Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review
Abstract
:1. Introduction
2. Types of Laser Systems in Endodontics
2.1. Er:YAG Laser
2.2. Er,Cr:YSGG Laser
2.3. Nd:YAG Laser
2.4. Nd:YAP Laser
2.5. CO2 Laser
2.6. Diode Laser
3. Lasers in Root Canal Treatment
3.1. Root Canal Shaping
3.2. Root Canal Irrigation
3.3. Fiber Posts Surface Treatment
3.4. Filling Materials Removal
4. Lasers in Vital Pulp Therapy
4.1. Lasers in Pulp Capping
4.2. Lasers in Pulpotomy
5. Lasers in Pain Management in Endodontic Treatment
6. Lasers in Dentinal Hypersensitivity Treatment
7. Future Directions
7.1. Broken Files Removal
7.2. Fiber Posts Removal
7.3. Root Development Acceleration
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Del Fabbro, M.; Taschieri, S.; Lodi, G.; Banfi, G.; Weinstein, R.L. Magnification Devices for Endodontic Therapy. Cochrane Database Syst. Rev. 2015, 2015, CD005969. [Google Scholar] [CrossRef]
- Del Fabbro, M.; Corbella, S.; Sequeira-Byron, P.; Tsesis, I.; Rosen, E.; Lolato, A.; Taschieri, S. Endodontic Procedures for Retreatment of Periapical Lesions. Cochrane Database Syst. Rev. 2016, 10, CD005511. [Google Scholar] [CrossRef]
- Chong, B.S.; Pitt Ford, T.R. The Role of Intracanal Medication in Root Canal Treatment. Int. Endod. J. 1992, 25, 97–106. [Google Scholar] [CrossRef]
- Saydjari, Y.; Kuypers, T.; Gutknecht, N. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 Nm and Diode 810 Nm and 980 Nm in Infected Root Canals-A Literature Overview. Biomed Res. Int. 2016, 2016, 8421656. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, J.F., Jr. Aetiology of Root Canal Treatment Failure: Why Well-Treated Teeth Can Fail. Int. Endod. J. 2001, 34, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Theodoro, L.H.; Marcantonio, R.A.C.; Wainwright, M.; Garcia, V.G. LASER in Periodontal Treatment: Is It an Effective Treatment or Science Fiction? Braz. Oral Res. 2021, 35 (Suppl. S2), e099. [Google Scholar] [CrossRef]
- Pick, R.M.; Pecaro, B.C.; Silberman, C.J. The Laser Gingivectomy. The Use of the CO2 Laser for the Removal of Phenytoin Hyperplasia. J. Periodontol. 1985, 56, 492–496. [Google Scholar] [CrossRef]
- Deppe, H.; Horch, H.-H. Laser Applications in Oral Surgery and Implant Dentistry. Lasers Med. Sci. 2007, 22, 217–221. [Google Scholar] [CrossRef]
- Apel, C.; Meister, J.; Schmitt, N.; Gräber, H.-G.; Gutknecht, N. Calcium Solubility of Dental Enamel Following Sub-Ablative Er:YAG and Er:YSGG Laser Irradiation in Vitro. Lasers Surg. Med. 2002, 30, 337–341. [Google Scholar] [CrossRef]
- Yamakawa, S.; Niwa, T.; Karakida, T.; Kobayashi, K.; Yamamoto, R.; Chiba, R.; Yamakoshi, Y.; Hosoya, N. Effects of Er:YAG and Diode Laser Irradiation on Dental Pulp Cells and Tissues. Int. J. Mol. Sci. 2018, 19, 2429. [Google Scholar] [CrossRef] [Green Version]
- Bader, C.; Krejci, I. Indications and Limitations of Er:YAG Laser Applications in Dentistry. Am. J. Dent. 2006, 19, 178–186. [Google Scholar] [PubMed]
- Kokuzawa, C.; Ebihara, A.; Watanabe, S.; Anjo, T.; Bolortuya, G.; Saegusa, H.; Suda, H. Shaping of the Root Canal Using Er:YAG Laser Irradiation. Photomed. Laser Surg. 2012, 30, 367–373. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhang, B.; Ge, X.; Wang, X. Clinical Efficacy of Er:YAG Laser Application in Pulpotomy of Primary Molars: A 2-Year Follow-up Study. Lasers Med. Sci. 2022, 37, 3705–3712. [Google Scholar] [CrossRef]
- Fattah, T.; Kazemi, H.; Fekrazad, R.; Assadian, H.; Kalhori, K.A.M. Er,Cr:YSGG Laser Influence on Microleakage of Class V Composite Resin Restorations. Lasers Med. Sci. 2013, 28, 1257–1262. [Google Scholar] [CrossRef]
- Aoki, A.; Sasaki, K.M.; Watanabe, H.; Ishikawa, I. Lasers in Nonsurgical Periodontal Therapy. Periodontol. 2000 2004, 36, 59–97. [Google Scholar] [CrossRef]
- Moon, Y.-M.; Kim, H.-C.; Bae, K.-S.; Baek, S.-H.; Shon, W.-J.; Lee, W. Effect of Laser-Activated Irrigation of 1320-Nanometer Nd:YAG Laser on Sealer Penetration in Curved Root Canals. J. Endod. 2012, 38, 531–535. [Google Scholar] [CrossRef]
- Namour, A.; Geerts, S.; Zeinoun, T.; De Moor, R.; Nammour, S. Safety Irradiation Parameters of Nd:YAP Laser Beam for Endodontic Treatments: An In Vitro Study. BioMed Res. Int. 2016, 2016, 4741516. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Huang, Z.; Ju, Y.; Tang, X. Bactericidal Efficacy of Three Parameters of Nd:YAP Laser Irradiation against Enterococcus faecalis Compared with NaOCl Irrigation. Lasers Med. Sci. 2019, 34, 359–366. [Google Scholar] [CrossRef]
- Luk, K.; Zhao, I.S.; Yu, O.Y.; Zhang, J.; Gutknecht, N.; Chu, C.H. Effects of 10,600 Nm Carbon Dioxide Laser on Remineralizing Caries: A Literature Review. Photobiomodul. Photomed. Laser Surg. 2020, 38, 59–65. [Google Scholar] [CrossRef]
- Suzuki, M.; Kato, C.; Kawashima, S.; Shinkai, K. Clinical and Histological Study on Direct Pulp Capping with CO2 Laser Irradiation in Human Teeth. Oper. Dent. 2019, 44, 336–347. [Google Scholar] [CrossRef]
- Mathew, T.; Bm, S.; Gv, P.; Jose, J. Comparative Evaluation of the Antibacterial Efficacy of Chlorhexidine and 810 Nm Diode Laser in the Disinfection of Root Canals Contaminated With Enterococcus faecalis: An In Vitro Study. Cureus 2022, 14, e28596. [Google Scholar] [CrossRef]
- Genc Sen, O.; Kaya, M. Effect of Root Canal Disinfection with a Diode Laser on Postoperative Pain After Endodontic Retreatment. Photobiomodul. Photomed. Laser Surg. 2019, 37, 85–90. [Google Scholar] [CrossRef]
- Korkut, E.; Torlak, E.; Gezgin, O.; Özer, H.; Şener, Y. Antibacterial and Smear Layer Removal Efficacy of Er:YAG Laser Irradiation by Photon-Induced Photoacoustic Streaming in Primary Molar Root Canals: A Preliminary Study. Photomed. Laser Surg. 2018, 36, 480–486. [Google Scholar] [CrossRef]
- Gu, Y.; Perinpanayagam, H.; Kum, D.J.W.; Yoo, Y.-J.; Jeong, J.-S.; Lim, S.-M.; Chang, S.-W.; Baek, S.-H.; Zhu, Q.; Kum, K.-Y. Effect of Different Agitation Techniques on the Penetration of Irrigant and Sealer into Dentinal Tubules. Photomed. Laser Surg. 2017, 35, 71–77. [Google Scholar] [CrossRef]
- Fornaini, C.; Brulat-Bouchard, N.; Medioni, E.; Zhang, S.; Rocca, J.-P.; Merigo, E. Nd:YAP Laser in the Treatment of Dentinal Hypersensitivity: An Ex Vivo Study. J. Photochem. Photobiol. B Biol. 2020, 203, 111740. [Google Scholar] [CrossRef]
- Violich, D.R.; Chandler, N.P. The Smear Layer in Endodontics—A Review. Int. Endod. J. 2010, 43, 2–15. [Google Scholar] [CrossRef]
- Samiei, M.; Pakdel, S.M.V.; Rikhtegaran, S.; Shakoei, S.; Ebrahimpour, D.; Taghavi, P. Scanning Electron Microscopy Comparison of the Cleaning Efficacy of a Root Canal System by Nd:YAG Laser and Rotary Instruments. Microsc. Microanal. 2014, 20, 1240–1245. [Google Scholar] [CrossRef]
- Gulabivala, K.; Patel, B.; Evans, G.; Ng, Y. Effects of Mechanical and Chemical Procedures on Root Canal Surfaces. Endod. Top. 2005, 10, 103–122. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Arias-Moliz, M.T. Present Status and Future Directions—Irrigants and Irrigation Methods. Int. Endod. J. 2022, 55 (Suppl. S3), 588–612. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Lambrianidis, T.; Kastrinakis, E.; Bekiaroglou, P. Measurement of Pressure and Flow Rates during Irrigation of a Root Canal Ex Vivo with Three Endodontic Needles. Int. Endod. J. 2007, 40, 504–513. [Google Scholar] [CrossRef]
- Robberecht, L.; Delattre, J.; Meire, M. Isthmus Morphology Influences Debridement Efficacy of Activated Irrigation: A Laboratory Study Involving Biofilm Mimicking Hydrogel Removal and High-Speed Imaging. Int. Endod. J. 2023, 56, 118–127. [Google Scholar] [CrossRef]
- Galler, K.M.; Grubmüller, V.; Schlichting, R.; Widbiller, M.; Eidt, A.; Schuller, C.; Wölflick, M.; Hiller, K.-A.; Buchalla, W. Penetration Depth of Irrigants into Root Dentine after Sonic, Ultrasonic and Photoacoustic Activation. Int. Endod. J. 2019, 52, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- De Groot, S.D.; Verhaagen, B.; Versluis, M.; Wu, M.-K.; Wesselink, P.R.; van der Sluis, L.W.M. Laser-Activated Irrigation within Root Canals: Cleaning Efficacy and Flow Visualization. Int. Endod. J. 2009, 42, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Swimberghe, R.C.D.; Tzourmanas, R.; De Moor, R.J.G.; Braeckmans, K.; Coenye, T.; Meire, M.A. Explaining the Working Mechanism of Laser-Activated Irrigation and Its Action on Microbial Biofilms: A High-Speed Imaging Study. Int. Endod. J. 2022, 55, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Yan, L.; Kong, Y.; Zhao, J.; Li, Y.; Jiang, Q. The Antibacterial Efficacy of Photon-Initiated Photoacoustic Streaming in Root Canals with Different Diameters or Tapers. BMC Oral Health 2021, 21, 542. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, M.W.; Zhu, L.X.; Peng, B. Micro-CT Study on the Removal of Accumulated Hard-Tissue Debris from the Root Canal System of Mandibular Molars When Using a Novel Laser-Activated Irrigation Approach. Int. Endod. J. 2020, 53, 529–538. [Google Scholar] [CrossRef]
- Lukač, N.; Jezeršek, M. Amplification of Pressure Waves in Laser-Assisted Endodontics with Synchronized Delivery of Er:YAG Laser Pulses. Lasers Med. Sci. 2018, 33, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Cîmpean, S.I.; Pop-Ciutrila, I.-S.; Matei, S.-R.; Colosi, I.A.; Costache, C.; Nicula, G.Z.; Badea, I.C.; Colceriu Burtea, L. Effectiveness of Different Final Irrigation Procedures on Enterococcus faecalis Infected Root Canals: An In Vitro Evaluation. Materials 2022, 15, 6688. [Google Scholar] [CrossRef]
- Shi, L.; Wu, S.; Yang, Y.; Wan, J. Efficacy of Five Irrigation Techniques in Removing Calcium Hydroxide from Simulated S-Shaped Root Canals. J. Dent. Sci. 2022, 17, 128–134. [Google Scholar] [CrossRef]
- Nagahashi, T.; Yahata, Y.; Handa, K.; Nakano, M.; Suzuki, S.; Kakiuchi, Y.; Tanaka, T.; Kanehira, M.; Suresh Venkataiah, V.; Saito, M. Er:YAG Laser-Induced Cavitation Can Activate Irrigation for the Removal of Intraradicular Biofilm. Sci. Rep. 2022, 12, 4897. [Google Scholar] [CrossRef]
- Swimberghe, R.C.D.; De Clercq, A.; De Moor, R.J.G.; Meire, M.A. Efficacy of Sonically, Ultrasonically and Laser-Activated Irrigation in Removing a Biofilm-Mimicking Hydrogel from an Isthmus Model. Int. Endod. J. 2019, 52, 515–523. [Google Scholar] [CrossRef]
- Liu, C.; Li, Q.; Yue, L.; Zou, X. Evaluation of Sonic, Ultrasonic, and Laser Irrigation Activation Systems to Eliminate Bacteria from the Dentinal Tubules of the Root Canal System. J. Appl. Oral Sci. 2022, 30, e20220199. [Google Scholar] [CrossRef]
- Tanaka, T.; Yahata, Y.; Handa, K.; Venkataiah, S.V.; Njuguna, M.M.; Kanehira, M.; Hasegawa, T.; Noiri, Y.; Saito, M. An Experimental Intraradicular Biofilm Model in the Pig for Evaluating Irrigation Techniques. BMC Oral Health 2021, 21, 177. [Google Scholar] [CrossRef]
- Arslan, D.; Kustarci, A. Efficacy of Photon-Initiated Photoacoustic Streaming on Apically Extruded Debris with Different Preparation Systems in Curved Canals. Int. Endod. J. 2018, 51 (Suppl. S1), e65–e72. [Google Scholar] [CrossRef] [Green Version]
- Doğanay Yıldız, E.; Dinçer, B.; Fidan, M.E. Effect of Different Laser-Assisted Irrigation Activation Techniques on Apical Debris Extrusion. Acta Odontol. Scand. 2020, 78, 332–336. [Google Scholar] [CrossRef]
- Kırmalı, Ö.; Sekmen, T.; Karaarslan, A. Push-out Bond Strength of Various Surface Treatments on Fiber Post to Root Canal Dentine Using Different Irrigation Techniques. Microsc. Res. Tech. 2021, 84, 2024–2033. [Google Scholar] [CrossRef]
- Deeb, J.G.; Grzech-Leśniak, K.; Weaver, C.; Matys, J.; Bencharit, S. Retrieval of Glass Fiber Post Using Er:YAG Laser and Conventional Endodontic Ultrasonic Method: An In Vitro Study. J. Prosthodont. 2019, 28, 1024–1028. [Google Scholar] [CrossRef]
- Gomes, K.G.F.; Faria, N.S.; Neto, W.R.; Colucci, V.; Gomes, E.A. Influence of Laser Irradiation on the Push-out Bond Strength between a Glass Fiber Post and Root Dentin. J. Prosthet. Dent. 2018, 119, 97–102. [Google Scholar] [CrossRef]
- Rezaei-Soufi, L.; Tapak, L.; Forouzande, M.; Fekrazad, R. Effects of Motion Direction and Power of Er,Cr:YSGG Laser on Pull-out Bond Strength of Fiber Post to Root Dentin in Endodontically-Treated Single-Canal Premolar Teeth. Biomater. Res. 2019, 23, 17. [Google Scholar] [CrossRef]
- Akin, G.E.; Akin, H.; Sipahi, C.; Piskin, B.; Kirmali, O. Evaluation of Surface Roughness and Bond Strength of Quartz Fiber Posts after Various Pre-Treatments. Acta Odontol. Scand. 2014, 72, 1010–1016. [Google Scholar] [CrossRef]
- Kaptan, F.; Karapinar-Kazandag, M.; Kayahan, M.B.; Bora, T.; Bayirli, G. Potential of an Er:YAG Laser in the Removal of Calcium Hydroxide from Root Canals. Photomed. Laser Surg. 2012, 30, 250–254. [Google Scholar] [CrossRef]
- Yang, R.; Han, Y.; Liu, Z.; Xu, Z.; Liu, H.; Wei, X. Comparison of the Efficacy of Laser-Activated and Ultrasonic-Activated Techniques for the Removal of Tricalcium Silicate-Based Sealers and Gutta-Percha in Root Canal Retreatment: A Microtomography and Scanning Electron Microscopy Study. BMC Oral Health 2021, 21, 275. [Google Scholar] [CrossRef]
- Anjo, T.; Ebihara, A.; Takeda, A.; Takashina, M.; Sunakawa, M.; Suda, H. Removal of Two Types of Root Canal Filling Material Using Pulsed Nd:YAG Laser Irradiation. Photomed. Laser Surg. 2004, 22, 470–476. [Google Scholar] [CrossRef]
- Yu, D.G.; Kimura, Y.; Tomita, Y.; Nakamura, Y.; Watanabe, H.; Matsumoto, K. Study on Removal Effects of Filling Materials and Broken Files from Root Canals Using Pulsed Nd:YAG Laser. J. Clin. Laser Med. Surg. 2000, 18, 23–28. [Google Scholar] [CrossRef]
- Cushley, S.; Duncan, H.F.; Lappin, M.J.; Chua, P.; Elamin, A.D.; Clarke, M.; El-Karim, I.A. Efficacy of Direct Pulp Capping for Management of Cariously Exposed Pulps in Permanent Teeth: A Systematic Review and Meta-Analysis. Int. Endod. J. 2021, 54, 556–571. [Google Scholar] [CrossRef]
- Smaïl-Faugeron, V.; Glenny, A.-M.; Courson, F.; Durieux, P.; Muller-Bolla, M.; Chabouis, H.F. Pulp Treatment for Extensive Decay in Primary Teeth. Cochrane Database Syst. Rev. 2018, 2018, CD003220. [Google Scholar] [CrossRef]
- Qureshi, A. Recent Advances in Pulp Capping Materials: An Overview. J. Clin. Diagn. Res. 2014, 8, 316–321. [Google Scholar] [CrossRef]
- Ansari, G.; Safi Aghdam, H.; Taheri, P.; Ghazizadeh Ahsaie, M. Laser Pulpotomy—An Effective Alternative to Conventional Techniques—A Systematic Review of Literature and Meta-Analysis. Lasers Med. Sci. 2018, 33, 1621–1629. [Google Scholar] [CrossRef]
- Utsunomiya, T. A Histopathological Study of the Effects of Low-Power Laser Irradiation on Wound Healing of Exposed Dental Pulp Tissues in Dogs, with Special Reference to Lectins and Collagens. J. Endod. 1998, 24, 187–193. [Google Scholar] [CrossRef]
- Arany, P.R.; Cho, A.; Hunt, T.D.; Sidhu, G.; Shin, K.; Hahm, E.; Huang, G.X.; Weaver, J.; Chen, A.C.-H.; Padwa, B.L.; et al. Photoactivation of Endogenous Latent Transforming Growth Factor-Β1 Directs Dental Stem Cell Differentiation for Regeneration. Sci. Transl. Med. 2014, 6, 238ra69. [Google Scholar] [CrossRef] [Green Version]
- Javed, F.; Kellesarian, S.V.; Abduljabbar, T.; Gholamiazizi, E.; Feng, C.; Aldosary, K.; Vohra, F.; Romanos, G.E. Role of Laser Irradiation in Direct Pulp Capping Procedures: A Systematic Review and Meta-Analysis. Lasers Med. Sci. 2017, 32, 439–448. [Google Scholar] [CrossRef]
- Fernandes, A.P.; Lourenço Neto, N.; Teixeira Marques, N.C.; Silveira Moretti, A.B.; Sakai, V.T.; Cruvinel Silva, T.; Andrade Moreira Machado, M.A.; Marchini Oliveira, T. Clinical and Radiographic Outcomes of the Use of Low-Level Laser Therapy in Vital Pulp of Primary Teeth. Int. J. Paediatr. Dent. 2015, 25, 144–150. [Google Scholar] [CrossRef]
- Yazdanfar, I.; Gutknecht, N.; Franzen, R. Effects of Diode Laser on Direct Pulp Capping Treatment. Lasers Med. Sci. 2015, 30, 1237–1243. [Google Scholar] [CrossRef]
- Yazdanfar, I.; Barekatain, M.; Zare Jahromi, M. Combination Effects of Diode Laser and Resin-Modified Tricalcium Silicate on Direct Pulp Capping Treatment of Caries Exposures in Permanent Teeth: A Randomized Clinical Trial. Lasers Med. Sci. 2020, 35, 1849–1855. [Google Scholar] [CrossRef]
- Cengiz, E.; Yilmaz, H.G. Efficacy of Erbium, Chromium-Doped:Yttrium, Scandium, Gallium, and Garnet Laser Irradiation Combined with Resin-Based Tricalcium Silicate and Calcium Hydroxide on Direct Pulp Capping: A Randomized Clinical Trial. J. Endod. 2016, 42, 351–355. [Google Scholar] [CrossRef]
- Alsofi, L.; Khalil, W.; Binmadi, N.O.; Al-Habib, M.A.; Alharbi, H. Pulpal and Periapical Tissue Response after Direct Pulp Capping with Endosequence Root Repair Material and Low-Level Laser Application. BMC Oral Health 2022, 22, 57. [Google Scholar] [CrossRef]
- Gupta, G. Laser Pulpotomy—An Effective Alternative to Conventional Techniques: A 12 Months Clinicoradiographic Study. Int. J. Clin. Pediatr. Dent. 2015, 8, 18–21. [Google Scholar] [CrossRef]
- Olivi, G.; Genovese, M.D.; Caprioglio, C. Evidence-Based Dentistry on Laser Paediatric Dentistry: Review and Outlook. Eur. J. Paediatr. Dent. 2009, 10, 29–40. [Google Scholar]
- Ebrahimi, M.; Changiz, S.; Makarem, A.; Ahrari, F. Clinical and Radiographic Effectiveness of Mineral Trioxide Aggregate (MTA) Partial Pulpotomy with Low Power or High Power Diode Laser Irradiation in Deciduous Molars: A Randomized Clinical Trial. Lasers Med. Sci. 2022, 37, 2293–2303. [Google Scholar] [CrossRef]
- Alamoudi, N.; Nadhreen, A.; Sabbagh, H.; El Meligy, O.; Al Tuwirqi, A.; Elkhodary, H. Clinical and Radiographic Success of Low-Level Laser Therapy Compared with Formocresol Pulpotomy Treatment in Primary Molars. Pediatr. Dent. 2020, 42, 359–366. [Google Scholar]
- Tozar, K.N.; Almaz, M.E. Evaluation of the Efficacy of Erbium, Chromium-Doped Yttrium, Scandium, Gallium, and Garnet Laser in Partial Pulpotomy in Permanent Immature Molars: A Randomized Controlled Trial. J. Endod. 2020, 46, 575–583. [Google Scholar] [CrossRef]
- Shirvani, A.; Shamszadeh, S.; Eghbal, M.J.; Marvasti, L.A.; Asgary, S. Effect of Preoperative Oral Analgesics on Pulpal Anesthesia in Patients with Irreversible Pulpitis—A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2017, 21, 43–52. [Google Scholar] [CrossRef]
- Cope, A.L.; Francis, N.; Wood, F.; Chestnutt, I.G. Systemic Antibiotics for Symptomatic Apical Periodontitis and Acute Apical Abscess in Adults. Cochrane Database Syst. Rev. 2018, 9, CD010136. [Google Scholar] [CrossRef]
- Van Nieuwenhuysen, J.P.; D’Hoore, W.; Leprince, J.G. What Ultimately Matters in Root Canal Treatment Success and Tooth Preservation: A 25-Year Cohort Study. Int. Endod. J. 2023. [Google Scholar] [CrossRef]
- Pak, J.G.; White, S.N. Pain Prevalence and Severity before, during, and after Root Canal Treatment: A Systematic Review. J. Endod. 2011, 37, 429–438. [Google Scholar] [CrossRef]
- Ismail, H.H.; Obeid, M.; Hassanien, E. Efficiency of Diode Laser in Control of Post-Endodontic Pain: A Randomized Controlled Trial. Clin. Oral Investig. 2023. [Google Scholar] [CrossRef]
- Seltzer, S.; Naidorf, I.J. Flare-Ups in Endodontics: I. Etiological Factors. J. Endod. 1985, 11, 472–478. [Google Scholar] [CrossRef]
- Comparin, D.; Moreira, E.J.L.; Souza, E.M.; De-Deus, G.; Arias, A.; Silva, E.J.N.L. Postoperative Pain after Endodontic Retreatment Using Rotary or Reciprocating Instruments: A Randomized Clinical Trial. J. Endod. 2017, 43, 1084–1088. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.L.; Zou, X.L.; Chen, S.Z.; Zou, J.; Wang, Y. Efficacy of Low-Level Laser Therapy in Pain Management after Root Canal Treatment or Retreatment: A Systematic Review. Lasers Med. Sci. 2019, 34, 1305–1316. [Google Scholar] [CrossRef]
- De Meyer, S.; Meire, M.A.; Coenye, T.; De Moor, R.J.G. Effect of Laser-Activated Irrigation on Biofilms in Artificial Root Canals. Int. Endod. J. 2017, 50, 472–479. [Google Scholar] [CrossRef]
- Peters, L.B.; Wesselink, P.R.; Buijs, J.F.; van Winkelhoff, A.J. Viable Bacteria in Root Dentinal Tubules of Teeth with Apical Periodontitis. J. Endod. 2001, 27, 76–81. [Google Scholar] [CrossRef]
- Schoop, U.; Kluger, W.; Moritz, A.; Nedjelik, N.; Georgopoulos, A.; Sperr, W. Bactericidal Effect of Different Laser Systems in the Deep Layers of Dentin. Lasers Surg. Med. 2004, 35, 111–116. [Google Scholar] [CrossRef]
- He, W.L.; Li, C.J.; Liu, Z.P.; Sun, J.F.; Hu, Z.A.; Yin, X.; Zou, S.J. Efficacy of Low-Level Laser Therapy in the Management of Orthodontic Pain: A Systematic Review and Meta-Analysis. Lasers Med. Sci. 2013, 28, 1581–1589. [Google Scholar] [CrossRef]
- Pires, D.; Xavier, M.; Araújo, T.; Silva, J.A.; Aimbire, F.; Albertini, R. Low-Level Laser Therapy (LLLT; 780 Nm) Acts Differently on MRNA Expression of Anti- and pro-Inflammatory Mediators in an Experimental Model of Collagenase-Induced Tendinitis in Rat. Lasers Med. Sci. 2011, 26, 85–94. [Google Scholar] [CrossRef]
- Chow, R.T.; Armati, P.J. Photobiomodulation: Implications for Anesthesia and Pain Relief. Photomed. Laser Surg. 2016, 34, 599–609. [Google Scholar] [CrossRef]
- Anagnostaki, E.; Mylona, V.; Parker, S.; Lynch, E.; Grootveld, M. Systematic Review on the Role of Lasers in Endodontic Therapy: Valuable Adjunct Treatment? Dent. J. 2020, 8, 63. [Google Scholar] [CrossRef]
- Yoo, Y.-J.; Shon, W.-J.; Baek, S.-H.; Kang, M.K.; Kim, H.-C.; Lee, W. Effect of 1440-Nanometer Neodymium:Yttrium-Aluminum-Garnet Laser Irradiation on Pain and Neuropeptide Reduction: A Randomized Prospective Clinical Trial. J. Endod. 2014, 40, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Morsy, D.A.; Negm, M.; Diab, A.; Ahmed, G. Postoperative Pain and Antibacterial Effect of 980 Nm Diode Laser versus Conventional Endodontic Treatment in Necrotic Teeth with Chronic Periapical Lesions: A Randomized Control Trial. F1000Research 2018, 7, 1795. [Google Scholar] [CrossRef]
- Oliveira, C.G.; Freitas, M.F.; de Sousa, M.V.P.; Giorgi, R.; Chacur, M. Photobiomodulation Reduces Nociception and Edema in a CFA-Induced Muscle Pain Model: Effects of LLLT and LEDT. Photochem. Photobiol. Sci. 2020, 19, 1392–1401. [Google Scholar] [CrossRef]
- Khan, I.; Arany, P. Biophysical Approaches for Oral Wound Healing: Emphasis on Photobiomodulation. Adv. Wound Care 2015, 4, 724–737. [Google Scholar] [CrossRef] [Green Version]
- Lopes, L.; Herkrath, F.; Vianna, E.; Gualberto, E.; Marques, A.; Sponchiado, E. Effect of Photobiomodulation Therapy on Postoperative Pain after Endodontic Treatment: A Randomized, Controlled, Clinical Study. Clin. Oral Investig. 2019, 23, 285–292. [Google Scholar] [CrossRef]
- Doğanay Yıldız, E.; Arslan, H. Effect of Low-Level Laser Therapy on Postoperative Pain in Molars with Symptomatic Apical Periodontitis: A Randomized Placebo-Controlled Clinical Trial. J. Endod. 2018, 44, 1610–1615. [Google Scholar] [CrossRef]
- Abdelkarim-Elafifi, H.; Parada-Avendaño, I.; Arnabat-Dominguez, J. Photodynamic Therapy in Endodontics: A Helpful Tool to Combat Antibiotic Resistance? A Literature Review. Antibiotics 2021, 10, 1106. [Google Scholar] [CrossRef]
- Coelho, M.S.; Vilas-Boas, L.; Tawil, P.Z. The Effects of Photodynamic Therapy on Postoperative Pain in Teeth with Necrotic Pulps. Photodiagn. Photodyn. Ther. 2019, 27, 396–401. [Google Scholar] [CrossRef]
- Tunc, F.; Yildirim, C.; Alacam, T. Evaluation of Postoperative Pain/Discomfort after Intracanal Use of Nd:YAG and Diode Lasers in Patients with Symptomatic Irreversible Pulpitis and Asymptomatic Necrotic Pulps: A Randomized Control Trial. Clin. Oral Investig. 2021, 25, 2737–2744. [Google Scholar] [CrossRef]
- Biagi, R.; Cossellu, G.; Sarcina, M.; Pizzamiglio, I.T.; Farronato, G. Laser-Assisted Treatment of Dentinal Hypersensitivity: A Literature Review. Ann. Stomatol. 2016, 6, 75–80. [Google Scholar] [CrossRef]
- Asnaashari, M.; Moeini, M. Effectiveness of Lasers in the Treatment of Dentin Hypersensitivity. J. Lasers Med. Sci. 2013, 4, 1–7. [Google Scholar]
- Longridge, N.N.; Youngson, C.C. Dental Pain: Dentine Sensitivity, Hypersensitivity and Cracked Tooth Syndrome. Prim. Dent. J. 2019, 8, 44–51. [Google Scholar] [CrossRef]
- Trushkowsky, R.D.; Oquendo, A. Treatment of Dentin Hypersensitivity. Dent. Clin. N. Am. 2011, 55, 599–608. [Google Scholar] [CrossRef]
- Sgreccia, P.C.; Barbosa, R.E.S.; Damé-Teixeira, N.; Garcia, F.C.P. Low-Power Laser and Potassium Oxalate Gel in the Treatment of Cervical Dentin Hypersensitivity—A Randomized Clinical Trial. Clin. Oral Investig. 2020, 24, 4463–4473. [Google Scholar] [CrossRef]
- Bou Chebel, F.; Zogheib, C.M.; Baba, N.Z.; Corbani, K.A. Clinical Comparative Evaluation of Nd:YAG Laser and a New Varnish Containing Casein Phosphopeptides-Amorphous Calcium Phosphate for the Treatment of Dentin Hypersensitivity: A Prospective Study. J. Prosthodont. 2018, 27, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.C.; Vieira-Barbosa, N.M.; Grasielle de Sá Azevedo, C.; de Matos, F.R.; Douglas de Oliveira, D.W.; de Oliveira, E.S.; Ramos-Jorge, M.L.; Gonçalves, P.F.; Flecha, O.D. Oral Health-Related Quality of Life Before and After Treatment of Dentin Hypersensitivity With Cyanoacrylate and Laser. J. Periodontol. 2017, 88, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Pourshahidi, S.; Ebrahimi, H.; Mansourian, A.; Mousavi, Y.; Kharazifard, M. Comparison of Er,Cr:YSGG and Diode Laser Effects on Dentin Hypersensitivity: A Split-Mouth Randomized Clinical Trial. Clin. Oral Investig. 2019, 23, 4051–4058. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Liang, Y.; Xiang, S.; Li, H.; Dai, X.; Zhao, W. Dentinal Tubule Occlusion Using Er:YAG Laser: An I Vitro Study. J. Appl. Oral Sci. 2021, 29, e20200266. [Google Scholar] [CrossRef]
- Mahdian, M.; Behboodi, S.; Ogata, Y.; Natto, Z.S. Laser Therapy for Dentinal Hypersensitivity. Cochrane Database Syst. Rev. 2021, 7, CD009434. [Google Scholar] [CrossRef]
- Galhano, G.A.; Valandro, L.F.; de Melo, R.M.; Scotti, R.; Bottino, M.A. Evaluation of the Flexural Strength of Carbon Fiber-, Quartz Fiber-, and Glass Fiber-Based Posts. J. Endod. 2005, 31, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Lumley, P.J.; Adams, N.; Tomson, P. Root Canal Retreatment. Dent. Update 2006, 33, 518–520, 522–524, 526–528, 530. [Google Scholar] [CrossRef]
- Cho, J.; Liu, J.; Bukhari, E.A.; Zheng, F.; Kim, D.-G.; Lee, D.J. Comparison of Post Space Volume Changes Following Fiber Post Removal Using Er,Cr:YSGG Laser Versus Ultrasonic Instrument. J. Prosthodont. 2022, 31, 245–251. [Google Scholar] [CrossRef]
- Toomarian, L.; Fekrazad, R.; Tadayon, N.; Ramezani, J.; Tunér, J. Stimulatory Effect of Low-Level Laser Therapy on Root Development of Rat Molars: A Preliminary Study. Lasers Med. Sci. 2012, 27, 537–542. [Google Scholar] [CrossRef]
- Zaccara, I.M.; Jardine, A.P.; Mestieri, L.B.; Quintana, R.M.; Jesus, L.; Moreira, M.S.; Grecca, F.S.; Martins, M.D.; Kopper, P.M.P. Influence of Photobiomodulation Therapy on Root Development of Rat Molars with Open Apex and Pulp Necrosis. Braz. Oral Res. 2019, 33, e084. [Google Scholar] [CrossRef]
- Bahman, S.; Sara, G.; Somayeh, H.; Parvin, T.; Kalhori, K.A.M.; Mona, S.; Reza, F. Combined Effects of Calcium Hydroxide and Photobiomodulation Therapy on Apexogenesis of Immature Permanent Teeth in Dogs. J. Photochem. Photobiol. B 2020, 207, 111867. [Google Scholar] [CrossRef]
- Fekrazad, R.; Seraj, B.; Ghadimi, S.; Tamiz, P.; Mottahary, P.; Dehghan, M.-M. The Effect of Low-Level Laser Therapy (810 Nm) on Root Development of Immature Permanent Teeth in Dogs. Lasers Med. Sci. 2015, 30, 1251–1257. [Google Scholar] [CrossRef]
Laser Device | Wavelength | Characteristics | Application | Reference |
---|---|---|---|---|
Er:YAG laser | 2940 nm | (1) Easily absorbed into hydroxyapatite crystals (2) Water evaporation results in small degrees of heating and micro-explosions (3) Ablation and hard tissue removal | (1) Root canal treatment (2) Pulpotomy | [9,10,11,12,13] |
Er,Cr:YSGG laser | 2780 nm | (1) Similar to Er:YAG lasers (2) Almost no heat and also high cutting efficiency with water sprays | Similar to Er:YAG laser | [14] |
Nd:YAG laser | 1064 nm | (1) Energy scattering and penetration in adjacent biological tissues | (1) Root canal irrigation | [15,16] |
Nd:YAP laser | 1340 nm | (1) Easily absorbed into dark materials, metals, and water (2) Transfers energy into curved root canals | (1) Eliminates the smear layer on root canal walls | [17,18] |
CO2 laser | 10,600 nm | (1) Easily absorbed by enamel and dentin (2) Hemostasis | (1) Widely used in medicine and dentistry such as direct pulp capping | [19,20] |
Diode laser | 810–980 nm | (1) Great penetration (2) Works on the microorganisms inside dentinal tubules | (1) Eliminates the microorganisms in root canals (2) Reduces post-operative endodontic pain | [4,21,22] |
Laser Device | Application Parameters | Characteristics of Samples | Operations of Laser Applications | Reference |
---|---|---|---|---|
Er:YAG laser | 30 m J, 20 pps, water flow of 5 mL/min | Six single-rooted human teeth | Three times irradiation for 10 s | Kokuzawa et al. 2012 [12] |
Nd:YAG laser | Output power of 35 W, a wavelength of 1.06 µm | Sixty single-rooted human premolars | Fiber optic device was placed in root canals to reach the working length | Samiei et al. 2014 [27] |
Er:YAG laser | 0.6 W, 15 Hz, 40 mJ | 3D-printed isthmus models with artificial biofilms | The fiber tip was positioned 2 mm above each root canal entrance, and activation was performed 2 × 30 s | Robberecht et al. 2023 [31] |
Er:YAG laser | 0.3 W, 15 Hz, 20 mJ per pulse | Thirty mandibular first and second molars | Fiber tips were put into the access cavity for 3 × 30 s | Yang et al. 2020 [36] |
Diode laser (970 mm) | The maximum output power of 14 W | Sixty-three monoarticular teeth | Four cycles of 10 s each of irrigation solution activated by a laser, with a 5 s break between each cycle | Cîmpean et al. 2022 [38] |
Er:YAG laser | 2.06 J/cm2, 15 Hz, 20 mJ | Eighty-four S-shaped endo training blocks | The irrigant was activated for 30 s | Shi et al. 2022 [39] |
Er:YAG laser | 20 Hz, 50 μs, 20 mJ | Transparent resin blocks containing two standardized root canals | Tips put at the canal entrance for 3 × 20 s | Swimberghe et al. 2019 [41] |
Nd:YAP laser | 280 mJ, 5 Hz, and 1.4 W | Thirty-eight mature single root canal premolars | Tips were placed 2 mm from the working length and activated at 0–4 s, 13–17 s, and 26–30 s | Liu et al. 2022 [42] |
Er:YAG laser | 0.3 W, 15 Hz, and 20 mJ | Sixty extracted maxillary first molar teeth | Tips were placed into the pulp chamber and activated for 20 s | Arslan et al. 2018 [44] |
Nd:YAG laser | 1 W, 20 Hz and 50 mJ | Extracted human mandibular premolar teeth | Fiber tip was placed into the apical third of the root canal and activated for 10 s | Yıldız et al. 2020 [45] |
Er:YAG laser; Er,Cr:YSGG laser; diode laser (980 mm) | Er:YAG laser (1.5 W, 10 Hz, 150 mJ, 100 μs) ; Er,Cr:YSGG laser (1.5 W, 10 Hz, 150 mJ, 140 μs); diode laser (1.5 W, continuous) | Thirty-two mandibular bovine incisors | Er:YAG laser (60 s, non-contact); Er,Cr:YSGG laser (60 s, non-contact); diode laser (15 s, contact mode) | Gomes et al. 2018 [48] |
Er,Cr:YSGG laser | 20 Hz frequency and 150 μs pulse duration | One-hundred-and-five fiber posts | Lasers were used in circumferential or longitudinal motion directions | Rezaei-Soufi et al. 2019 [49] |
Er:YAG laser; Nd:YAG laser | Er:YAG laser (1.5 W, 10 Hz, 150 mJ); Nd:YAG laser (1 W, 10 Hz, 100 mJ) | Sixty-six quartz fiber posts | Nd:YAG laser (300 mm diameter laser optical fiber for 20 s); Er:YAG laser (pulse duration of 700 ms for 20 s) | Akin et al. 2014 [50] |
Er:YAG laser | 0.3 W, 15 Hz, 20 mJ, 50-µs pulse | Thirty-six extracted single-rooted teeth | Tip was placed in the access cavity for 40 s | Yang et al. 2021 [52] |
Nd:YAG laser | 900 mJ/pulse, pulse width 0.3 ms EC pulse, pulse frequency 5 pps | Forty single-rooted human teeth | Keeping the fiber tip approximately 0.5 mm away from the surface of the root canal obturation material | Anjo et al. 2004 [53] |
Nd:YAG laser | 1.0 W, 15 pps; 2.0 W, 20 pps; 3.0 W, 20 pps | Thirty-six extracted human single root canal incisors | 3 s irradiation time, 1 s interval; 2 s irradiation time, 2 s interval; 2 s irradiation time, 2 s interval | Yu et al. 2000 [54] |
Vital Pulp Therapy | Laser Device | Application Parameters | Characteristics of Samples | Operation of Laser Applications | Reference |
---|---|---|---|---|---|
Pulp capping | Diode laser | 1.5 W, continuous wave (hemostasis); 1 W, continuous wave (decontamination) | Ten patients underwent conservative treatment for deep caries in permanent teeth | 2 s per 1 mm, vertical and horizontal movement (hemostasis); 2 mm per s, circular movement (decontamination) | Yazdanfar et al. 2014 [63] |
Diode laser | 1.5 W, 90° tip angle, 2 s per area | Twenty anterior and posterior teeth of fourteen patients | Vertical and horizontal scanning movement on the exposure site | Yazdanfar et al. 2020 [64] | |
Er,Cr:YSGG laser | 0.5 W, 20 Hz, 140 ms pulse duration | Sixty teeth of sixty patients | Non-contact mode for 10 s | Yang et al. 2020 [65] | |
CO2 Laser | 0.003 J/pulse, 0.5 W | Twenty-eight third molar teeth of seventeen volunteers | Repeat mode for 15 s | Suzuki et al. 2019 [20] | |
Pulpotomy | Er:YAG laser | 20 mJ/pulse, 0.3 W, 15 Hz | Three to six-year-old children with asymptomatic deep caries | 1.3 mm laser fiber tip was put at a 1 mm distance from the pulp tissue at the root canal orifice | Wang et al. 2022 [13] |
Diode laser | Low-level laser therapy (660 nm, 200 mW); high-power diode laser (810 nm, 1 W) | Sixty-three primary mandibular second molars in children aged four to seven years old | Low-level laser therapy (laser probe in contact with occlusal surface and at a distance of 4 mm from the exposure site); high-power diode laser (fiber in contact with the pulp tissue) | Ebrahimi et al. 2022 [69] | |
Er,Cr:YSGG laser | 0.5 W, 20 Hz | Ninety caries-exposed permanent immature molar teeth in patients aged between six and fifteen years old | Tips on the hard tissue in non-contact mode for 10 s | Tozar et al. 2020 [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Li, Z.; Lyu, P.; Zhou, X.; Fan, Y. Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering 2023, 10, 296. https://doi.org/10.3390/bioengineering10030296
Huang Q, Li Z, Lyu P, Zhou X, Fan Y. Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering. 2023; 10(3):296. https://doi.org/10.3390/bioengineering10030296
Chicago/Turabian StyleHuang, Qin, Zucen Li, Ping Lyu, Xuedong Zhou, and Yi Fan. 2023. "Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review" Bioengineering 10, no. 3: 296. https://doi.org/10.3390/bioengineering10030296
APA StyleHuang, Q., Li, Z., Lyu, P., Zhou, X., & Fan, Y. (2023). Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering, 10(3), 296. https://doi.org/10.3390/bioengineering10030296