Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Cultivation Conditions
2.2. Analytical Methods
3. Results
3.1. Growth Kinetics and Biomass Production
3.2. Biomass Composition
3.2.1. Main Compounds and Pigment Content
3.2.2. Phenolic Compounds and Antioxidant Activity
3.2.3. Fatty Acids
3.2.4. Amino Acids Profile and In Vitro Protein Digestibility
3.3. Effect of Salinity on the Trichome Length of A. platensis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aouir, A.; Amiali, M.; Bitam, A.; Benchabane, A.; Raghavan, V.G. Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. J. Food Meas. Charact. 2017, 11, 913–923. [Google Scholar] [CrossRef]
- Volkmann, H.; Imianovsky, U.; Oliveira, J.L.; Sant’Anna, E.S. Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: Protein content and amino-acid profile. Braz. J. Microbiol. 2008, 39, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Sili, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II; Springer: Berlin/Heidelberg, Germany, 2012; pp. 677–705. [Google Scholar]
- El-Sayed, A.E.-K.; Mostafa, E.-S. Outdoor cultivation of Spirulina platensis for mass production. Not. Sci. Biol. 2018, 10, 38–44. [Google Scholar] [CrossRef]
- Ismaiel, M.M.; Piercey-Normore, M.D.; Rampitsch, C. Proteomic analyses of the cyanobacterium Arthrospira (Spirulina) platensis under iron and salinity stress. Environ. Exp. Bot. 2018, 147, 63–74. [Google Scholar] [CrossRef]
- Al Mahrouqi, H.; Naqqiuddin, M.A.; Achankunju, J.; Omar, H.; Ismail, A. Different salinity effects on the mass cultivation of Spirulina (Arthrospira platensis) under sheltered outdoor conditions in Oman and Malaysia. J. Algal Biomass Util. 2015, 6, 1–14. [Google Scholar]
- Dhiab, R.B.; Ouada, H.B.; Boussetta, H.; Franck, F.; Elabed, A.; Brouers, M. Growth, fluorescence, photosynthetic O2 production and pigment content of salt adapted cultures of Arthrospira (Spirulina) platensis. J. Appl. Phycol. 2007, 19, 293–301. [Google Scholar] [CrossRef]
- Kebede, E. Response of Spirulina platensis (= Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts. J. Appl. Phycol. 1997, 9, 551–558. [Google Scholar] [CrossRef]
- Leema, M.J.T.; Kirubagaran, R.; Vinithkumar, N.V.; Dheenan, P.S.; Karthikayulu, S. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresour. Technol. 2010, 101, 9221–9227. [Google Scholar] [CrossRef]
- Celekli, A.; Topyurek, A.; Markou, G.; Bozkurt, H. A Multivariate Approach to Evaluate Biomass Production, Biochemical Composition and Stress Compounds of Spirulina platensis Cultivated in Wastewater. Appl. Biochem. Biotechnol. 2016, 180, 728–739. [Google Scholar] [CrossRef]
- Bhakar, R.; Kumar, R.; Pabbi, S. Total lipids and fatty acid profile of different Spirulina strains as affected by salinity and incubation time. Vegetos 2013, 26, 148–154. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60, 3367–3386. [Google Scholar] [CrossRef]
- Markou, G.; Eliopoulos, C.; Argyri, A.; Arapoglou, D. Production of Arthrospira (Spirulina) platensis Enriched in β-Glucans through Phosphorus Limitation. Appl. Sci. 2021, 11, 8121. [Google Scholar] [CrossRef]
- Almeida, C.C.; Monteiro, M.L.G.; da Costa-Lima, B.R.C.; Alvares, T.S.; Conte-Junior, C.A. In vitro digestibility of commercial whey protein supplements. LWT-Food Sci. Technol. 2015, 61, 7–11. [Google Scholar] [CrossRef]
- Lie, S. The EBC-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 1973, 79, 37–41. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Hajimahmoodi, M.; Faramarzi, M.A.; Mohammadi, N.; Soltani, N.; Oveisi, M.R.; Nafissi-Varcheh, N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J. Appl. Phycol. 2010, 22, 43–50. [Google Scholar] [CrossRef]
- Li, H.-B.; Cheng, K.-W.; Wong, C.-C.; Fan, K.-W.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007, 102, 771–776. [Google Scholar] [CrossRef]
- Adjimani, J.P.; Asare, P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Rep. 2015, 2, 721–728. [Google Scholar] [CrossRef]
- Vonshak, A.; Guy, R.; Guy, M. The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch. Microbiol. 1988, 150, 417–420. [Google Scholar] [CrossRef]
- Pade, N.; Hagemann, M. Salt acclimation of cyanobacteria and their application in biotechnology. Life 2014, 5, 25–49. [Google Scholar] [CrossRef]
- Kirsch, F.; Klähn, S.; Hagemann, M. Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential. Front. Microbiol. 2019, 10, 2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warr, S.R.C.; Reed, R.H.; Stewart, W.D.P. Carbohydrate accumulation in osmotically stressed cyanobacteria (blue-green algae): Interactions of temperature and salinity. New Phytol. 1985, 100, 285–292. [Google Scholar] [CrossRef]
- Keshari, N.; Gugger, M.; Zhu, T.; Lu, X. Compatible solutes profiling and carbohydrate feedstock from diversified cyanobacteria. Algal Res. 2019, 43, 101637. [Google Scholar] [CrossRef]
- Incharoensakdi, A.; Waditee—Sirisattha, R. 10 Regulatory Mechanisms of Cyanobacteria in Response. In Stress Biology of Cyanobacteria: Molecular Mechanisms to Cellular Responses; Srivastava, A.K., Rai, A.N., Neilan, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2013; p. 203. [Google Scholar]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Fal, S.; Aasfar, A.; Rabie, R.; Smouni, A.; Arroussi, H.E.L. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon 2022, 8, e08811. [Google Scholar] [CrossRef]
- Martínez-Francés, E.; Escudero-Oñate, C. Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal. Biotechnol. 2018, 6, 104–128. [Google Scholar]
- Borowitzka, M.A. The ‘stress’ concept in microalgal biology—Homeostasis, acclimation and adaptation. J. Appl. Phycol. 2018, 30, 2815–2825. [Google Scholar] [CrossRef]
- Ayachi, S.; El Abed, A.; Dhifi, W.; Marzouk, B. Chlorophylls, proteins and fatty acids amounts of arthrospira platensis growing under saline conditions. Pak. J. Biol. Sci. PJBS 2007, 10, 2286–2291. [Google Scholar]
- Cui, J.; Sun, T.; Chen, L.; Zhang, W. Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol. Adv. 2020, 43, 107578. [Google Scholar] [CrossRef]
- Wada, H.; Murata, N. Membrane Lipids in Cyanobacteria. In Lipids in Photosynthesis: Structure, Function and Genetics; Paul-André, S., Norio, M., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 65–81. [Google Scholar] [CrossRef]
- Jovanovic, S.; Dietrich, D.; Becker, J.; Kohlstedt, M.; Wittmann, C. Microbial production of polyunsaturated fatty acids—High-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr. Opin. Biotechnol. 2021, 69, 199–211. [Google Scholar] [CrossRef]
- Adhikari, S.; Schop, M.; de Boer, I.J.M.; Huppertz, T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef]
- FAO. Dietary protein quality evaluation in human nutrition. FAO Food Nutr. Pap. 2011, 92, 1–66. [Google Scholar]
- Becker, W. Microalgae for Human and Animal Nutrition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Jung, C.H.; Braune, S.; Waldeck, P.; Küpper, J.-H.; Petrick, I.; Jung, F. Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor. Life 2021, 11, 536. [Google Scholar] [CrossRef]
- Tomaselli, L. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology; CRC Press: London, UK, 1997; pp. 1–16. [Google Scholar]
- Mühling, M.; Harris, N.; Belay, A.; Whitton, B.A. Reversal of helix orientation in the cyanobacterium Arthrospira. J. Phycol. 2003, 39, 360–367. [Google Scholar] [CrossRef]
Carb | Lip | Prot | PC | Chl α | Car | |
---|---|---|---|---|---|---|
Control | 11.7 ± 0.9 a | 6.6 ± 0.4 a | 56.5 ± 3.4 bc | 13.9 ± 2.4 b | 1.04 ± 0.07 c | 0.46 ± 0.03 d |
5 g/L | 11.5 ± 0.5 a | 7.1 ± 0.4 bc | 62.9 ± 2.4 d | 17.2 ±0.1 c | 0.94 ± 0.02 b | 0.44 ± 0.01 d |
10 g/L | 12.1 ± 0.7 a | 7.6 ± 0.3 cd | 60.5 ± 2.2 cd | 17.4 ± 0.3 c | 0.90 ± 0.03 a | 0.42 ± 0.01 c |
20 g/L | 14.4 ± 1.0 b | 7.7 ± 0.3 d | 58.5 ± 4.4 bc | 17.1 ± 0.2 c | 0.90 ± 0.01 a | 0.41 ±0.01 b |
40 g/L | 14.9 ± 0.9 b | 7.4 ± 0.6 bcd | 55.0 ± 2.8 b | 14.8 ± 0.5 b | 0.99 ± 0.02 c | 0.42 ± 0.01 c |
60 g/L | 20.6 ± 2.2 c | 6.9 ± 0.4 b | 42.0 ± 3.1 a | 10.4 ± 0.6 a | 0.90 ± 0.04 ab | 0.36 ± 0.01 a |
Glucose (% Total Sugars) | Galactose + Fructose (% Total Sugars) | Ramnose (% Total Sugars) | Glycerol (% Dry Weight) | |
---|---|---|---|---|
Control | 92.6% a | 6.7% a | n.d | 0.7% a |
5 g/L | 92.8% a | 6.5% a | n.d | 0.8% a |
10 g/L | 92.3% a | 6.3% a | 0.8% a | 1.3% b |
20 g/L | 93.9% b | 4.7% b | 0.8% a | 2.4% c |
40 g/L | 95.5% c | 3.4% c | 0.7% a | 4.4% d |
60 g/L | 97.9% d | 1.5% d | 0.4% b | 5.1% d |
TPC (mg GAE/g) | FRAP (mmol GAE/g) | ABTS (mmol TEAC/g) | |
---|---|---|---|
Control | 3.56 ± 0.24 c | 0.028 ± 0.002 a | 0.038 ± 0.005 c |
5 g/L | 2.86 ± 0.1 b | 0.027 ± 0.002 a | 0.030 ± 0.001 b |
10 g/L | 2.82 ± 0.12 b | 0.028 ± 0.001 a | 0.030 ± 0.001 b |
20 g/L | 2.68 ± 0.09 a | 0.027 ± 0.001 a | 0.028 ± 0.001 a,b |
40 g/L | 2.63 ± 0.08 a | 0.028 ± 0.001 a | 0.029 ± 0.001 b |
60 g/L | 2.56 ± 0.13 a | 0.027 ± 0.001 a | 0.029 ± 0.001 b |
C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | |
---|---|---|---|---|---|---|
Control | 55.8 ± 0.4 bc | 3.7 ± 0.1 a | 12.1 ± 0.9 a | 4.8 ± 0.5 a | 10.0 ± 0.3 a | 13.5 ± 0.3 a |
5 g/L | 57.6 ± 1.2 c | 3.8 ± 0.1 a | 10.2 ± 0.3 a | 5.9 ± 0.4 a | 9.7 ± 9.8 a | 12.9 ± 0.5 a |
10 g/L | 57.0 ± 0.9 bc | 4.3 ± 0.4 a | 8.3 ± 5.2 b | 7.3 ± 0.7 b | 9.8 ± 1.4 a | 13.3 ± 1.8 a |
20 g/L | 55.2 ± 0.8 b | 4.6 ± 0.5 a | 7.3 ± 4.6 b | 9.4 ± 1.3 b | 10.1 ± 1.3 a | 13.4 ± 1.7 a |
40 g/L | 50.7 ± 0.6 a | 5.9 ± 0.5 b | 5.6 ± 2.5 c | 14.0 ± 0.7 c | 9.8 ± 0.6 a | 14.0 ± 0.8 a |
60 g/L | 49.3 ± 1.3 a | 5.9 ± 0.5 b | 7.1 ± 4.1 c | 17.5 ± 2.2 c | 10.1 ± 1.4 a | 12.5 ± 1.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markou, G.; Kougia, E.; Arapoglou, D.; Chentir, I.; Andreou, V.; Tzovenis, I. Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities. Bioengineering 2023, 10, 233. https://doi.org/10.3390/bioengineering10020233
Markou G, Kougia E, Arapoglou D, Chentir I, Andreou V, Tzovenis I. Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities. Bioengineering. 2023; 10(2):233. https://doi.org/10.3390/bioengineering10020233
Chicago/Turabian StyleMarkou, Giorgos, Eleni Kougia, Dimitris Arapoglou, Imene Chentir, Varvara Andreou, and Ioannis Tzovenis. 2023. "Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities" Bioengineering 10, no. 2: 233. https://doi.org/10.3390/bioengineering10020233
APA StyleMarkou, G., Kougia, E., Arapoglou, D., Chentir, I., Andreou, V., & Tzovenis, I. (2023). Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities. Bioengineering, 10(2), 233. https://doi.org/10.3390/bioengineering10020233