Rapid Identification of Chinese Hamster Ovary Cell Apoptosis and Its Potential Role in Process Robustness Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Fed-Batch Process
2.2. Cell Density, Metabolite and Amino Acid Analyses
2.3. Antibody Titer Analysis
2.4. Physicochemical Analysis
2.5. Apoptosis Analysis
2.6. Statistical Analysis
3. Results
3.1. Apoptosis of CHO Cells Induced by Glucose Withdrawal
3.2. Effect of Apoptosis on CHO Cells
3.3. Process Robustness and Glucose Withdrawal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, S.; Handrick, R.; Otte, K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol. Adv. 2015, 33, 1878–1896. [Google Scholar] [CrossRef] [PubMed]
- Takagi, Y.; Kikuchi, T.; Wada, R.; Omasa, T. The enhancement of antibody concentration and achievement of high cell density CHO cell cultivation by adding nucleoside. Cytotechnology 2017, 69, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 2018, 36, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Grilo, A.L.; Mantalaris, A. The Increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 2018, 37, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Kyriakopoulos, S.; Ang, K.S.; Lakshmanan, M.; Huang, Z.; Yoon, S.; Gunawan, R.; Lee, D.Y. Kinetic modeling of mammalian cell culture bioprocessing: The quest to advance biomanufacturing. Biotechnol. J. 2018, 13, 1700229. [Google Scholar] [CrossRef]
- Xu, S.; Gavin, J.; Jiang, R.; Chen, H. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnol. Prog. 2017, 33, 867–878. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, S.; Wu, J.; Yao, J. Effect of sialic acid on mammalian cell culture and protein expression: A potential productivity enhancer for biopharmaceutical cell culture processes. Processes 2020, 8, 1449. [Google Scholar] [CrossRef]
- Zhang, A.; Tsang, V.L.; Moore, B.; Shen, V.; Huang, Y.M.; Kshirsagar, R.; Ryll, T. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Biotechnol. Bioeng. 2015, 112, 2495–2504. [Google Scholar] [CrossRef]
- Konakovsky, V.; Clemens, C.; Müller, M.M.; Bechmann, J.; Berger, M.; Schlatter, S.; Herwig, C. Metabolic control in mammalian fed-batch cell cultures for reduced lactic acid accumulation and improved process robustness. Bioengineering 2016, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Marasco, D.M.; Gao, J.; Griffiths, K.; Froggatt, C.; Wang, T.; Wei, G. Development and characterization of a cell culture manufacturing process using quality by design (QbD) principles. Adv. Biochem. Eng. Biotechnol. 2013, 139, 93–121. [Google Scholar]
- Nie, L.; Gao, D.; Jiang, H.; Gou, J.; Li, L.; Hu, F.; Guo, T.; Wang, H.; Qu, H. Development and qualification of a scale-down mammalian cell culture model and application in design space development by definitive screening design. AAPS PharmSciTech 2019, 20, 246. [Google Scholar] [CrossRef]
- Gagnon, M.; Hiller, G.; Luan, Y.T.; Kittredge, A.; DeFelice, J.; Drapeau, D. High-end pH controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol. Bioeng. 2011, 108, 1328–1337. [Google Scholar] [CrossRef]
- Carin, M.; Lindskog, E.; Ab, G.E.H.B.; Walsh, K. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor TM. Part I. Effect of the cell density on the process. Biotechnol. Prog. 2013, 29, 754–767. [Google Scholar]
- Carin, M.; Samani, P.K.; Lindskog, E.; Eric, F.; Walsh, K. Very high density of Chinese Hamster Ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE bioreactor TM—Part II: Applications for antibody production and cryopreservation. Biotechnol. Prog. 2013, 29, 768–777. [Google Scholar]
- Xu, S.; Hoshan, L.; Chen, H. Improving lactate metabolism in an intensified CHO culture process: Productivity and product quality considerations. Bioprocess Biosyst. Eng. 2016, 39, 1689–1702. [Google Scholar] [CrossRef] [PubMed]
- Buchsteiner, M.; Quek, L.E.; Gray, P.; Nielsen, L.K. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect. Biotechnol. Bioeng. 2018, 115, 2315–2327. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wong, C.L.; Vijayasankaran, N.; Hudson, T.; Amanullah, A. Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance. Biotechnol. Bioeng. 2012, 109, 1173–1186. [Google Scholar] [CrossRef]
- Wilkens, C.A.; Altamirano, C.; Gerdtzen, Z.P. Comparative metabolic analysis of lactate for CHO cells in glucose and galactose. Biotechnol. Bioprocess Eng. 2011, 16, 714. [Google Scholar] [CrossRef]
- Dean, J.; Reddy, P. Metabolic analysis of antibody producing CHO cells in fed-batch production. Biotechnol. Bioeng. 2013, 110, 1735–1747. [Google Scholar] [CrossRef]
- Mulukutla, B.C.; Yongky, A.; Grimm, S.; Daoutidis, P.; Hu, W.S. Multiplicity of Steady States in Glycolysis and shift of metabolic state in cultured mammalian cells. PLoS ONE 2015, 10, e0121561. [Google Scholar] [CrossRef]
- Templeton, N.; Dean, J.; Reddy, P.; Young, J.D. Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol. Bioeng. 2013, 110, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Jimenez, D.V.I.; Müller, C.; Lund, A.M.; Sen, J.W.; Rasmussen, S.K.; Kontoravdi, C.; Baycin-Hizal, D.; Betenbaugh, M.J.; Weilguny, D.; et al. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture. Biotechnol. Bioeng. 2015, 112, 2172–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Ahmed, W.; Mohsin, A.; Guo, M. Continuous feeding reduces the generation of metabolic byproducts and increases antibodies expression in Chinese Hamster Ovary-K1 Cells. Life 2021, 11, 945. [Google Scholar] [CrossRef]
- Ahn, W.S.; Antoniewicz, M.R. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab. Eng. 2011, 13, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Henry, M.; Clynes, M.; Meleady, P. The expression pattern of the phosphoproteome is significantly changed during the growth phases of recombinant CHO cell culture. Biotechnol. J. Healthc. Nutr. Technol. 2018, 13, e1700221. [Google Scholar] [CrossRef] [PubMed]
- Makimoto, Y.; Takahashi, E.; Takasugi, H. Relationship between cell cycle phases and monoclonal antibody production in microcarrier perfusion culture of recombinant CHO cells. In Animal Cell Technology: Basic & Applied Aspects; Springer: Dordrecht, The Netherlands, 2002; Volume 12. [Google Scholar]
- Wurm, F. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.K.; Cho, S.M.; Yoon, S.K. Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Appl. Microbiol. Biotechnol. 2010, 88, 869–876. [Google Scholar] [CrossRef]
- Paoli, T.; Faulkner, J.; O”Kennedy, R.; Keshavarz-Moore, E. A study of D-lactate and extracellular methylglyoxal production in lactate re-utilizing CHO cultures. Biotechnol. Bioeng. 2010, 107, 182–189. [Google Scholar] [CrossRef]
- Grilo, A.L.; Mantalaris, A. Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol. Adv. 2019, 37, 459–475. [Google Scholar] [CrossRef]
- Goswami, J.; Sinskey, A.J.; Steller, H.; Stephanopoulos, G.N.; Wang, D.I.C. Apoptosis in batch cultures of Chinese Hamster Ovary cells. Biotechnol. Bioeng. 1999, 62, 632–640. [Google Scholar] [CrossRef]
- Barros, F.M.; Carneiro, F.; Machado, J.C.; Melo, S.A. Exosomes and immune response in cancer: Friends or foes? Front. Immunol. 2018, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Kakarla, R.; Hur, J.; Kim, Y.J.; Kim, J.; Chwae, Y.J. Apoptotic cell-derived exosomes: Messages from dying cells. Exp. Mol. Med. 2020, 52, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anna, M.J.; Karolina, S.; Teresa, j.; Michael, H.B.S.; Tadeusz, J. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim. Et Biophys. Acta (BBA)—Biomembr. 2016, 1858, 1139–1151. [Google Scholar]
- Tang, H.; Zhang, X.; Zhang, W.; Fan, L.; Wang, H.; Tan, W.S.; Zhao, L. Insight into the roles of tyrosine on rCHO cell performance in fed-batch cultures. Appl. Microbiol. Biotechnol. 2019, 103, 6483–6494. [Google Scholar] [CrossRef]
- Chaudhary, G.R.; Yadav, P.K.; Yadav, A.K.; Tiwari, M.; Gupta, A.; Sharma, A.; Sahu, K.; Pandey, A.N.; Pandey, A.K.; Chaube, S.K. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J. Cell. Physiol. 2019, 234, 8019–8027. [Google Scholar] [CrossRef]
- Wei, Y.Y.C.; Naderi, S.; Meshram, M.; Budman, H.; Scharer, J.M.; Ingalls, B.P.; McConkey, B.J. Proteomics analysis of Chinese hamster ovary cells undergoing apoptosis during prolonged cultivation. Cytotechnology 2011, 63, 663–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigozzi, D.; Tombal, B.; Ducret, T.; Vacher, P.; Gailly, P. Role of store-dependent influx of Ca2+ and efflux of K+ in apoptosis of CHO cells Cell Calcium. Cell Calcium 2004, 36, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Pohlscheidt, M.; Jacobs, M.; Wolf, S.; Thiele, J.; Jockwer, A.; Gabelsberger, J.; Jenzsch, M.; Tebbe, H.; Burg, J. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol. Prog. 2013, 29, 222–229. [Google Scholar] [CrossRef]
- Sauer, P.W.; Burky, J.E.; Wesson, M.C.; Sternard, H.D.; Qu, L. A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol. Bioeng. 2015, 67, 585–597. [Google Scholar] [CrossRef]
- McHugh, K.P.; Xu, J.; Aron, K.L.; Borys, M.C.; Li, Z.J. Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnol. Prog. 2020, 36, e2959. [Google Scholar] [CrossRef]
- Trummer, E.; Fauland, K.; Seidinger, S.; Schriebl, K.; Lattenmayer, C.; Kunert, R.; Vorauer-Uhl, K.; Weik, R.; Borth, N.; Katinger, H.; et al. Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol. Bioeng. 2006, 94, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xue, Z.; Yasin, A.; He, Y.; Chai, Y.; Li, J.; Zhang, K. Colorectal cancer and adjacent normal mucosa differ in apoptotic and inflammatory protein expression. Eng. Regen. 2022, 2021, 279–287. [Google Scholar] [CrossRef]
- Fomina, Y.D.; Gosink, J.J.; Mccoy, R.; Follstad, B.; Morris, A.; Russell, C.B.; McGrew, J.T. Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines. Biotechnol. Bioeng. 2014, 111, 965–979. [Google Scholar] [CrossRef] [PubMed]
Exponential Phase | Stationary Phase | |||
---|---|---|---|---|
Glucose Withdrawal | Glucose Sufficient | Glucose Withdrawal | Glucose Sufficient | |
Aspartate | −3.1 ± 0.9 | −1.8 | 0.1 ± 0.5 | −1.5 |
Glutamate | −5.5 ± 1.2 | −3.3 | 0.2 ± 0.3 | −2.8 |
Serine | −3.0 ± 0.9 | −3.4 | −0.1 ± 0.2 | −2.9 |
Asparagine | −4.3 ± 0.3 | −2.1 | −2.0 ± 0.7 | −1.6 |
Glutamine | −0.3 ± 1.8 | 0.1 | −0.7 ± 0.4 | 0.0 |
Histidine | −0.7+0.2 | −0.5 | 0.3 ± 0.2 | −0.4 |
Glycine | −0.9 ± 0.5 | 1.3 | 4.7 ± 0.5 | 0.7 |
Threonine | −3.0 ± 1.3 | −1.9 | 1.4 ± 0.7 | −1.7 |
Arginine | −0.9 ± 0.8 | −0.9 | 0.5 ± 0.4 | −0.8 |
Alanine | −5.4 ± 2.1 | −4.9 | −2.0 ± 0.6 | −0.7 |
Tyrosine | −1.3 ± 1.1 | −1.1 | 0.7 ± 0.5 | −1.0 |
Cysteine | −0.9 ± 0.2 | −1.0 | 1.0 ± 0.7 | −0.7 |
Valine | −3.1 ± 0.7 | −3.1 | 0.8 ± 0.5 | −2.3 |
Methionine | 0.1 ± 1.5 | −0.5 | 1.2 ± 0.7 | −0.4 |
Tryptophan | −0.7 ± 0.4 | −0.4 | 0.2 ± 0.4 | −0.4 |
Phenylalanine | −1.4 ± 0.5 | −1.0 | 0.6 ± 0.5 | −0.8 |
Isoleucine | −2.9 ± 0.7 | −1.4 | 0.6 ± 0.4 | −1.1 |
Leucine | −4.5 ± 1.0 | −2.5 | 0.7 ± 0.6 | −2.0 |
Lysine | −1.5 ± 0.3 | −1.8 | 0.5 ± 0.4 | −1.5 |
SEC Purity (%) | CE-NR Purity (%) | Charge Heterogeneity | N-Glycan Profile | ||||||
---|---|---|---|---|---|---|---|---|---|
Acidic (%) | Main (%) | Basic (%) | G0 (%) | G0F (%) | G1F (%) | G2F (%) | |||
Control | 99.21 ± 0.23 | 96.14 ± 0.95 | 20.37 ± 0.53 | 74.97 ± 0.61 | 4.66 ± 0.26 | 3.87 ± 0.37 | 85.11 ± 0.89 | 7.02 ± 0.60 | 0.44 ± 0.07 |
Apotosis | 99.25 ± 0.17 | 95.71 ± 0.84 | 19.08 ± 0.29 | 75.70 ± 0.34 | 5.13 ± 0.07 | 3.99 ± 0.41 | 86.05 ± 0.84 | 6.47 ± 1.42 | 0.35 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Li, Q.; Jiang, J.; Huo, C.; Chen, H.; Guo, M. Rapid Identification of Chinese Hamster Ovary Cell Apoptosis and Its Potential Role in Process Robustness Assessment. Bioengineering 2023, 10, 357. https://doi.org/10.3390/bioengineering10030357
Xiao S, Li Q, Jiang J, Huo C, Chen H, Guo M. Rapid Identification of Chinese Hamster Ovary Cell Apoptosis and Its Potential Role in Process Robustness Assessment. Bioengineering. 2023; 10(3):357. https://doi.org/10.3390/bioengineering10030357
Chicago/Turabian StyleXiao, Shang, Qiang Li, Jinlong Jiang, Chengxiao Huo, Hao Chen, and Meijin Guo. 2023. "Rapid Identification of Chinese Hamster Ovary Cell Apoptosis and Its Potential Role in Process Robustness Assessment" Bioengineering 10, no. 3: 357. https://doi.org/10.3390/bioengineering10030357
APA StyleXiao, S., Li, Q., Jiang, J., Huo, C., Chen, H., & Guo, M. (2023). Rapid Identification of Chinese Hamster Ovary Cell Apoptosis and Its Potential Role in Process Robustness Assessment. Bioengineering, 10(3), 357. https://doi.org/10.3390/bioengineering10030357