GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation
Abstract
:1. Introduction
2. Methodology
2.1. Hypothesis
2.2. Dataset
- Resting: indoor participant, sitting, head barely moving.
- Gym: on a bicycle ergometer, participant exercising indoors.
- Talk: urban setting with daylight and conversation.
- Rotation: the participant makes irrational head motions in an indoor setting.
2.3. Pipeline and rPPG Methods
2.4. Evaluation Metric
3. Results
4. Discussion
- 1
- Examining the proposed GRGB method as a benchmark rPPG method.
- 2
- Exploring the illumination changes. The lighting used in indoor settings is often not described well enough. To understand the rPPG method more deeply, it is essential to study the light that illuminates the face (e.g., spectrum or angle to the face).
- 3
- Investigating the impact of ROI. Any movement of the subject can introduce artifacts into the extracted ROI, making it difficult to separate the signal from the noise. For video settings with little movement and constant light, we recommend focusing more on ROI selection.
- 4
- Collecting videos from participants with different skin colors. We recommend testing all the examined algorithms on participants of different ethnicities and age ranges.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elgendi, M. PPG Signal Analysis; Taylor & Francis (CRC Press): Boca Raton, FL, USA, 2020. [Google Scholar]
- Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef]
- Haugg, F.; Elgendi, M.; Menon, C. Assessment of blood pressure using only a smartphone and machine learning techniques: A systematic review. Front. Cardiovasc. Med. 2022, 9, 894224. [Google Scholar] [CrossRef]
- Frey, L.; Menon, C.; Elgendi, M. Blood pressure measurement using only a smartphone. NPJ Digit. Med. 2022, 5, 86. [Google Scholar] [CrossRef]
- Lin, W.-H.; Wu, D.; Li, C.; Zhang, H.; Zhang, Y.-T. Comparison of heart rate variability from ppg with that from ecg. In The International Conference on Health Informatics; Zhang, Y.-T., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 213–215. [Google Scholar]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef]
- WHO: Cardiovascular Diseases. 2022. Available online: https://www.who.int/health-topics/cardiovascular-diseases (accessed on 19 July 2022).
- Rocque, G.B.; Rosenberg, A.R. Improving outcomes demands patient-centred interventions and equitable delivery. Nat. Rev. Clin. Oncol. 2022, 19, 569–570. [Google Scholar] [CrossRef]
- Subbiah, V. The next generation of evidence-based medicine. Nat. Med. 2023, 29, 49–58. [Google Scholar] [CrossRef]
- Boccignone, G.; Conte, D.; Cuculo, V.; d’Amelio, A.; Grossi, G.; Lanzarotti, R. An open framework for remote-ppg methods and their assessment. IEEE Access 2020, 8, 216083–216103. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic principles of remote ppg. IEEE Trans. Biomed. Eng. 2016, 64, 1479–1491. [Google Scholar] [CrossRef]
- Haugg, F.; Elgendi, M.; Menon, C. Effectiveness of remote ppg construction methods: A preliminary analysis. Bioengineering 2022, 9, 485. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef]
- Pilz, C.S.; Zaunseder, S.; Krajewski, J.; Blazek, V. Local group invariance for heart rate estimation from face videos in the wild. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1335–13358. [Google Scholar] [CrossRef]
- Kartynnik, Y.; Ablavatski, A.; Grishchenko, I.; Grundmann, M. Real-time facial surface geometry from monocular video on mobile gpus. In Proceedings of the CVPR Workshop on Computer Vision for Augmented and Virtual Reality 2019, Long Beach, CA, USA, 17 June 2019. [Google Scholar]
- Kwon, S.; Kim, J.; Lee, D.; Park, K. Roi analysis for remote photoplethysmography on facial video. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4938–4941. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lee, K.; Sohn, C.-B. Assessment of roi selection for facial video-based rppg. Sensors 2021, 21, 7923. [Google Scholar] [CrossRef]
- Tarvainen, M.; Rantaaho, P.; Karjalainen, P. An advanced detrending method with application to hrv analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Kim, J.; Ahn, J. Design of an optimal digital iir filter for heart rate variability by photoplethysmogram. Int. J. Eng. Res. Technol. 2018, 11, 2009–2021. [Google Scholar]
- Poh, M.-Z.; McDuff, D.J.; Picard, R.W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 2010, 18, 10762–10774. [Google Scholar] [CrossRef]
- Lewandowska, M.; Rumiński, J.; Kocejko, T.; Nowak, J. Measuring pulse rate with a webcam — a non-contact method for evaluating cardiac activity. In Proceedings of the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland, 18–21 September 2011; pp. 405–410. [Google Scholar]
- de Haan, G.; Jeanne, V. Robust pulse rate from chrominance-based rppg. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef]
- de Haan, G.; van Leest, A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Hysiological Meas. 2014, 35, 1913–1926. [Google Scholar] [CrossRef]
- Casado, C.; López, M. Face2ppg: An unsupervised pipeline for blood volume pulse extraction from faces. arXiv 2022, arXiv:2202.04101. [Google Scholar]
- Boccignone, G.; Conte, D.; Cuculo, V.; D’Amelio, A.; Grossi, G.; Lanzarotti, R.; Mortara, E. pyVHR: A python framework for remote photoplethysmography. Peerj Comput. Sci. 2022, 8, e929. [Google Scholar] [CrossRef]
- Van Kampen, E.J.; Zijlstra, W.G. Determination of hemoglobin and its derivatives. Adv. Clin. Chem. 1965, 8, 141–187. [Google Scholar]
- Cardoso, J.F. High-order contrasts for independent component analysis. Neural Comput. 1999, 11, 157–192. [Google Scholar] [CrossRef]
- Francis, J.G.F. The QR Transformation—Part 2. Comput. J. 1962, 4, 32–345. [Google Scholar] [CrossRef]
- Householder, A.S. Unitary triangularization of a nonsymmetric matrix. J. ACM 1958, 5, 339–342. [Google Scholar] [CrossRef]
- Semmlow, J. Signals and Systems for Bioengineers; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Dasari, A.; Prakash, S.K.A.; Jeni, L.A.; Tucker, C.S. Evaluation of biases in remote photoplethysmography methods. NPJ Digit. Med. 2021, 4, 91. [Google Scholar] [CrossRef]
- Nowara, E.M.; McDuff, D.; Veeraraghavan, A. A meta-analysis of the impact of skin tone and gender on non-contact photoplethysmography measurements. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Sinaki, F.Y.; Ward, R.; Abbott, D.; Allen, J.; Fletcher, R.R.; Menon, C.; Elgendi, M. Ethnic disparities in publicly-available pulse oximetry databases. Commun. Med. 2022, 2, 59. [Google Scholar] [CrossRef]
- Elgendi, M.; Fletcher, R.R.; Tomar, H.; Allen, J.; Ward, R.; Menon, C. The striking need for age diverse pulse oximeter databases. Front. Med. 2021, 8, 782422. [Google Scholar] [CrossRef]
rPPG Method | Equation |
---|---|
Proposed Method I (GR) | |
Proposed Method II (GB) | |
Proposed Method III (GRGB) |
rPPG Method | Resting | Gym | Talk | Rotation | Average |
---|---|---|---|---|---|
Proposed Method I (GR) | 1.99 | 11.64 | 8.52 | 18.33 | 10.12 |
Proposed Method II (GB) | 1.99 | 29.74 | 10.27 | 22.44 | 16.11 |
Proposed Method III (GRGB) | 1.91 | 6.84 | 7.98 | 12.90 | 7.41 |
CHROM [22] | 1.91 | 14.81 | 3.68 | 18.84 | 9.81 |
LGI [14] | 1.91 | 12.39 | 4.52 | 15.12 | 8.48 |
POS [11] | 1.99 | 7.06 | 6.37 | 14.44 | 7.47 |
PBV [23] | 2.95 | 22.73 | 13.08 | 26.16 | 16.23 |
PCA [21] | 1.93 | 28.42 | 7.91 | 15.60 | 13.47 |
GREEN [13] | 2.03 | 27.22 | 9.09 | 28.06 | 16.60 |
OMIT [24] | 1.87 | 11.23 | 6.39 | 16.72 | 9.05 |
ICA [20] | 8.10 | 26.00 | 14.16 | 22.38 | 17.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haugg, F.; Elgendi, M.; Menon, C. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation. Bioengineering 2023, 10, 243. https://doi.org/10.3390/bioengineering10020243
Haugg F, Elgendi M, Menon C. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation. Bioengineering. 2023; 10(2):243. https://doi.org/10.3390/bioengineering10020243
Chicago/Turabian StyleHaugg, Fridolin, Mohamed Elgendi, and Carlo Menon. 2023. "GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation" Bioengineering 10, no. 2: 243. https://doi.org/10.3390/bioengineering10020243
APA StyleHaugg, F., Elgendi, M., & Menon, C. (2023). GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation. Bioengineering, 10(2), 243. https://doi.org/10.3390/bioengineering10020243