Effects of Alterations in Resting-State Neural Networks on the Severity of Neuropathic Pain after Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Assessments
2.3. rs-fMRI Data Acquisition
2.4. rs-fMRI Data Preprocessing
2.5. Graph Theory and fALFF Analyses
2.5.1. Graph Theory Analysis
2.5.2. fALFF Analysis
2.6. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Graph Theory Analysis According to the Severity of NP Following SCI
3.3. fALFF Analysis According to the Severity of NP Following SCI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddall, P.J.; Taylor, D.A.; McClelland, J.M.; Rutkowski, S.B.; Cousins, M.J. Pain Report and the Relationship of Pain to Physical Factors in the First 6 Months Following Spinal Cord Injury. Pain 1999, 81, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic Pain: An Updated Grading System for Research and Clinical Practice. Pain 2016, 157, 1599–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.P.; Chodroff, M.J.; Dworkin, R.H. The Impact of Neuropathic Pain on Health-Related Quality of Life: Review and Implications. Neurology 2007, 68, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A.; Cardenas, D.D.; Warms, C.A.; McClellan, C.B. Chronic Pain Associated with Spinal Cord Injuries: A Community Survey. Arch. Phys. Med. Rehabil. 2001, 82, 501–508. [Google Scholar] [CrossRef]
- Siddall, P.J.; McClelland, J.M.; Rutkowski, S.B.; Cousins, M.J. A Longitudinal Study of the Prevalence and Characteristics of Pain in the First 5 Years Following Spinal Cord Injury. Pain 2003, 103, 249–257. [Google Scholar] [CrossRef]
- Gustin, S.M.; Wrigley, P.J.; Siddall, P.J.; Henderson, L.A. Brain Anatomy Changes Associated with Persistent Neuropathic Pain Following Spinal Cord Injury. Cereb. Cortex 2010, 20, 1409–1419. [Google Scholar] [CrossRef] [Green Version]
- Jutzeler, C.R.; Freund, P.; Huber, E.; Curt, A.; Kramer, J.L.K. Neuropathic Pain and Functional Reorganization in the Primary Sensorimotor Cortex After Spinal Cord Injury. J. Pain 2015, 16, 1256–1267. [Google Scholar] [CrossRef] [Green Version]
- Seminowicz, D.A.; Jiang, L.; Ji, Y.; Xu, S.; Gullapalli, R.P.; Masri, R. Thalamocortical Asynchrony in Conditions of Spinal Cord Injury Pain in Rats. J. Neurosci. 2012, 32, 15843–15848. [Google Scholar] [CrossRef]
- Park, E.; Cha, H.; Kim, E.; Min, Y.-S.; Kim, A.R.; Lee, H.J.; Jung, T.-D.; Chang, Y. Alterations in Power Spectral Density in Motor- and Pain-Related Networks on Neuropathic Pain after Spinal Cord Injury. NeuroImage: Clin. 2020, 28, 102342. [Google Scholar] [CrossRef]
- Fransson, P. Spontaneous Low-Frequency BOLD Signal Fluctuations: An FMRI Investigation of the Resting-State Default Mode of Brain Function Hypothesis. Hum. Brain Mapp. 2005, 26, 15–29. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems. Nat Rev Neurosci 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Van Den Heuvel, M.P.; Hulshoff Pol, H.E. Exploring the Brain Network: A Review on Resting-State FMRI Functional Connectivity. Eur. Neuropsychopharmacol. 2010, 20, 519–534. [Google Scholar] [CrossRef]
- Lenoir, D.; Cagnie, B.; Verhelst, H.; De Pauw, R. Graph Measure Based Connectivity in Chronic Pain Patients: A Systematic Review. Pain Physician 2021, 24, E1037–E1058. [Google Scholar]
- Duff, E.P.; Johnston, L.A.; Xiong, J.; Fox, P.T.; Mareels, I.; Egan, G.F. The Power of Spectral Density Analysis for Mapping Endogenous BOLD Signal Fluctuations. Hum. Brain Mapp. 2008, 29, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X.-N.; Di Martino, A.; Kelly, C.; Shehzad, Z.E.; Gee, D.G.; Klein, D.F.; Castellanos, F.X.; Biswal, B.B.; Milham, M.P. The Oscillating Brain: Complex and Reliable. NeuroImage 2010, 49, 1432–1445. [Google Scholar] [CrossRef] [Green Version]
- Aiello, M.; Salvatore, E.; Cachia, A.; Pappatà, S.; Cavaliere, C.; Prinster, A.; Nicolai, E.; Salvatore, M.; Baron, J.-C.; Quarantelli, M. Relationship between Simultaneously Acquired Resting-State Regional Cerebral Glucose Metabolism and Functional MRI: A PET/MR Hybrid Scanner Study. NeuroImage 2015, 113, 111–121. [Google Scholar] [CrossRef]
- Kirshblum, S.C.; Waring, W.; Biering-Sorensen, F.; Burns, S.P.; Johansen, M.; Schmidt-Read, M.; Donovan, W.; Graves, D.E.; Jha, A.; Jones, L.; et al. Reference for the 2011 Revision of the International Standards for Neurological Classification of Spinal Cord Injury. J. Spinal Cord Med. 2011, 34, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Maynard, F.M.; Bracken, M.B.; Creasey, G.; Jr, J.F.D.; Donovan, W.H.; Ducker, T.B.; Garber, S.L.; Marino, R.J.; Stover, S.L.; Tator, C.H.; et al. International Standards for Neurological and Functional Classification of Spinal Cord Injury. Spinal Cord 1997, 35, 266–274. [Google Scholar] [CrossRef]
- Siddall, P.J.; Taylor, D.A.; Cousins, M.J. Classification of Pain Following Spinal Cord Injury. Spinal Cord 1997, 35, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Bryce, T.N.; Biering-Sørensen, F.; Finnerup, N.B.; Cardenas, D.D.; Defrin, R.; Lundeberg, T.; Norrbrink, C.; Richards, J.S.; Siddall, P.; Stripling, T.; et al. International Spinal Cord Injury Pain Classification: Part I. Background and Description. Spinal Cord 2012, 50, 413–417. [Google Scholar] [CrossRef]
- Celik, E.C.; Erhan, B.; Lakse, E. The Clinical Characteristics of Neuropathic Pain in Patients with Spinal Cord Injury. Spinal Cord 2012, 50, 585–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Balk, G.A.; Stewart, R.E. Cut-off Points for Mild, Moderate, and Severe Pain on the Visual Analogue Scale for Pain in Patients with Chronic Musculoskeletal Pain. Pain 2014, 155, 2545–2550. [Google Scholar] [CrossRef] [PubMed]
- Hahn, H.; Yum, T.; Shin, Y.; Kim, K.; Yoon, D.; Chung, K. A Standardization Study of Beck Depression Inventory in Korea. J. Korean Neuropsychiatr. Assoc. 1982, 25, 487–502. [Google Scholar]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connect 2012, 2, 125–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Ferreira-Santos, F. Complex Network Analysis of Brain Connectivity: An Introduction (LabReport No. 5). Porto: Laboratory of Neuropsychophysiology (University of Porto). 2012. Available online: http://www.fpce.up.pt/labpsi/data_files/09labreports/LabReport_5.pdf (accessed on 15 March 2020).
- Apkarian, A.V.; Bushnell, M.C.; Treede, R.-D.; Zubieta, J.-K. Human Brain Mechanisms of Pain Perception and Regulation in Health and Disease. Eur. J. Pain 2005, 9, 463. [Google Scholar] [CrossRef]
- Garcia-Larrea, L.; Peyron, R. Pain Matrices and Neuropathic Pain Matrices: A Review. Pain 2013, 154, S29–S43. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Kim, S.-H.; Seo, J.; Kim, S.-H.; Han, S.W.; Nam, E.J.; Kim, S.-K.; Lee, H.J.; Lee, S.-J.; Kim, Y.-T.; et al. Increased Power Spectral Density in Resting-State Pain-Related Brain Networks in Fibromyalgia. Pain 2013, 154, 1792–1797. [Google Scholar] [CrossRef]
- Barad, M.J.; Ueno, T.; Younger, J.; Chatterjee, N.; Mackey, S. Complex Regional Pain Syndrome Is Associated With Structural Abnormalities in Pain-Related Regions of the Human Brain. J. Pain 2014, 15, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Mackey, S.C.; Maeda, F. Functional Imaging and the Neural Systems of Chronic Pain. Neurosurg. Clin. N. Am. 2004, 15, 269–288. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Čeko, M.; Low, L.A. Cognitive and Emotional Control of Pain and Its Disruption in Chronic Pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, M.D.; Corbetta, M.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. Spontaneous Neuronal Activity Distinguishes Human Dorsal and Ventral Attention Systems. Proc. Natl. Acad. Sci. USA 2006, 103, 10046–10051. [Google Scholar] [CrossRef] [PubMed]
- Tekin, S.; Cummings, J.L. Frontal–Subcortical Neuronal Circuits and Clinical Neuropsychiatry. J. Psychosom. Res. 2002, 53, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L.; Petersen, G.L.; Nørskov, K.N.; Vase, L.; Finnerup, N.; Jensen, T.S.; Svensson, P. Review of Neuroimaging Studies Related to Pain Modulation. Scand. J. Pain 2011, 2, 108–120. [Google Scholar] [CrossRef]
- Boyette-Davis, J.A.; Thompson, C.D.; Fuchs, P.N. Alterations in Attentional Mechanisms in Response to Acute Inflammatory Pain and Morphine Administration. Neuroscience 2008, 151, 558–563. [Google Scholar] [CrossRef]
- Ford, G.K.; Moriarty, O.; McGuire, B.E.; Finn, D.P. Investigating the Effects of Distracting Stimuli on Nociceptive Behaviour and Associated Alterations in Brain Monoamines in Rats. Eur. J. Pain 2008, 12, 970–979. [Google Scholar] [CrossRef]
- Dunckley, P.; Aziz, Q.; Wise, R.G.; Brooks, J.; Tracey, I.; Chang, L. Attentional Modulation of Visceral and Somatic Pain. Neurogastroenterol Motil 2007, 19, 569–577. [Google Scholar] [CrossRef]
- Seminowicz, D.A.; Mikulis, D.J.; Davis, K.D. Cognitive Modulation of Pain-Related Brain Responses Depends on Behavioral Strategy. Pain 2004, 112, 48–58. [Google Scholar] [CrossRef]
- Wiech, K.; Kalisch, R.; Weiskopf, N.; Pleger, B.; Stephan, K.E.; Dolan, R.J. Anterolateral Prefrontal Cortex Mediates the Analgesic Effect of Expected and Perceived Control over Pain. J. Neurosci. 2006, 26, 11501–11509. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, D.; Wang, G.-J.; Volkow, N.D. Energetic Cost of Brain Functional Connectivity. Proc. Natl. Acad. Sci. USA 2013, 110, 13642–13647. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. The Economy of Brain Network Organization. Nat. Rev. Neurosci. 2012, 13, 336–349. [Google Scholar] [CrossRef]
- Freund, W.; Wunderlich, A.P.; Stuber, G.; Mayer, F.; Steffen, P.; Mentzel, M.; Weber, F.; Schmitz, B. Different Activation of Opercular and Posterior Cingulate Cortex (PCC) in Patients With Complex Regional Pain Syndrome (CRPS I) Compared With Healthy Controls During Perception of Electrically Induced Pain: A Functional MRI Study. Clin. J. Pain 2010, 26, 339–347. [Google Scholar] [CrossRef]
- Ichesco, E.; Peltier, S.J.; Mawla, I.; Harper, D.E.; Pauer, L.; Harte, S.E.; Clauw, D.J.; Harris, R.E. Prediction of Differential Pharmacologic Response in Chronic Pain Using Functional Neuroimaging Biomarkers and a Support Vector Machine Algorithm: An Exploratory Study. Arthritis Rheumatol. 2021, 73, 2127–2137. [Google Scholar] [CrossRef]
- Lee, J.; Protsenko, E.; Lazaridou, A.; Franceschelli, O.; Ellingsen, D.-M.; Mawla, I.; Isenburg, K.; Berry, M.P.; Galenkamp, L.; Loggia, M.L.; et al. Encoding of Self-Referential Pain Catastrophizing in the Posterior Cingulate Cortex in Fibromyalgia. Arthritis Rheumatol. 2018, 70, 1308–1318. [Google Scholar] [CrossRef] [Green Version]
- Scandola, M.; Dodoni, L.; Lazzeri, G.; Arcangeli, C.A.; Avesani, R.; Moro, V.; Ionta, S. Neurocognitive benefits of physiotherapy for spinal cord injury. J. Neurotrauma 2019, 36, 2028–2035. [Google Scholar] [CrossRef]
- Thomas, M. Age-related differences of neural connectivity during mental rotation. Int. J. Psychophysiol. 2016, 101, 33–42. [Google Scholar] [CrossRef]
- Kowalski, J.L.; Morse, L.R.; Troy, K.; Nguyen, N.; Battaglino, R.A.; Falci, S.P.; Linnman, C. Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. NeuroImage Clin. 2023, 38, 103414. [Google Scholar] [CrossRef]
- Vallesi, V.; Richter, J.K.; Hunkeler, N.; Abramovic, M.; Hashagen, C.; Christiaanse, E.; Shetty, G.; Verma, R.K.; Berger, M.; Frotzler, A. Functional connectivity and amplitude of low-frequency fluctuations changes in people with complete subacute and chronic spinal cord injury. Sci. Rep. 2022, 12, 20874. [Google Scholar] [CrossRef]
Group | Age | VAS | BDI |
---|---|---|---|
Mild NP | 49.87 ± 14.74 | 20.58 ± 8.59 | 13.37 ± 8.85 |
Moderate–Severe NP | 53.82 ± 12.18 | 54.35 ± 14.92 | 14.82 ± 11.99 |
Measure | ROI | ANOVA | Correlation with VAS | ||
---|---|---|---|---|---|
F | p | r | p | ||
Global Efficiency | MidFG Lt. | 7.35 | 0.001 | −0.3629 | 0.001 |
sLOC Lt. | 6.45 | 0.002 | −0.2524 | 0.031 | |
Cost | MidFG Lt. | 6.48 | 0.002 | −0.3371 | 0.003 |
sLOC Lt. | 5.89 | 0.004 | −0.2549 | 0.029 | |
Degree | MidFG Lt. | 6.48 | 0.000 | −0.3371 | 0.003 |
sLOC Lt. | 5.84 | 0.004 | −0.2549 | 0.029 | |
Average Path Length | MidFG Lt. | 8.01 | 0.000 | 0.3948 | 0.000 |
sLOC Lt. | 7.11 | 0.001 | 0.2751 | 0.018 | |
PCC | 7.08 | 0.001 | 0.3379 | 0.003 |
Measure | ROI | Control vs. Mild NP | Control vs. Moderate-Severe NP | Mild NP vs. Moderate-Severe NP |
---|---|---|---|---|
Global Efficiency | MidFG Lt. | 0.9990 | 0.0030 | 0.0060 |
sLOC Lt. | 0.6970 | 0.0190 | 0.0040 | |
Cost | MidFG Lt. | 1.0000 | 0.0140 | 0.0080 |
sLOC Lt. | 0.7700 | 0.0280 | 0.0060 | |
Degree | MidFG Lt. | 1.0000 | 0.0140 | 0.0080 |
sLOC Lt. | 0.7170 | 0.0280 | 0.0060 | |
Average Path Length | MidFG Lt. | 1.0000 | 0.0110 | 0.0130 |
sLOC Lt. | 1.0000 | 0.0360 | 0.0140 | |
PCC | 1.0000 | 0.0310 | 0.3130 |
ROI | ANOVA | Correlation with VAS | ||
---|---|---|---|---|
F | p-unc | r | p | |
MidFG Lt. | 5.73 | 0.004 | −0.348 | 0.002 |
sLOC Lt. | 0.71 | 0.491 | 0.102 | 0.387 |
PCC | 3.33 | 0.041 | −0.234 | 0.045 |
ROI | Control vs. Mild NP | Control vs. Moderate-Severe NP | Mild NP vs. Moderate-Severe NP |
---|---|---|---|
MidFG Lt. | 0.619 | 0.096 | 0.027 |
PCC | 0.451 | 0.043 | 0.409 |
ROI | Control | Mild NP | Moderate-Severe NP |
---|---|---|---|
MidFG Lt. | 0.726 ± 0.247 | 0.813 ± 0.326 | 0.48 ± 0.411 |
sLOC Lt. | 0.755 ± 0.258 | 0.841 ± 0.276 | 0.816 ± 0.303 |
PCC | 1.055 ± 0.274 | 0.963 ± 0.263 | 0.849 ± 0.264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.; Park, J.W.; Kim, E.; Min, Y.-S.; Lee, H.J.; Jung, T.-D.; Chang, Y. Effects of Alterations in Resting-State Neural Networks on the Severity of Neuropathic Pain after Spinal Cord Injury. Bioengineering 2023, 10, 860. https://doi.org/10.3390/bioengineering10070860
Park E, Park JW, Kim E, Min Y-S, Lee HJ, Jung T-D, Chang Y. Effects of Alterations in Resting-State Neural Networks on the Severity of Neuropathic Pain after Spinal Cord Injury. Bioengineering. 2023; 10(7):860. https://doi.org/10.3390/bioengineering10070860
Chicago/Turabian StylePark, Eunhee, Jang Woo Park, Eunji Kim, Yu-Sun Min, Hui Joong Lee, Tae-Du Jung, and Yongmin Chang. 2023. "Effects of Alterations in Resting-State Neural Networks on the Severity of Neuropathic Pain after Spinal Cord Injury" Bioengineering 10, no. 7: 860. https://doi.org/10.3390/bioengineering10070860
APA StylePark, E., Park, J. W., Kim, E., Min, Y. -S., Lee, H. J., Jung, T. -D., & Chang, Y. (2023). Effects of Alterations in Resting-State Neural Networks on the Severity of Neuropathic Pain after Spinal Cord Injury. Bioengineering, 10(7), 860. https://doi.org/10.3390/bioengineering10070860