanotransduction and Biomechanics. J. Neural Transm. 2020, 127, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Krier, J.; Meyer, R.A.; Percy, W.H. Length-Tension Relationship of Striated Muscle of Cat External Anal Sphincter. Am. J. Physiol. 1989, 256, G773–G778. [Google Scholar] [CrossRef] [PubMed]
- Natali, A.N.; Carniel, E.L.; Frigo, A.; Pavan, P.G.; Todros, S.; Pachera, P.; Fontanella, C.G.; Rubini, A.; Cavicchioli, L.; Avital, Y.; et al. Experimental Investigation of the Biomechanics of Urethral Tissues and Structures. Exp. Physiol. 2016, 101, 641–656. [Google Scholar] [CrossRef]
- Masri, C.; Chagnon, G.; Favier, D.; Sartelet, H.; Girard, E. Experimental Characterization and Constitutive Modeling of the Biomechanical Behavior of Male Human Urethral Tissues Validated by Histological Observations. Biomech. Model. Mechanobiol. 2018, 17, 939–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, M.; Von Hoegen, M.; Schröder, J.; Wriggers, P. Direct and Inverse Identification of Constitutive Parameters from the Structure of Soft Tissues. Part 1: Micro- and Nanostructure of Collagen Fibers. Biomech. Model. Mechanobiol. 2018, 17, 1011–1036. [Google Scholar] [CrossRef]
- Von Hoegen, M.; Marino, M.; Schröder, J.; Wriggers, P. Direct and Inverse Identification of Constitutive Parameters from the Structure of Soft Tissues. Part 2: Dispersed Arrangement of Collagen Fibers. Biomech. Model. Mechanobiol. 2019, 18, 897–920. [Google Scholar] [CrossRef]
- Liao, D.; Frøkjaer, J.B.; Yang, J.; Zhao, J.; Drewes, A.M.; Gilja, O.H.; Gregersen, H. Three-Dimensional Surface Model Analysis in the Gastrointestinal Tract. World J. Gastroenterol. 2006, 12, 2870–2875. [Google Scholar] [CrossRef]
- Safshekan, F.; Tafazzoli-Shadpour, M.; Abdouss, M.; Shadmehr, M.B.; Ghorbani, F. Finite Element Simulation of Human Trachea: Normal vs. Surgically Treated and Scaffold Implanted Cases. Int. J. Solids Struct. 2020, 190, 35–46. [Google Scholar] [CrossRef]
- Pretto, A.; Toniolo, I.; Berardo, A.; Savio, G.; Perretta, S.; Carniel, E.L.; Uccheddu, F. Automatic Segmentation of Stomach of Patients Affected by Obesity. In Advances on Mechanics, Design Engineering and Manufacturing IV, Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing, Ischia, Italy (JCM 2022), 1–3 July 2022; Springer: Cham, Switzerland, 2023; ISBN 9783031159275. [Google Scholar]
- Pejcic, S.; Ali Hassan, S.M.; Rival, D.E.; Bisleri, G. Characterizing the Mechanical Properties of the Aortic Wall. Vessel Plus 2019, 3, 32. [Google Scholar] [CrossRef]
- Carniel, E.L.; Albanese, A.; Fontanella, C.G.; Pavan, P.G.; Prevedello, L.; Salmaso, C.; Todros, S.; Toniolo, I.; Foletto, M. Biomechanics of Stomach Tissues and Structure in Patients with Obesity. J. Mech. Behav. Biomed. Mater. 2020, 110, 103883. [Google Scholar] [CrossRef]
- Bellini, C.; Glass, P.; Sitti, M.; Di Martino, E.S. Biaxial Mechanical Modeling of the Small Intestine. J. Mech. Behav. Biomed. Mater. 2011, 4, 1727–1740. [Google Scholar] [CrossRef]
- Budday, S.; Sommer, G.; Birkl, C.; Langkammer, C.; Haybaeck, J.; Kohnert, J.; Bauer, M.; Paulsen, F.; Steinmann, P.; Kuhl, E.; et al. Mechanical Characterization of Human Brain Tissue. Acta Biomater 2017, 48, 319–340. [Google Scholar] [CrossRef]
- Chen, J.; Brazile, B.; Prabhu, R.; Patnaik, S.S.; Bertucci, R.; Rhee, H.; Horstemeyer, M.F.; Hong, Y.; Williams, L.N.; Liao, J. Quantitative Analysis of Tissue Damage Evolution in Porcine Liver with Interrupted Mechanical Testing under Tension, Compression, and Shear. J. Biomech. Eng. 2018, 140, 071010. [Google Scholar] [CrossRef] [Green Version]
- Liao, D.; Zhao, J.; Gregersen, H. 3d Mechanical Properties of the Partially Obstructed Guinea Pig Small Intestine. J. Biomech. 2010, 43, 2079–2086. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, J.; Liao, D.; Chen, P.; Gregersen, H. Shear Modulus of the Partially Obstructed Rat Small Intestine. Ann. Biomed. Eng. 2017, 45, 1069–1082. [Google Scholar] [CrossRef]
- Rosen, J.; Hannaford, B.; MacFarlane, M.P.; Sinanan, M.N. Force Controlled and Teleoperated Endoscopie Grasper for Minimally Invasive Surgery-Experimental Performance Evaluation. IEEE Trans. Biomed. Eng. 1999, 46, 1212–1221. [Google Scholar] [CrossRef]
- DeLong, M.; Gil-Silva, M.; Hong, V.M.; Babyok, O.; Kolber, B.J. Visceral Pressure Stimulator for Exploring Hollow Organ Pain: A Pilot Study. BioMedical Eng. OnLine 2021, 20, 30. [Google Scholar] [CrossRef]
- Higa, M.; Luo, Y.; Okuyama, T.; Takagi, T.; Shiraishi, Y.; Yambe, T. Passive Mechanical Properties of Large Intestine under In Vivo and In Vitro Compression. Med. Eng. Phys. 2007, 29, 840–844. [Google Scholar] [CrossRef]
- Walraevens, J.; Willaert, B.; De Win, G.; Ranftl, A.; De Schutter, J.; Sloten, J. vander Correlation between Compression, Tensile and Tearing Tests on Healthy and Calcified Aortic Tissues. Med. Eng. Phys. 2008, 30, 1098–1104. [Google Scholar] [CrossRef]
- Carniel, E.L.; Gramigna, V.; Fontanella, C.G.; Frigo, A.; Stefanini, C.; Rubini, A.; Natali, A.N. Characterization of the Anisotropic Mechanical Behaviour of Colonic Tissues: Experimental Activity and Constitutive Formulation. Exp. Physiol. 2014, 99, 759–771. [Google Scholar] [CrossRef]
- Christensen, M.B.; Oberg, K.; Wolchok, J.C. Tensile Properties of the Rectal and Sigmoid Colon: A Comparative Analysis of Human and Porcine Tissue. Springerplus 2015, 4, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, Y.C. What Are the Residual Stresses Doing in Our Blood Vessels? Ann. Biomed. Eng. 1991, 19, 237–249. [Google Scholar] [CrossRef]
- Gregersen, H.; Kassab, G.S.; Fung, Y.C. The Zero-Stress State of the Gastrointestinal Tract: Biomechanical and Functional Implications. Dig. Dis. Sci. 2000, 45, 2271–2281. [Google Scholar] [CrossRef]
- Toniolo, I.; Fontanella, C.G.; Foletto, M.; Carniel, E.L. Coupled Experimental and Computational Approach to Stomach Biomechanics: Towards a Validated Characterization of Gastric Tissues Mechanical Properties. J. Mech. Behav. Biomed. Mater. 2022, 125, 104914. [Google Scholar] [CrossRef]
- Dillard, R.L.; Eastman, H.; Fordtran, J.S. Volume-Flow Relationship During the Transport of Fluid Through the Human Small Intestine. Gastroenterology 1965, 49, 58–66. [Google Scholar] [CrossRef]
- Carniel, E.L.; Rubini, A.; Frigo, A.; Natali, A.N. Analysis of the Biomechanical Behaviour of Gastrointestinal Regions Adopting an Experimental and Computational Approach. Comput. Methods Programs Biomed. 2014, 113, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Carniel, E.L.; Mencattelli, M.; Bonsignori, G.; Fontanella, C.G.; Frigo, A.; Rubini, A.; Stefanini, C.; Natali, A.N. Analysis of the Structural Behaviour of Colonic Segments by Inflation Tests: Experimental Activity and Physio-Mechanical Model. Proc. Inst. Mech. Eng. 2015, 229, 794–803. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Frigo, A.; Fontanella, C.G.; Rubini, A.; Avital, Y.; De Benedictis, G.M. Experimental Investigation of the Structural Behavior of Equine Urethra. Comput. Methods Programs Biomed. 2017, 141, 35–41. [Google Scholar] [CrossRef]
- Ferrari, V.; Viglialoro, R.M.; Nicoli, P.; Cutolo, F.; Condino, S.; Carbone, M.; Siesto, M.; Ferrari, M. Augmented Reality Visualization of Deformable Tubular Structures for Surgical Simulation. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 231–240. [Google Scholar] [CrossRef]
- Ikeuchi, D.; Onodera, H.; Aung, T.; Kan, S.; Kawamoto, K.; Imamura, M.; Maetani, S. Correlation of Tensile Strength with Bursting Pressure in the Evaluation of Intestinal Anastomosis. Dig. Surg. 1999, 16, 478–485. [Google Scholar] [CrossRef]
- Salmaso, C.; Toniolo, I.; Fontanella, C.G.; Da Roit, P.; Albanese, A.; Polese, L.; Stefanini, C.; Foletto, M.; Carniel, E.L. Computational Tools for the Reliability Assessment and the Engineering Design of Procedures and Devices in Bariatric Surgery. Ann. Biomed. Eng. 2020, 48, 2466–2483. [Google Scholar] [CrossRef]
- Carniel, E.L.; Gramigna, V.; Fontanella, C.G.; Stefanini, C.; Natali, A.N. Constitutive Formulations for the Mechanical Investigation of Colonic Tissues. J. Biomed. Mater. Res. Part A 2014, 102, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Kroon, M.; Holzapfel, G.A. A New Constitutive Model for Multi-Layered Collagenous Tissues. J. Biomech. 2008, 41, 2766–2771. [Google Scholar] [CrossRef] [PubMed]
- Vignali, E.; Gasparotti, E.; Capellini, K.; Fanni, B.M.; Landini, L.; Positano, V.; Celi, S. Modeling Biomechanical Interaction between Soft Tissue and Soft Robotic Instruments: Importance of Constitutive Anisotropic Hyperelastic Formulations. Int. J. Robot. Res. 2021, 40, 224–235. [Google Scholar] [CrossRef]
- Mihai, L.A.; Goriely, A. How to Characterize a Nonlinear Elastic Material? A Review on Nonlinear Constitutive Parameters in Isotropic Finite Elasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170607. [Google Scholar] [CrossRef] [Green Version]
- Natali, A.N.; Fontanella, C.G.; Todros, S.; Carniel, E.L. Urethral Lumen Occlusion by Artificial Sphincteric Device: Evaluation of Degraded Tissues Effects. J. Biomech. 2017, 65, 75–81. [Google Scholar] [CrossRef]
- Chen, Z.W.; Joli, P.; Feng, Z.Q.; Rahim, M.; Pirró, N.; Bellemare, M.E. Female Patient-Specific Finite Element Modeling of Pelvic Organ Prolapse (POP). J. Biomech. 2015, 48, 238–245. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Fontanella, C.G.; Todros, S.; De Benedictis, G.M.; Cerruto, M.A.; Artibani, W. Urethral Lumen Occlusion by Artificial Sphincteric Devices: A Computational Biomechanics Approach. Biomech. Model. Mechanobiol. 2017, 16, 1439–1446. [Google Scholar] [CrossRef]
- Yarema, I.V.; Muslov, S.A. Mathematical Model of Little Invasive Interventions on the Hollow Organs Using Traditional and Shape Memory Ni-Ti-Based Biocompatible Superelastic Materials. Bull. Exp. Biol. Med. 2006, 142, 739–741. [Google Scholar] [CrossRef]
- Sokolis, D.P. Variation of Passive Biomechanical Properties of the Small Intestine along Its Length: Microstructure-Based Characterization. Bioengineering 2021, 8, 32. [Google Scholar] [CrossRef]
- Siri, S.; Zhao, Y.; Maier, F.; Pierce, D.M.; Feng, B. The Macro-and Micro-Mechanics of the Colon and Rectum I: Experimental Evidence. Bioengineering 2020, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Siri, S.; Feng, B.; Pierce, D.M. The Macro-and Micro-Mechanics of the Colon and Rectum II: Theoretical and Computational Methods. Bioengineering 2020, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, H.S.; Dunn, J.C.Y. Biomechanical Force Prediction for Lengthening of Small Intestine during Distraction Enterogenesis. Bioengineering 2020, 7, 140. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, I.; Fontanella, C.G.; Foletto, M.; Carniel, E.L. Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering 2020, 7, 159. [Google Scholar] [CrossRef] [PubMed]
- Serpilli, M.; Zitti, G.; Dellabella, M.; Castellani, D.; Maranesi, E.; Morettini, M.; Lenci, S.; Burattini, L. A Preliminary Validation of a New Surgical Procedure for the Treatment of Primary Bladder Neck Obstruction Using a Computational Modeling Approach. Bioengineering 2021, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Comunale, G.; Di Micco, L.; Boso, D.P.; Susin, F.M.; Peruzzo, P. Numerical Models Can Assist Choice of an Aortic Phantom for in Vitro Testing. Bioengineering 2021, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, H. Novel Bionics Assessment of Anorectal Mechanosensory Physiology. Bioengineering 2020, 7, 146. [Google Scholar] [CrossRef]
- Chi, Q.; Liu, P.; Liang, H. Biomechanics Assist Measurement, Modeling, Engineering Applications, and Clinical Decision Making in Medicine. Bioengineering 2022, 10, 20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanella, C.G.; Carniel, E.L. Biomechanics of Hollow Organs: Experimental Testing and Computational Modeling. Bioengineering 2023, 10, 175. https://doi.org/10.3390/bioengineering10020175
Fontanella CG, Carniel EL. Biomechanics of Hollow Organs: Experimental Testing and Computational Modeling. Bioengineering. 2023; 10(2):175. https://doi.org/10.3390/bioengineering10020175
Chicago/Turabian StyleFontanella, Chiara Giulia, and Emanuele Luigi Carniel. 2023. "Biomechanics of Hollow Organs: Experimental Testing and Computational Modeling" Bioengineering 10, no. 2: 175. https://doi.org/10.3390/bioengineering10020175
APA StyleFontanella, C. G., & Carniel, E. L. (2023). Biomechanics of Hollow Organs: Experimental Testing and Computational Modeling. Bioengineering, 10(2), 175. https://doi.org/10.3390/bioengineering10020175