Joint Cardiac T1 Mapping and Cardiac Cine Using Manifold Modeling
Abstract
:1. Introduction
2. Background
2.1. Dynamic MRI Recovery
2.2. Single-Step Cardiac Cine MRI Using Generative SToRM
3. Methods
3.1. Acquisition Scheme
3.2. Pre-Estimation of the Latent Variables Using VAE
3.3. Image Reconstruction
3.4. Mapping
3.4.1. Generative Approach
3.4.2. Retrospective Binning
4. Experiments
4.1. Implementation Details
4.1.1. Dense Auto-Encoder
4.1.2. CNN Image Generator
4.2. Phantom Used for the Validation of Maps
4.3. Acquisition Scheme and Pre-Processing for In Vivo Data
5. Results
5.1. Estimation of the Latent Vectors
5.2. Retrospective Binning
5.3. Generation of Synthetic Images
5.3.1. Synthetic Breath-Hold Cine Data with Different Contrasts
5.3.2. Images with Different Inversion Times
5.4. Accuracy of the Maps
5.5. Estimation from Free-Breathing and Ungated MRI
5.6. Cardiac Function Analysis
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieri, O.; Scheffler, K. Fundamentals of balanced steady state free precession MRI. J. Magn. Reson. Imaging 2013, 38, 2–11. [Google Scholar] [CrossRef]
- Epstein, F.H.; Arai, A.E. Optimization of fast cardiac imaging using an echo-train readout. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2000, 11, 75–80. [Google Scholar] [CrossRef]
- Haaf, P.; Garg, P.; Messroghli, D.R.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: A comprehensive review. J. Cardiovasc. Magn. Reson. 2017, 18, 89. [Google Scholar] [CrossRef] [Green Version]
- Sado, D.M.; Flett, A.S.; Banypersad, S.M.; White, S.K.; Maestrini, V.; Quarta, G.; Lachmann, R.H.; Murphy, E.; Mehta, A.; Hughes, D.A.; et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012, 98, 1436–1441. [Google Scholar] [CrossRef]
- Mongeon, F.P.; Jerosch-Herold, M.; Coelho-Filho, O.R.; Blankstein, R.; Falk, R.H.; Kwong, R.Y. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc. Imaging 2012, 5, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Messroghli, D.R.; Radjenovic, A.; Kozerke, S.; Higgins, D.M.; Sivananthan, M.U.; Ridgway, J.P. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2004, 52, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.; Flewitt, J.A.; Green, J.D.; Pagano, J.J.; Friedrich, M.G.; Thompson, R.B. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn. Reson. Med. 2014, 71, 2082–2095. [Google Scholar] [CrossRef] [PubMed]
- Weingärtner, S.; Akçakaya, M.; Basha, T.; Kissinger, K.V.; Goddu, B.; Berg, S.; Manning, W.J.; Nezafat, R. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn. Reson. Med. 2014, 71, 1024–1034. [Google Scholar] [CrossRef]
- Vincenti, G.; Monney, P.; Chaptinel, J.; Rutz, T.; Coppo, S.; Zenge, M.O.; Schmidt, M.; Nadar, M.S.; Piccini, D.; Chèvre, P.; et al. Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc. Imaging 2014, 7, 882–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Haldar, J.P.; Brinegar, C.; Liang, Z.P. Low rank matrix recovery for real-time cardiac MRI. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, The Netherlands, 14–17 April 2010; pp. 996–999. [Google Scholar]
- Doneva, M.; Börnert, P.; Eggers, H.; Stehning, C.; Sénégas, J.; Mertins, A. Compressed sensing reconstruction for magnetic resonance parameter mapping. Magn. Reson. Med. 2010, 64, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.; Weingärtner, S.; Akçakaya, M. Multi-scale locally low-rank noise reduction for high-resolution dynamic quantitative cardiac MRI. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 1473–1476. [Google Scholar]
- Hamilton, J.I.; Jiang, Y.; Chen, Y.; Ma, D.; Lo, W.C.; Griswold, M.; Seiberlich, N. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn. Reson. Med. 2017, 77, 1446–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, J.I.; Jiang, Y.; Ma, D.; Lo, W.C.; Gulani, V.; Griswold, M.; Seiberlich, N. Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn. Reson. Imaging 2018, 53, 40–51. [Google Scholar] [CrossRef]
- Jaubert, O.; Cruz, G.; Bustin, A.; Schneider, T.; Koken, P.; Doneva, M.; Rueckert, D.; Botnar, R.M.; Prieto, C. Free-running cardiac magnetic resonance fingerprinting: Joint T1/ T2 map and Cine imaging. Magn. Reson. Imaging 2020, 68, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, A.G.; Shaw, J.L.; Nguyen, C.; Yang, Q.; Xie, Y.; Wang, N.; Li, D. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat. Biomed. Eng. 2018, 2, 215–226. [Google Scholar] [CrossRef]
- Zhou, R.; Weller, D.S.; Yang, Y.; Wang, J.; Jeelani, H.; Mugler, J.P., III; Salerno, M. Dual-excitation flip-angle simultaneous cine and T 1 mapping using spiral acquisition with respiratory and cardiac self-gating. Magn. Reson. Med. 2021, 86, 82–96. [Google Scholar] [CrossRef]
- Zou, Q.; Ahmed, A.H.; Nagpal, P.; Kruger, S.; Jacob, M. Dynamic imaging using a deep generative SToRM (Gen-SToRM) model. IEEE Trans. Med. Imaging 2021, 40, 3102–3112. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Ahmed, A.H.; Nagpal, P.; Kruger, S.; Jacob, M. Deep generative SToRM model for dynamic imaging. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 114–117. [Google Scholar]
- Hu, S.; Yuan, J.; Wang, S. Cross-modality synthesis from MRI to PET using adversarial U-net with different normalization. In Proceedings of the 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), Shenzhen, China, 22–24 November 2019; pp. 1–5. [Google Scholar]
- Hu, S.; Lei, B.; Wang, S.; Wang, Y.; Feng, Z.; Shen, Y. Bidirectional mapping generative adversarial networks for brain MR to PET synthesis. IEEE Trans. Med. Imaging 2021, 41, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Torres, L.A.; Fain, S.B.; Higano, N.S.; Bates, A.J.; Jacob, M. Dynamic imaging using motion-compensated smoothness regularization on manifolds (MoCo-SToRM). Phys. Med. Biol. 2022, 67, 144001. [Google Scholar] [CrossRef]
- Piechnik, S.K.; Ferreira, V.M.; Dall’Armellina, E.; Cochlin, L.E.; Greiser, A.; Neubauer, S.; Robson, M.D. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J. Cardiovasc. Magn. Reson. 2010, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. beta-vae: Learning basic visual concepts with a constrained variational framework. In Proceedings of the International Conference on Learning Representations 2017, Toulon, France, 24–26 April 2017. [Google Scholar]
- Feng, L.; Axel, L.; Chandarana, H.; Block, K.T.; Sodickson, D.K.; Otazo, R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 2016, 75, 775–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Mendes, J.; Wilson, B.; Ross, A.; Ranjan, R.; DiBella, E.; Adluru, G. Whole-heart, ungated, free-breathing, cardiac-phase-resolved myocardial perfusion MRI by using continuous radial interleaved simultaneous multi-slice acquisitions at sPoiled steady-state (CRIMP). Magn. Reson. Med. 2020, 84, 3071–3087. [Google Scholar] [CrossRef]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9446–9454. [Google Scholar]
- Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J.L.; Duerk, J.L.; Griswold, M.A. Magnetic resonance fingerprinting. Nature 2013, 495, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uecker, M.; Lai, P.; Murphy, M.J.; Virtue, P.; Elad, M.; Pauly, J.M.; Vasanawala, S.S.; Lustig, M. ESPIRiT—An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn. Reson. Med. 2014, 71, 990–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasuya, E. On the Use of r and r Squared in Correlation and Regression; Technical report; Wiley Online Library: Hoboken, NJ, USA, 2019. [Google Scholar]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [PubMed] [Green Version]
- von Knobelsdorff-Brenkenhoff, F.; Prothmann, M.; Dieringer, M.A.; Wassmuth, R.; Greiser, A.; Schwenke, C.; Niendorf, T.; Schulz-Menger, J. Myocardial T1 and T2 mapping at 3 T: Reference values, influencing factors and implications. J. Cardiovasc. Magn. Reson. 2013, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Petersen, E.T.; Ghariq, E.; De Vis, J.; Webb, A.; Teeuwisse, W.M.; Hendrikse, J.; Van Osch, M. In vivo blood T1 measurements at 1.5 T, 3 T, and 7 T. Magn. Reson. Med. 2013, 70, 1082–1086. [Google Scholar] [CrossRef]
Gender | Age | Health Condition | |
---|---|---|---|
Subject 1 | M | 21 | Low LVEF |
Subject 2 | F | 24 | Low heart rate |
Subject 3 | F | 27 | Healthy |
Subject 4 | M | 51 | Healthy |
Subject 5 | F | 49 | Healthy |
Subject 6 | F | 29 | Healthy |
Setting (I) | Setting (II) | Setting (III) | MOLLI | |
---|---|---|---|---|
0.999 | 0.997 | 0.998 | 0.986 | |
ICC(A,1) | 0.996 | 0.994 | 0.998 | 0.971 |
Subject No. | Methods | Myocardium | Left Blood Pool | Right Blood Pool |
---|---|---|---|---|
Subject 1 | MOLLI | 1012.8 | 1369.6 | 1427.2 |
Proposed | 1052.3 | 1643.2 | 1610.8 | |
Subject 2 | MOLLI | 1103.9 | 1547.3 | 1455.0 |
Proposed | 1009.9 | 1638.6 | 1684.7 | |
Subject 3 | MOLLI | 1069.2 | 1498.2 | 1509.3 |
Proposed | 1063.3 | 1717.3 | 1714.3 | |
Subject 4 | MOLLI | 1080.1 | 1447.4 | 1443.6 |
Proposed | 1104.1 | 1718.5 | 1679.0 | |
Subject 5 | MOLLI | 1049.7 | 1423.8 | 1447.6 |
Proposed | 1089.2 | 1617.8 | 1618.9 | |
Subject 6 | MOLLI | 1048.8 | 1573.6 | 1535.3 |
Proposed | 1082.4 | 1770.7 | 1789.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Q.; Priya, S.; Nagpal, P.; Jacob, M. Joint Cardiac T1 Mapping and Cardiac Cine Using Manifold Modeling. Bioengineering 2023, 10, 345. https://doi.org/10.3390/bioengineering10030345
Zou Q, Priya S, Nagpal P, Jacob M. Joint Cardiac T1 Mapping and Cardiac Cine Using Manifold Modeling. Bioengineering. 2023; 10(3):345. https://doi.org/10.3390/bioengineering10030345
Chicago/Turabian StyleZou, Qing, Sarv Priya, Prashant Nagpal, and Mathews Jacob. 2023. "Joint Cardiac T1 Mapping and Cardiac Cine Using Manifold Modeling" Bioengineering 10, no. 3: 345. https://doi.org/10.3390/bioengineering10030345
APA StyleZou, Q., Priya, S., Nagpal, P., & Jacob, M. (2023). Joint Cardiac T1 Mapping and Cardiac Cine Using Manifold Modeling. Bioengineering, 10(3), 345. https://doi.org/10.3390/bioengineering10030345