Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications
Abstract
:1. Introduction
2. Agriculture in the 21st Century
3. Data Collection and Analyses
4. Nanomaterial Synthesis
4.1. Top-Down Approach
4.2. Bottom-Up Approach
4.3. Nanoparticle Fabrication
4.4. The Role of External Factors in Nanoparticle Synthesis
- Temperature: The temperature of the synthesis medium is the determining factor in the type of NP that is produced. Unlike the green method, which operates at temperatures as low as 100 degrees Celsius, the physicochemical method necessitates temperatures of 350 degrees Celsius or higher for NP synthesis, rendering it incompatible with microorganisms [33].
- Pressure: The size and form of synthesized NPs are controlled by pressure. At atmospheric pressure, biological agents are much more efficient at reducing metal ions [34].
- Incubation period: The length of time that the reaction medium containing biological entities is allowed to incubate for determines the kind and quality of NPs produced. Changes in particle size, number, and size distribution as a result of storage, shelf life, and other factors are all governed by the passage of time [35].
- Expenditure: The most significant component that has to be improved is the economic costs connected with NP synthesis to raise their market value. The physical and chemical processes used to achieve the high yield were quite expensive. However, large-scale green synthesis is feasible within an optimal cost range for farmers [36].
- Proximity: The electrical charge on particles, substrate–NP interactions, and the magnetism of NPs are all governed by the proximity effect. Isolated or singular materials display dynamic changes in behavior when subjected to social interaction, which could be exploited for more nuanced NP design [37].
4.5. Types of Nanomaterial
4.5.1. Carbon Nanotubes
4.5.2. Hybrid Nanocomposites
4.5.3. Metal-Based Nanoparticles
4.5.4. Nanoscale Polymers
4.5.5. Nanoemulsions
4.5.6. Nano Dispersions
4.5.7. Nanoencapsulation
4.5.8. Liposomes
4.5.9. Clay Encapsulations
4.5.10. Encapsulations
4.5.11. Nanospheres
4.5.12. Nanomicelles
4.5.13. Nanogels
4.5.14. Dendrimers
5. Properties of Nanoparticles
6. Influence of Nanoparticles on Plant Life
7. Plant–Nanomaterial Interactions
8. Intracellular Nanomaterial Mobilization
9. Phytotoxicity Exhibited by Nanomaterials
10. Biochemical, Molecular, and Physiological Responses
11. Applications of Nanomaterials in Biocontrol and Plant Growth Promotion
11.1. Plant Development
11.2. Nanoparticles as Biocontrol Agents
11.3. Nanoparticles as Biopesticides
11.4. Crop-Focused Nanoformulations
11.5. Genetic Engineering for Nanoparticle Synthesis
11.6. Toxicity of Nanomaterials in Food
11.7. Limitations of Nanofertilizers and Methods to Improve Their Efficiency
- (a)
- Dispersion and Stability: Poor dispersion and stability of nanofertilizers in aqueous solutions or soil often result in uneven nutrient delivery and decreased efficiency [174].
- (b)
- Inconsistent nutrient absorption by plants using nanofertilizers may be attributed to elements such soil pH, root interactions, and nanoparticle size, which have an impact on total plant development [38].
- (c)
- Environmental Impact: To assure environmental safety, a detailed assessment of the possible long-term impacts of nanofertilizers on soil quality, water systems, and non-target creatures is required [175].
- (d)
- Cost: Nanofertilizers may be costly to produce, which limits their use for extensive agricultural application, especially in areas with limited resources [176].
- (e)
- Regulatory Obstacles: Because the regulatory environment for agricultural nanotechnology is still under development, it presents difficulties for safety evaluations and approval procedures [177].
- (a)
- Particle engineering: Careful design of a nanoparticle’s characteristics, such as size, shape, and surface coating, may improve dispersion, stability, and nutrient release, hence enhancing plant absorption [178].
- (b)
- Smart Delivery System: This can maximise nutrient availability and reduce losses by creating controlled-release nanofertilizers that release nutrients in response to plant demands or environmental circumstances [179].
- (c)
- Nano-Enhanced Formulations: By adding nanofertilizers to traditional fertilisers or soil amendments, their overall effectiveness may be increased and their risk of side effects can be decreased [180].
- (d)
- Organic matter or soil amendments: This improves the interactions of nanofertilizers with soil elements, enhancing nutrient retention and availability [181].
- (e)
- Targeted Delivery: Enhancing nutrient absorption and minimizing loss may be accomplished by using nanocarriers or nanoparticles that can be directed to certain plant tissues or root zones [182].
- (f)
- Field Studies and Monitoring: Thorough field studies, in conjunction with cutting-edge monitoring methods, may provide perceptions into the practical efficacy of nanofertilizers, assisting in their improvement [166].
- (g)
- Environmental Assessment: Extensive research on the effects of nanofertilizers on the environment is needed to address issues with soil health, water quality, and ecosystem interactions [175].
- (h)
- Cost-Effectiveness: By investigating the possible economic advantages of higher crop yields, as well as scalable and cost-effective manufacturing techniques, nanofertilizers may become more commercially feasible [176].
11.8. The Impact of Nanomaterials on the Environment, Waste Management, and the Cradle to Grave Journey
11.8.1. Nanomaterials’ Cradle to Grave Journey
- Raw Material Extraction: The extraction of certain raw materials is often necessary for the manufacturing of nanomaterials. Environmental effects of the extraction process might include habitat destruction, resource depletion, and energy use [183].
- Production: The production of nanomaterials requires complex procedures and often consumes a lot of energy and resources. These procedures may result in waste production, pollutants, and other dangers to a worker’s occupational health [184].
- Use: Nanomaterials are used in a variety of fields, including electronics and the medical field. Due to their small size, they may have improved qualities like better conductivity or medication delivery. However, their use may have unforeseen repercussions, demanding cautious assessment [185].
- Disposal: Disposing of nanoparticles poses difficulties. Due to their special characteristics, nanomaterial waste may be difficult for conventional waste treatment methods to break down or neutralize. To guarantee a low influence on the environment, specialized disposal techniques must be developed [186].
11.8.2. Management and Disposal of Nanomaterials Waste
- Controlled Landfills: Creating landfills exclusively for the disposal of nanomaterials, where containment and monitoring devices might reduce any possible leakage into the soil and groundwater [187].
- Recycling and Reclamation: Creating methods to salvage useful parts from nanomaterial waste for reuse, obviating the necessity for fresh resource extraction [188].
- Encapsulation and Stabilisation: Developing stabilising matrices for encapsulating nanomaterials to prevent them from dispersing into the environment [189].
- Treatment Technologies: Researching cutting-edge treatment methods such as nanoremediation, which uses nanomaterials to clean up polluted places [185].
- Impact on Soil and Plants: Nanoparticles may change the structure and makeup of soil, which can impair water retention and nutrient availability. They could also be absorbed by plants, which might have an effect on food chains and growth [190].
- Aquatic Ecosystems: Nanomaterials may penetrate aquatic habitats, where they may have an impact on aquatic life and be bioabsorbed into the food chain. It is as yet uncertain how they may affect human health and aquatic ecosystems [191].
- Biodiversity and Ecosystem Health: Because even small changes may upset sensitive balances, there are worries about how long-term usage of nanomaterials will affect biodiversity and ecosystem dynamics [190].
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An Introduction to Nanotechnology. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 1–27. ISBN 978-0-12-813586-0. [Google Scholar]
- Moulick, R.G.; Das, S.; Debnath, N.; Bandyopadhyay, K. Potential Use of Nanotechnology in Sustainable and ‘Smart’ Agriculture: Advancements Made in the Last Decade. Plant Biotechnol. Rep. 2020, 14, 505–513. [Google Scholar] [CrossRef]
- Sinha, K.; Ghosh, J.; Sil, P.C. New Pesticides: A Cutting-Edge View of Contributions from Nanotechnology for the Development of Sustainable Agricultural Pest Control. In New Pesticides and Soil Sensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 47–79. ISBN 978-0-12-804299-1. [Google Scholar]
- Cheng, C. The Doctrine of People’s Welfare: The Taiwan Experiment and Its Implications for the Third World. In Sun Yat-Sen’s Doctrine in the Modern World; Cheng, C., Ed.; Routledge: London, UK, 2019; pp. 244–275. ISBN 978-0-429-30793-5. [Google Scholar]
- Pandey, D. Agricultural Sustainability and Climate Change Nexus. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Singh, P., Singh, R.P., Srivastava, V., Eds.; Springer: Singapore, 2020; pp. 77–97. ISBN 978-981-329-594-0. [Google Scholar]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The New Perspective in Precision Agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing Smart Farming through the Applications of Agriculture 4.0 Technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Wudil, A.H.; Usman, M.; Rosak-Szyrocka, J.; Pilař, L.; Boye, M. Reversing Years for Global Food Security: A Review of the Food Security Situation in Sub-Saharan Africa (SSA). Int. J. Environ. Res. Public. Health 2022, 19, 14836. [Google Scholar] [CrossRef]
- Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A.G. Production Technologies, Current Role, and Future Prospects of Biofuels Feedstocks: A State-of-the-Art Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 384–436. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Meraj, T.A.; Pour-Aboughadareh, A.; Sayyed, R.Z.; Mashwani, Z.-R.; Poczai, P. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture. Nanomaterials 2022, 12, 965. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; El-Banna, A.A.A.; Salama, E.A.A.; Ali, M.M.; Al-Huqail, A.A.; Ali, H.M.; Paszt, L.S.; El-Sorady, G.A.; Lamlom, S.F. The Individual and Combined Effect of Nanoparticles and Biofertilizers on Growth, Yield, and Biochemical Attributes of Peanuts (Arachis hypogea L.). Agronomy 2022, 12, 398. [Google Scholar] [CrossRef]
- Riaz, S.; Hussain, I.; Parveen, A.; Arshraf, M.A.; Rasheed, R.; Zulfiqar, S.; Thind, S.; Rehman, S. Silicon and Nano-Silicon in Plant Nutrition and Crop Quality. In Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement; Elsevier: Amsterdam, The Netherlands, 2022; pp. 277–295. ISBN 978-0-323-91225-9. [Google Scholar]
- Altabbaa, S.; Mann, N.A.; Chauhan, N.; Utkarsh, K.; Thakur, N.; Mahmoud, G.A.-E. Era Connecting Nanotechnology with Agricultural Sustainability: Issues and Challenges. Nanotechnol. Environ. Eng. 2023, 8, 481–498. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Elmer, W.H. Cultural Methods for Greenhouse Pest and Disease Management. In Integrated Pest and Disease Management in Greenhouse Crops; Gullino, M.L., Albajes, R., Nicot, P.C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 285–330. ISBN 978-3-030-22303-8. [Google Scholar]
- Saha, A. Bionanotechnology-Based Nanopesticide Application in Crop Protection Systems. In Functionalized Nanomaterials for Catalytic Application; Hussain, C.M., Shukla, S.K., Mangla, B., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 89–107. ISBN 978-1-119-80903-6. [Google Scholar]
- Sharma, R.; Malaviya, P. Ecosystem Services and Climate Action from a Circular Bioeconomy Perspective. Renew. Sustain. Energy Rev. 2023, 175, 113164. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.; Li, H.; Li, Y. High-efficiency Genome Editing of an Extreme Thermophile Thermus Thermophilus Using Endogenous Type I and Type III CRISPR-Cas Systems. mLife 2022, 1, 412–427. [Google Scholar] [CrossRef]
- Mohammadinejad, R.; Shavandi, A.; Raie, D.S.; Sangeetha, J.; Soleimani, M.; Shokrian Hajibehzad, S.; Thangadurai, D.; Hospet, R.; Popoola, J.O.; Arzani, A.; et al. Plant Molecular Farming: Production of Metallic Nanoparticles and Therapeutic Proteins Using Green Factories. Green Chem. 2019, 21, 1845–1865. [Google Scholar] [CrossRef]
- Kráľová, K.; Jampílek, J. Metal- and Metalloid-Based Nanofertilizers and Nanopesticides for Advanced Agriculture. In Inorganic Nanopesticides and Nanofertilizers; Fernandes Fraceto, L., Pereira De Carvalho, H.W., De Lima, R., Ghoshal, S., Santaella, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 295–361. ISBN 978-3-030-94154-3. [Google Scholar]
- Parray, J.A.; Yaseen Mir, M.; Shameem, N. Rhizosphere Engineering and Agricultural Productivity. In Sustainable Agriculture: Biotechniques in Plant Biology; Springer: Singapore, 2019; pp. 71–154. ISBN 9789811388392. [Google Scholar]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Rocha-Meneses, L.; Hari, A.; Inayat, A.; Shanableh, A.; Abdallah, M.; Ghenai, C.; Shanmugam, S.; Kikas, T. Application of Nanomaterials in Anaerobic Digestion Processes: A New Strategy towards Sustainable Methane Production. Biochem. Eng. J. 2022, 188, 108694. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of Nanomaterials Using Various Top-down and Bottom-up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Belusso, L.C.S.; Lenz, G.F.; Fiorini, E.E.; Pereira, A.J.; Sequinel, R.; Bini, R.A.; Felix, J.F.; Schneider, R. Synthesis of Silver Nanoparticles from Bottom up Approach on Borophosphate Glass and Their Applications as SERS, Antibacterial and Glass-Based Catalyst. Appl. Surf. Sci. 2019, 473, 303–312. [Google Scholar] [CrossRef]
- Mansoor, S.; Zahoor, I.; Baba, T.R.; Padder, S.A.; Bhat, Z.A.; Koul, A.M.; Jiang, L. Fabrication of Silver Nanoparticles Against Fungal Pathogens. Front. Nanotechnol. 2021, 3, 679358. [Google Scholar] [CrossRef]
- Sun, H.; Cao, Y.; Kim, D.; Marelli, B. Biomaterials Technology for AgroFood Resilience. Adv. Funct. Mater. 2022, 32, 2201930. [Google Scholar] [CrossRef]
- Jagtap, P.; Nath, H.; Kumari, P.B.; Dave, S.; Mohanty, P.; Das, J.; Dave, S. Mycogenic Fabrication of Nanoparticles and Their Applications in Modern Agricultural Practices & Food Industries. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 475–488. ISBN 978-0-12-821734-4. [Google Scholar]
- Nayana, A.R.; Joseph, B.J.; Jose, A.; Radhakrishnan, E.K. Nanotechnological Advances with PGPR Applications. In Sustainable Agriculture Reviews 41; Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q., Eds.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2020; Volume 41, pp. 163–180. ISBN 978-3-030-33995-1. [Google Scholar]
- Rahman, A.; Lin, J.; Jaramillo, F.E.; Bazylinski, D.A.; Jeffryes, C.; Dahoumane, S.A. In Vivo Biosynthesis of Inorganic Nanomaterials Using Eukaryotes—A Review. Molecules 2020, 25, 3246. [Google Scholar] [CrossRef]
- De França Bettencourt, G.M.; Degenhardt, J.; Zevallos Torres, L.A.; De Andrade Tanobe, V.O.; Soccol, C.R. Green Biosynthesis of Single and Bimetallic Nanoparticles of Iron and Manganese Using Bacterial Auxin Complex to Act as Plant Bio-Fertilizer. Biocatal. Agric. Biotechnol. 2020, 30, 101822. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Shahin, K.; Mahmoud, S.M.; Altohamy, D.E.; Husseiny, W.A.; Mansour, D.A.; Shalaby, S.I.; Gaballa, M.M.S.; Shaalan, M.; Alkafafy, M.; et al. Silica Nanoparticles Are Novel Aqueous Additive Mitigating Heavy Metals Toxicity and Improving the Health of African Catfish, Clarias Gariepinus. Aquat. Toxicol. 2022, 249, 106238. [Google Scholar] [CrossRef]
- Dhand, V.; Yadav, M.; Kim, S.H.; Rhee, K.Y. A Comprehensive Review on the Prospects of Multi-Functional Carbon Nano Onions as an Effective, High- Performance Energy Storage Material. Carbon 2021, 175, 534–575. [Google Scholar] [CrossRef]
- Faye, O.; Szpunar, J.; Eduok, U. A Critical Review on the Current Technologies for the Generation, Storage, and Transportation of Hydrogen. Int. J. Hydrog. Energy 2022, 47, 13771–13802. [Google Scholar] [CrossRef]
- Laughter, M.R.; Nelson, A.L.; Bortot, M.; Pena, B.; Liu, B.; Park, D. Multifunctional Fluorocarbon-Conjugated Nanoparticles of Varied Morphologies to Enhance Diagnostic Effects in Breast Cancer. Nano Biomed. Eng. 2021, 13, 52–61. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Salvadori, M.R.; Rafatullah, M.; Siddiqui, M.R.; Khan, M.A.; Alshareef, S.A. Exploration of Microbial Factories for Synthesis of Nanoparticles—A Sustainable Approach for Bioremediation of Environmental Contaminants. Front. Microbiol. 2021, 12, 658294. [Google Scholar] [CrossRef]
- Kempson, I. Nanoparticle-Based Radiosensitization. Int. J. Mol. Sci. 2022, 23, 4936. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer Use for Sustainable Agriculture: Advantages and Limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Kumar, B.R.; Mathimani, T.; Sudhakar, M.P.; Rajendran, K.; Nizami, A.-S.; Brindhadevi, K.; Pugazhendhi, A. A State of the Art Review on the Cultivation of Algae for Energy and Other Valuable Products: Application, Challenges, and Opportunities. Renew. Sustain. Energy Rev. 2021, 138, 110649. [Google Scholar] [CrossRef]
- Sambangi, P.; Gopalakrishnan, S.; Pebam, M.; Rengan, A.K. Nano-Biofertilizers on Soil Health, Chemistry, and Microbial Community: Benefits and Risks. Proc. Indian Natl. Sci. Acad. 2022, 88, 357–368. [Google Scholar] [CrossRef]
- Kalia, A.; Kaur, H. Nano-Biofertilizers: Harnessing Dual Benefits of Nano-Nutrient and Bio-Fertilizers for Enhanced Nutrient Use Efficiency and Sustainable Productivity. In Nanoscience for Sustainable Agriculture; Pudake, R.N., Chauhan, N., Kole, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 51–73. ISBN 978-3-319-97851-2. [Google Scholar]
- El Semary, N.A.; Bakir, E.M. Multidrug-Resistant Bacterial Pathogens and Public Health: The Antimicrobial Effect of Cyanobacterial-Biosynthesized Silver Nanoparticles. Antibiotics 2022, 11, 1003. [Google Scholar] [CrossRef]
- Chakraborty, N.; Das, B.K.; Das, A.K.; Manna, R.K.; Chakraborty, H.J.; Mandal, B.; Bhattacharjya, B.K.; Raut, S.S. Antibacterial Prophylaxis and Molecular Docking Studies of Ketone and Ester Compounds Isolated from Cyperus rotundus L. against Aeromonas veronii. Aquac. Res. 2022, 53, 1363–1377. [Google Scholar] [CrossRef]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled Release Fertilizer: A Review on Developments, Applications and Potential in Agriculture. J. Control. Release 2021, 339, 321–334. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, L.; Huang, H.; He, W.; Ming, W. Progress in Laser Ablation and Biological Synthesis Processes: “Top-Down” and “Bottom-Up” Approaches for the Green Synthesis of Au/Ag Nanoparticles. Int. J. Mol. Sci. 2022, 23, 14658. [Google Scholar] [CrossRef]
- Mahapatra, D.M.; Satapathy, K.C.; Panda, B. Biofertilizers and Nanofertilizers for Sustainable Agriculture: Phycoprospects and Challenges. Sci. Total Environ. 2022, 803, 149990. [Google Scholar] [CrossRef]
- Hadj Alouane, M.H.; Ahmed, F.; Hussein El Semary, N.A.; Aldayel, M.F.; Alhaweti, F.H.; Nasr, O. Application of Optimised Nanocarbon Materials and Biofertilisers as a Potent Superfertiliser: Towards Sustainable Agriculture Production. Sci. Adv. Mater. 2021, 13, 812–819. [Google Scholar] [CrossRef]
- Naranjo, E.; Merfa, M.V.; Santra, S.; Ozcan, A.; Johnson, E.; Cobine, P.A.; De La Fuente, L. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter Crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems. Appl. Environ. Microbiol. 2020, 86, e00788-20. [Google Scholar] [CrossRef]
- Duan, S.; Wu, R.; Xiong, Y.-H.; Ren, H.-M.; Lei, C.; Zhao, Y.-Q.; Zhang, X.-Y.; Xu, F.-J. Multifunctional Antimicrobial Materials: From Rational Design to Biomedical Applications. Prog. Mater. Sci. 2022, 125, 100887. [Google Scholar] [CrossRef]
- Raj, S.; Trivedi, R.; Soni, V. Biogenic Synthesis of Silver Nanoparticles, Characterization and Their Applications—A Review. Surfaces 2021, 5, 67–90. [Google Scholar] [CrossRef]
- Ul Haq, I.; Ijaz, S. Use of Metallic Nanoparticles and Nanoformulations as Nanofungicides for Sustainable Disease Management in Plants. In Nanobiotechnology in Bioformulations; Prasad, R., Kumar, V., Kumar, M., Choudhary, D., Eds.; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 289–316. ISBN 978-3-030-17060-8. [Google Scholar]
- Abd-Elsalam, K.A.; Al-Dhabaan, F.A.; Alghuthaymi, M.; Njobeh, P.B.; Almoammar, H. Nanobiofungicides: Present Concept and Future Perspectives in Fungal Control. In Nano-Biopesticides Today and Future Perspectives; Elsevier: Amsterdam, The Netherlands, 2019; pp. 315–351. ISBN 978-0-12-815829-6. [Google Scholar]
- Fortunati, E.; Balestra, G.M. Lignocellulosic Materials as Novel Carriers, Also at Nanoscale, of Organic Active Principles for Agri-Food Applications. In Biomass, Biopolymer-Based Materials, and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 161–178. ISBN 978-0-08-102426-3. [Google Scholar]
- Ashraf, S.A.; Siddiqui, A.J.; Elkhalifa, A.E.O.; Khan, M.I.; Patel, M.; Alreshidi, M.; Moin, A.; Singh, R.; Snoussi, M.; Adnan, M. Innovations in Nanoscience for the Sustainable Development of Food and Agriculture with Implications on Health and Environment. Sci. Total Environ. 2021, 768, 144990. [Google Scholar] [CrossRef]
- Rani, R.; Kaur, P. Polymeric Nano-Fungicides for the Management of Fungal Diseases in Crops. In Nanotechnology in Agriculture and Environmental Science; CRC Press: Boca Raton, FL, USA, 2022; pp. 82–98. ISBN 978-1-00-332394-5. [Google Scholar]
- Sheth, T.; Seshadri, S.; Prileszky, T.; Helgeson, M.E. Multiple Nanoemulsions. Nat. Rev. Mater. 2020, 5, 214–228. [Google Scholar] [CrossRef]
- Mustafa, I.F.; Hussein, M.Z. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. Nanomaterials 2020, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, M.; Rangaraj, S.; Samiappan, S.C.; Murugan, K.; Natarajan, S.D.; Munisamy, P. Nonionic Green Nanoemulsion Nanoinsecticides/Nanopesticides. In Bio-Based Nanoemulsions for Agri-Food Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–122. ISBN 978-0-323-89846-1. [Google Scholar]
- Choi, S.J.; McClements, D.J. Correction to: Nanoemulsions as Delivery Systems for Lipophilic Nutraceuticals: Strategies for Improving Their Formulation, Stability, Functionality and Bioavailability. Food Sci. Biotechnol. 2023, 32, 1301. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef]
- Dwivedi, S.A.; Nameirakpam, L. The Role of Nanotechnology in Insect Pest Management. In Environmental Management Technologies; CRC Press: New York, NY, USA, 2022; pp. 273–294. ISBN 978-1-00-323995-6. [Google Scholar]
- Kour, H.; Khan, S.S.; Kour, D.; Singh, S.; Kumari, S.; Kaur, M.; Khan, R.T.; Yadav, A.N. Nanotechnologies for Microbial Inoculants as Biofertilizers in the Horticulture. In Sustainable Horticulture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 201–261. ISBN 978-0-323-91861-9. [Google Scholar]
- Dhyani, K.; Sobha; Meenu, M.; Bezbaruah, A.N.; Kar, K.K.; Chamoli, P. Current Prospective of Nanomaterials in Agriculture and Farming. In Nanomaterials for Advanced Technologies; Katiyar, J.K., Panwar, V., Ahlawat, N., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 173–194. ISBN 978-981-19138-3-9. [Google Scholar]
- Alves, D.; Pinho, E. Encapsulation of Polyphenols, Plant Bioactive Compounds. In Functionality of Cyclodextrins in Encapsulation for Food Applications; Ho, T.M., Yoshii, H., Terao, K., Bhandari, B.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 91–113. ISBN 978-3-030-80055-0. [Google Scholar]
- Ramezani, M.; Ramezani, F.; Gerami, M. Nanoparticles in Pest Incidences and Plant Disease Control. In Nanotechnology for Agriculture: Crop Production & Protection; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2019; pp. 233–272. ISBN 978-981-329-373-1. [Google Scholar]
- Fatima, F.; Hashim, A.; Anees, S. Efficacy of Nanoparticles as Nanofertilizer Production: A Review. Environ. Sci. Pollut. Res. 2021, 28, 1292–1303. [Google Scholar] [CrossRef]
- Banerjee, S.; Mazumder, S.; Chatterjee, D.; Bose, S.; Majee, S.B. Nanotechnology for Cargo Delivery with a Special Emphasis on Pesticide, Herbicide, and Fertilizer. In Nano-Enabled Agrochemicals in Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–144. ISBN 978-0-323-91009-5. [Google Scholar]
- Jakhar, A.M.; Aziz, I.; Kaleri, A.R.; Hasnain, M.; Haider, G.; Ma, J.; Abideen, Z. Nano-Fertilizers: A Sustainable Technology for Improving Crop Nutrition and Food Security. NanoImpact 2022, 27, 100411. [Google Scholar] [CrossRef]
- Saleem, I.; Maqsood, M.A.; Rehman, M.Z.U.; Aziz, T.; Bhatti, I.A.; Ali, S. Potassium Ferrite Nanoparticles on DAP to Formulate Slow Release Fertilizer with Auxiliary Nutrients. Ecotoxicol. Environ. Saf. 2021, 215, 112148. [Google Scholar] [CrossRef]
- Pirzadah, B.; Pirzadah, T.B.; Jan, A.; Hakeem, K.R. Nanofertilizers: A Way Forward for Green Economy. In Nanobiotechnology in Agriculture; Hakeem, K.R., Pirzadah, T.B., Eds.; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2020; pp. 99–112. ISBN 978-3-030-39977-1. [Google Scholar]
- Siri, J.G.S.; Fernando, C.A.N.; De Silva, S.N.T. A Green Control Release NPK Fertilizer Based on Micro/Nanoparticle of Chitosan Impregnated Activated Coir Fiber. Nanosci. Nanotechnol.-Asia 2021, 11, e270421185960. [Google Scholar] [CrossRef]
- Tao, W.; Wang, P.; Li, H.; Huang, R.; Zhou, G. Engineering Sulfur Vacancies Optimization in Ni3Co6S8 Nanospheres toward Extraordinarily Efficient Nitrate Electroreduction to Ammonia. Appl. Catal. B Environ. 2023, 324, 122193. [Google Scholar] [CrossRef]
- Teng, Z.; Jiang, X.; He, F.; Bai, W. Qualitative and Quantitative Methods to Evaluate Anthocyanins. eFood 2020, 1, 339–346. [Google Scholar] [CrossRef]
- Okey-Onyesolu, C.F.; Hassanisaadi, M.; Bilal, M.; Barani, M.; Rahdar, A.; Iqbal, J.; Kyzas, G.Z. Nanomaterials as Nanofertilizers and Nanopesticides: An Overview. ChemistrySelect 2021, 6, 8645–8663. [Google Scholar] [CrossRef]
- Varadavenkatesan, T.; Pai, S.; Vinayagam, R.; Selvaraj, R. Characterization of Silver Nano-Spheres Synthesized Using the Extract of Arachis Hypogaea Nuts and Their Catalytic Potential to Degrade Dyes. Mater. Chem. Phys. 2021, 272, 125017. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, H.; Liu, W.; Guo, J.; Xian, M. Debottlenecking the Biological Hydrogen Production Pathway of Dark Fermentation: Insight into the Impact of Strain Improvement. Microb. Cell Factories 2022, 21, 166. [Google Scholar] [CrossRef] [PubMed]
- Haris, M.; Hussain, T.; Mohamed, H.I.; Khan, A.; Ansari, M.S.; Tauseef, A.; Khan, A.A.; Akhtar, N. Nanotechnology—A New Frontier of Nano-Farming in Agricultural and Food Production and Its Development. Sci. Total Environ. 2023, 857, 159639. [Google Scholar] [CrossRef] [PubMed]
- Koch, D.; Paul, M.; Beisl, S.; Friedl, A.; Mihalyi, B. Life Cycle Assessment of a Lignin Nanoparticle Biorefinery: Decision Support for Its Process Development. J. Clean. Prod. 2020, 245, 118760. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Ma, C.; Kang, Z.; Zhu, Z. A Heterologously-Expressed Thermostable Pyrococcus Furiosus Cytoplasmic [NiFe]-Hydrogenase I Used as the Catalyst of H2/Air Biofuel Cells. Int. J. Hydrog. Energy 2021, 46, 3035–3044. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent Advances in Nano-Enabled Fertilizers and Pesticides: A Critical Review of Mechanisms of Action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Arora, S.; Murmu, G.; Mukherjee, K.; Saha, S.; Maity, D. A Comprehensive Overview of Nanotechnology in Sustainable Agriculture. J. Biotechnol. 2022, 355, 21–41. [Google Scholar] [CrossRef]
- Khan, F.; Shahid, A.; Zhu, H.; Wang, N.; Javed, M.R.; Ahmad, N.; Xu, J.; Alam, M.A.; Mehmood, M.A. Prospects of Algae-Based Green Synthesis of Nanoparticles for Environmental Applications. Chemosphere 2022, 293, 133571. [Google Scholar] [CrossRef]
- Abbasi Khalaki, M.; Moameri, M.; Asgari Lajayer, B.; Astatkie, T. Influence of Nano-Priming on Seed Germination and Plant Growth of Forage and Medicinal Plants. Plant Growth Regul. 2021, 93, 13–28. [Google Scholar] [CrossRef]
- Ali, S.; Mehmood, A.; Khan, N. Uptake, Translocation, and Consequences of Nanomaterials on Plant Growth and Stress Adaptation. J. Nanomater. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Sun, Z. Hyperbranched Polymers in Modifying Natural Plant Fibers and Their Applications in Polymer Matrix Composites—A Review. J. Agric. Food Chem. 2019, 67, 8715–8724. [Google Scholar] [CrossRef]
- Saeed, B.A.; Lim, V.; Yusof, N.A.; Khor, K.Z.; Rahman, H.S.; Abdul Samad, N. Antiangiogenic Properties of Nanoparticles: A Systematic Review. Int. J. Nanomed. 2019, 14, 5135–5146. [Google Scholar] [CrossRef] [PubMed]
- Turan, N.B.; Erkan, H.S.; Engin, G.O.; Bilgili, M.S. Nanoparticles in the Aquatic Environment: Usage, Properties, Transformation and Toxicity—A Review. Process Saf. Environ. Prot. 2019, 130, 238–249. [Google Scholar] [CrossRef]
- Marchiol, L.; Filippi, A.; Adamiano, A.; Degli Esposti, L.; Iafisco, M.; Mattiello, A.; Petrussa, E.; Braidot, E. Influence of Hydroxyapatite Nanoparticles on Germination and Plant Metabolism of Tomato (Solanum lycopersicum L.): Preliminary Evidence. Agronomy 2019, 9, 161. [Google Scholar] [CrossRef]
- Tsekhmistrenko, S.C.; Bityutskyy, V.; Tsekhmistrenko, O.; Merzlo, S.; Tymoshok, N.; Melnichenko, A.; Polishcuk, S.; Demchenko, A.; Yakymenko, I. Bionanotechnologies: Synthesis of Metals’ Nanoparticles with Using Plants and Their Applications in the Food Industry: A Review. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e1513. [Google Scholar] [CrossRef]
- Fan, X.; Yang, F.; Nie, C.; Ma, L.; Cheng, C.; Haag, R. Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection. Adv. Mater. 2021, 33, 2100637. [Google Scholar] [CrossRef]
- Ray, P.; Ferraro, M.; Haag, R.; Quadir, M. Dendritic Polyglycerol-Derived Nano-Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromol. Biosci. 2019, 19, 1900073. [Google Scholar] [CrossRef]
- Haag, R.; Kratz, F. Polymer Therapeutics: Concepts and Applications. Angew. Chem. Int. Ed. 2006, 45, 1198–1215. [Google Scholar] [CrossRef]
- Ahmouda, K.; Benhaoua, B. Preferential and Enhanced Adsorption of Methyl Green on Different Greenly Synthesized Magnetite Nanoparticles: Investigation of the Influence of the Mediating Plant Extract’s Acidity. RSC Adv. 2022, 12, 14593–14609. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, M.; Marmiroli, N.; Pagano, L. Nanomaterials Induced Genotoxicity in Plant: Methods and Strategies. Nanomaterials 2022, 12, 1658. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.L.; Kumar, P.; Sharma, D.; Verma, A.D.; Jana, A.K. Advances in Nanobiotechnology with Special Reference to Plant Systems. In Plant Nanobionics; Prasad, R., Ed.; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 371–387. ISBN 978-3-030-12495-3. [Google Scholar]
- Iqbal, Z.; Ansari, M.I.; Memon, A.G.; Gupta, G.; Iqbal, M.S. Nanomaterials in Combating Plant Stress: An Approach for Future Applications. In Nanobiotechnology; Al-Khayri, J.M., Ansari, M.I., Singh, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 561–576. ISBN 978-3-030-73605-7. [Google Scholar]
- Imperiale, D.; Lencioni, G.; Marmiroli, M.; Zappettini, A.; White, J.C.; Marmiroli, N. Interaction of Hyperaccumulating Plants with Zn and Cd Nanoparticles. Sci. Total Environ. 2022, 817, 152741. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kaur, J.; Kalia, A.; Kuca, K. The Janus Face of Nanomaterials: Physiological Responses as Inducers of Stress or Promoters of Plant Growth. In Plant and Nanoparticles; Chen, J.-T., Ed.; Springer Nature Singapore: Singapore, 2022; pp. 395–426. ISBN 978-981-19250-2-3. [Google Scholar]
- Feregrino Pérez, A.A.; Páramo Serrano, L.A.; Hernández Reséndiz, J.R.; Zavala Gómez, E.; De La Luz Sanchez Estrada, M.; Esquivel Escalante, K. Interactions Between Nanomaterials and Plant–Microbe Partnership. In Agricultural and Environmental Nanotechnology; Fernandez-Luqueno, F., Patra, J.K., Eds.; Interdisciplinary Biotechnological Advances; Springer Nature Singapore: Singapore, 2023; pp. 353–392. ISBN 978-981-19545-3-5. [Google Scholar]
- Cunningham, F.J.; Demirer, G.S.; Goh, N.S.; Zhang, H.; Landry, M.P. Nanobiolistics: An Emerging Genetic Transformation Approach. In Biolistic DNA Delivery in Plants; Rustgi, S., Luo, H., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; Volume 2124, pp. 141–159. ISBN 978-1-07-160355-0. [Google Scholar]
- Zhang, Q.; Wu, K.; Qian, H.; Ramachandran, B.; Jiang, F. The Advances of Characterization and Evaluation Methods for the Compatibility and Assembly Structure Stability of Food Soft Matter. Trends Food Sci. Technol. 2021, 112, 753–763. [Google Scholar] [CrossRef]
- Chhipa, H. Mycosynthesis of Nanoparticles for Smart Agricultural Practice: A Green and Eco-Friendly Approach. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 87–109. ISBN 978-0-08-102579-6. [Google Scholar]
- Sanzari, I.; Leone, A.; Ambrosone, A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019, 7, 120. [Google Scholar] [CrossRef]
- Chugh, D.; Viswamalya, V.S.; Das, B. Green Synthesis of Silver Nanoparticles with Algae and the Importance of Capping Agents in the Process. J. Genet. Eng. Biotechnol. 2021, 19, 126. [Google Scholar] [CrossRef]
- Savanur, M.A.; Mallappa, M.; Tazeen Kadri, S.U.; Mulla, S.I. Nanomaterials Augmenting Plant Growth-Promoting Bacteria and Their. In Plant-Microbial Interactions and Smart Agricultural Biotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 231–252. ISBN 978-1-00-321386-4. [Google Scholar]
- Ndaba, B.; Roopnarain, A.; Rama, H.; Maaza, M. Biosynthesized Metallic Nanoparticles as Fertilizers: An Emerging Precision Agriculture Strategy. J. Integr. Agric. 2022, 21, 1225–1242. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
- Kumari, R.; Singh, D.P. Nano-Biofertilizer: An Emerging Eco-Friendly Approach for Sustainable Agriculture. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 733–741. [Google Scholar] [CrossRef]
- Khaldari, I.; Naghavi, M.R.; Motamedi, E. Synthesis of Green and Pure Copper Oxide Nanoparticles Using Two Plant Resources via Solid-State Route and Their Phytotoxicity Assessment. RSC Adv. 2021, 11, 3346–3353. [Google Scholar] [CrossRef]
- Hassanisaadi, M.; Barani, M.; Rahdar, A.; Heidary, M.; Thysiadou, A.; Kyzas, G.Z. Role of Agrochemical-Based Nanomaterials in Plants: Biotic and Abiotic Stress with Germination Improvement of Seeds. Plant Growth Regul. 2022, 97, 375–418. [Google Scholar] [CrossRef]
- Madanayake, N.H.; Adassooriya, N.M. Phytotoxicity of Nanomaterials in Agriculture. Open Biotechnol. J. 2021, 15, 109–118. [Google Scholar] [CrossRef]
- Maghsoodi, M.R.; Lajayer, B.A.; Hatami, M.; Mirjalili, M.H. Challenges and Opportunities of Nanotechnology in Plant-Soil Mediated Systems: Beneficial Role, Phytotoxicity, and Phytoextraction. In Advances in Phytonanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 379–404. ISBN 978-0-12-815322-2. [Google Scholar]
- Kushwah, K.S.; Patel, S.; Verma, D.K. Synthesis and Effect of TiO2 Nanoparticles on Phytotoxicity and Genotoxicity in Pisum sativum L. Vegetos 2022, 35, 204–211. [Google Scholar] [CrossRef]
- Peharec Štefanić, P.; Košpić, K.; Lyons, D.M.; Jurković, L.; Balen, B.; Tkalec, M. Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure. Nanomaterials 2021, 11, 744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Petersen, S.D.; Radivojevic, T.; Ramirez, A.; Pérez-Manríquez, A.; Abeliuk, E.; Sánchez, B.J.; Costello, Z.; Chen, Y.; Fero, M.J.; et al. Combining Mechanistic and Machine Learning Models for Predictive Engineering and Optimization of Tryptophan Metabolism. Nat. Commun. 2020, 11, 4880. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, G.S.; Mahawar, L.; Rajput, P.; Rajput, V.D.; Minkina, T.; Singh, R.K. Role of Engineered Carbon Nanoparticles (CNPs) in Promoting Growth and Metabolism of Vigna radiata (L.) Wilczek: Insights into the Biochemical and Physiological Responses. Plants 2021, 10, 1317. [Google Scholar] [CrossRef]
- Ioannou, A.; Gohari, G.; Papaphilippou, P.; Panahirad, S.; Akbari, A.; Dadpour, M.R.; Krasia-Christoforou, T.; Fotopoulos, V. Advanced Nanomaterials in Agriculture under a Changing Climate: The Way to the Future? Environ. Exp. Bot. 2020, 176, 104048. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, X.; Zhou, H.; Sun, N.; Wang, T.; Bi, C.; Zhang, X. CRISPR-Based Metabolic Pathway Engineering. Metab. Eng. 2021, 63, 148–159. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, F.; Liu, Q.; Chen, M.; Liu, X.; Wang, Y.; Sun, Y.; Zhang, L. Nanomaterials and Plants: Positive Effects, Toxicity and the Remediation of Metal and Metalloid Pollution in Soil. Sci. Total Environ. 2019, 662, 414–421. [Google Scholar] [CrossRef]
- Song, B.; Xu, P.; Chen, M.; Tang, W.; Zeng, G.; Gong, J.; Zhang, P.; Ye, S. Using Nanomaterials to Facilitate the Phytoremediation of Contaminated Soil. Crit. Rev. Environ. Sci. Technol. 2019, 49, 791–824. [Google Scholar] [CrossRef]
- Ali, M.A.; Ahmed, T.; Wu, W.; Hossain, A.; Hafeez, R.; Islam Masum, M.M.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomaterials 2020, 10, 1146. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Lombi, E.; Wang, P.; Schjoerring, J.K.; Husted, S. Nanomaterials as Fertilizers for Improving Plant Mineral Nutrition and Environmental Outcomes. Environ. Sci. Nano 2019, 6, 3513–3524. [Google Scholar] [CrossRef]
- Sadak, M.S. Impact of Silver Nanoparticles on Plant Growth, Some Biochemical Aspects, and Yield of Fenugreek Plant (Trigonella Foenum-Graecum). Bull. Natl. Res. Cent. 2019, 43, 38. [Google Scholar] [CrossRef]
- Metwally, R.A.; Azab, H.S.; Al-Shannaf, H.M.; Rabie, G.H. Prospective of Mycorrhiza and Beauvaria Bassiana Silica Nanoparticles on Gossypium hirsutum L. Plants as Biocontrol Agent against Cotton Leafworm, Spodoptera Littoralis. BMC Plant Biol. 2022, 22, 409. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Hassanisaadi, M.; Vatankhah, M.; Soroush, F.; Varma, R.S. Nano/Microencapsulation of Plant Biocontrol Agents by Chitosan, Alginate, and Other Important Biopolymers as a Novel Strategy for Alleviating Plant Biotic Stresses. Int. J. Biol. Macromol. 2022, 222, 1589–1604. [Google Scholar] [CrossRef]
- Win, T.T.; Khan, S.; Fu, P. Fungus- (Alternaria sp.) Mediated Silver Nanoparticles Synthesis, Characterization, and Screening of Antifungal Activity against Some Phytopathogens. J. Nanotechnol. 2020, 2020, 8828878. [Google Scholar] [CrossRef]
- Ghosh, S.; Nag, M.; Lahiri, D.; Ghosh, S.; Dey, A.; Ray, R.R. Biogenic Nanoparticles from Cyanobacteria and Their Applications. In Agricultural Nanobiotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 79–103. ISBN 978-0-323-91908-1. [Google Scholar]
- Rashad, Y.M.; El-Sharkawy, H.H.A.; Belal, B.E.A.; Abdel Razik, E.S.; Galilah, D.A. Silica Nanoparticles as a Probable Anti-Oomycete Compound Against Downy Mildew, and Yield and Quality Enhancer in Grapevines: Field Evaluation, Molecular, Physiological, Ultrastructural, and Toxicity Investigations. Front. Plant Sci. 2021, 12, 763365. [Google Scholar] [CrossRef]
- Unsoy, G.; Gunduz, U. Targeted Drug Delivery via Chitosan-Coated Magnetic Nanoparticles. In Nanostructures for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 835–864. ISBN 978-0-323-46143-6. [Google Scholar]
- Mittal, D.; Kumar, A.; Balasubramaniam, B.; Thakur, R.; Singh Siwal, S.; Saini, R.V.; Gupta, R.K.; Saini, A.K. Synthesis of Biogenic Silver Nanoparticles Using Plant Growth-Promoting Bacteria: Potential Use as Biocontrol Agent against Phytopathogens. Biomater. Polym. Horiz. 2021, 1, 22–31. [Google Scholar] [CrossRef]
- Bhatia, R.; Gulati, D.; Sethi, G. Biofilms and Nanoparticles: Applications in Agriculture. Folia Microbiol. 2021, 66, 159–170. [Google Scholar] [CrossRef]
- Suresh, M.; Jeevanandam, J.; Chan, Y.S.; Danquah, M.K.; Kalaiarasi, J.M.V. Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. BioNanoScience 2020, 10, 292–310. [Google Scholar] [CrossRef]
- Zaki, S.A.; Ouf, S.A.; Abd-Elsalam, K.A.; Asran, A.A.; Hassan, M.M.; Kalia, A.; Albarakaty, F.M. Trichogenic Silver-Based Nanoparticles for Suppression of Fungi Involved in Damping-Off of Cotton Seedlings. Microorganisms 2022, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Atalla, S.M.; El Gamal, N.G.; Khalil, M.S. Evaluation of Enzyme Production and Biocontrol Agent of Zinc Nanoparticles from Gonatorrhodiella Parasitica. Egypt. Pharm. J. 2020, 19, 252. [Google Scholar] [CrossRef]
- Amanlou, N.; Parsa, M.; Rostamizadeh, K.; Sadighian, S.; Moghaddam, F. Enhanced Cytotoxic Activity of Curcumin on Cancer Cell Lines by Incorporating into Gold/Chitosan Nanogels. Mater. Chem. Phys. 2019, 226, 151–157. [Google Scholar] [CrossRef]
- Ramtin, M.; Sharifnia, F.; Larypoor, M.; Mirpour, M.; Zarrabi, S. Antimicrobial and Antioxidant Activity of Carum copticum (L.) Link and Iris pseudacorus L. Essential Oils before and after the Encapsulation in Polyamide. J. Food Process. Preserv. 2022, 46, e16447. [Google Scholar] [CrossRef]
- Mohanraj, J.; Subramanian, K.S.; Raja, K. Effect of Multinutrients Loaded Electrospun PVA Nanofibre on Germination and Its Growth Parameters of Green Gram [Vigna radiata (L.) Wilczek]. Legume Res.—Int. J. 2022, 45, 587–593. [Google Scholar] [CrossRef]
- Badgar, K.; Abdalla, N.; El-Ramady, H.; Prokisch, J. Sustainable Applications of Nanofibers in Agriculture and Water Treatment: A Review. Sustainability 2022, 14, 464. [Google Scholar] [CrossRef]
- Maluin, F.N.; Hussein, M.Z. Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules 2020, 25, 1611. [Google Scholar] [CrossRef]
- Shanmugam, H. An Insight on Developing Nanoformulations Suitable for Delivering Plant Beneficial Microorganisms to Crops under Abiotic Stresses. In Mitigation of Plant Abiotic Stress by Microorganisms; Elsevier: Amsterdam, The Netherlands, 2022; pp. 273–297. ISBN 978-0-323-90568-8. [Google Scholar]
- Takeshita, V.; Munhoz-Garcia, G.V.; Werk Pinácio, C.; Cardoso, B.C.; Nalin, D.; Tornisielo, V.L.; Fraceto, L.F. Availability of Metribuzin-Loaded Polymeric Nanoparticles in Different Soil Systems: An Important Study on the Development of Safe Nanoherbicides. Plants 2022, 11, 3366. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Dwivedi, P. Chitosan Based Nanoformulation for Sustainable Agriculture with Special Reference to Abiotic Stress: A Review. J. Polym. Environ. 2022, 30, 1264–1283. [Google Scholar] [CrossRef]
- Hamzah, W.M.; Reyes, I.G.C.; Mendoza Pérez, J.A. Nanotechnology for Pest and Microbiological Control. In Agricultural and Environmental Nanotechnology; Fernandez-Luqueno, F., Patra, J.K., Eds.; Interdisciplinary Biotechnological Advances; Springer Nature Singapore: Singapore, 2023; pp. 393–409. ISBN 978-981-19545-3-5. [Google Scholar]
- Kumar, Y. Nanofertilizers for Enhancing Nutrient Use Efficiency, Crop Productivity and Economic Returns in Winter Season Crops of Rajasthan. Ann. Plant Soil Res. 2020, 22, 324–335. [Google Scholar] [CrossRef]
- Morovat, J.; Pasari, B.; Rokhzadi, A. Effect of Pluramin and Iron and Zinc Nano-Fertilizer on Rainfed Chickpea (Cicer arietinum L.) at on-Farm Conditions. J. Cent. Eur. Agric. 2019, 20, 647–656. [Google Scholar] [CrossRef]
- Yusefi-Tanha, E.; Fallah, S.; Rostamnejadi, A.; Pokhrel, L.R. Zinc Oxide Nanoparticles (ZnONPs) as a Novel Nanofertilizer: Influence on Seed Yield and Antioxidant Defense System in Soil Grown Soybean (Glycine Max Cv. Kowsar). Sci. Total Environ. 2020, 738, 140240. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, N.; Aswathy, S.; Malaikozhundan, B.; Boopathi, T. Nano-Zinc Oxide Synthesized Using Diazotrophic Azospirillum Improves the Growth of Mung Bean, Vigna Radiata. Int. Nano Lett. 2021, 11, 405–415. [Google Scholar] [CrossRef]
- Salama, D.M.; Abd El-Aziz, M.E.; Shaaban, E.A.; Osman, S.A.; Abd El-Wahed, M.S. The Impact of Nanofertilizer on Agro-Morphological Criteria, Yield, and Genomic Stability of Common Bean (Phaseolus vulgaris L.). Sci. Rep. 2022, 12, 18552. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Martínez, M.; Perez-Zabaleta, M.; Gustavsson, M.; Quillaguamán, J.; Larsson, G.; Van Maris, A.J.A. The Role of the Acyl-CoA Thioesterase “YciA” in the Production of (R)-3-Hydroxybutyrate by Recombinant Escherichia Coli. Appl. Microbiol. Biotechnol. 2019, 103, 3693–3704. [Google Scholar] [CrossRef]
- Feng, L.-J.; Li, J.-W.; Xu, E.G.; Sun, X.-D.; Zhu, F.-P.; Ding, Z.; Tian, H.; Dong, S.-S.; Xia, P.-F.; Yuan, X.-Z. Short-Term Exposure to Positively Charged Polystyrene Nanoparticles Causes Oxidative Stress and Membrane Destruction in Cyanobacteria. Environ. Sci. Nano 2019, 6, 3072–3079. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Ayad, A.A.; Abdel-Aziz, H.S.M.; Williams, L.L.; El-Shazoly, R.M.; Abdel-Wahab, A.; Abdeldaym, E.A. Foliar Application of Different Iron Sources Improves Morpho-Physiological Traits and Nutritional Quality of Broad Bean Grown in Sandy Soil. Plants 2022, 11, 2599. [Google Scholar] [CrossRef]
- Han, C.; Yang, J.; Zhou, X.; Yun, P.; Li, X.; Xu, D.; Zhong, Y.; Zhong, B.; Yan, Z.; Wang, X. Fulvic–Polyphosphate Composite Embedded in ZnO Nanorods (FA–APP@ZnO) for Efficient P/Zn Nutrition for Peas (Pisum sativum L.). RSC Adv. 2022, 12, 33008–33020. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Current and Future Perspectives on the Use of Nanofertilizers for Sustainable Agriculture: The Case of Phosphorus Nanofertilizer. 3 Biotech 2021, 11, 357. [Google Scholar] [CrossRef]
- Al-Antary, T.M.; Ghidan, A.Y. Strengths and Weaknesses of Metal Oxide Nanoparticles in Agriculture. In Nanometal Oxides in Horticulture and Agronomy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 353–376. ISBN 978-0-323-91809-1. [Google Scholar]
- Murgueitio-Herrera, E.; Falconí, C.E.; Cumbal, L.; Gómez, J.; Yanchatipán, K.; Tapia, A.; Martínez, K.; Sinde-Gonzalez, I.; Toulkeridis, T. Synthesis of Iron, Zinc, and Manganese Nanofertilizers, Using Andean Blueberry Extract, and Their Effect in the Growth of Cabbage and Lupin Plants. Nanomaterials 2022, 12, 1921. [Google Scholar] [CrossRef]
- Sheoran, P.; Grewal, S.; Kumari, S.; Goel, S. Enhancement of Growth and Yield, Leaching Reduction in Triticum Aestivum Using Biogenic Synthesized Zinc Oxide Nanofertilizer. Biocatal. Agric. Biotechnol. 2021, 32, 101938. [Google Scholar] [CrossRef]
- Ibrahim, G.; Hegab, R. Improving Yield of Barley Using Bio and Nano Fertilizers under Saline Conditions. Egypt. J. Soil Sci. 2022, 62, 41–53. [Google Scholar] [CrossRef]
- Al-Yasari, M.N.H. Potassium and Nano-Copper Fertilization Effects on Morphological and Production Traits of Oat (Avena sativa L.). SABRAO J. Breed. Genet. 2022, 54, 678–685. [Google Scholar] [CrossRef]
- Pinchuk, L.G.; Piyanyh, A.V.; Sergeeva, I.A.; Konstantinova, O.B. Usage of Bioorganic Nano-Fertilizer Nagro as Opportunity of Ecologization for Winter Rye Development (Secale Cereale). IOP Conf. Ser. Mater. Sci. Eng. 2019, 582, 012016. [Google Scholar] [CrossRef]
- Sepehrzadegan, Z.; Alizadeh, O. Investigation of the Growth Bacteria and Nano Iron on the Chlorophyll and Some Nutrients Triticale. Rev. Agrogeoambiental 2021, 13. [Google Scholar] [CrossRef]
- Azam, M.; Bhatti, H.N.; Khan, A.; Zafar, L.; Iqbal, M. Zinc Oxide Nano-Fertilizer Application (Foliar and Soil) Effect on the Growth, Photosynthetic Pigments and Antioxidant System of Maize Cultivar. Biocatal. Agric. Biotechnol. 2022, 42, 102343. [Google Scholar] [CrossRef]
- Sadati Valojai, S.T.; Niknejad, Y.; Fallah Amoli, H.; Barari Tari, D. Response of Rice Yield and Quality to Nano-Fertilizers in Comparison with Conventional Fertilizers. J. Plant Nutr. 2021, 44, 1971–1981. [Google Scholar] [CrossRef]
- Kumar, R.S.A.; Sharmili, K.; Balaganesh, B.; Manuel, R.I. Comparative Evaluation of Neem-Coated Urea and Nano Urea on the Growth and Physiological Attributes of Finger Millet (Eleusine coracana L. Gaertn). Int. J. Environ. Clim. Change 2023, 13, 785–792. [Google Scholar] [CrossRef]
- Kolenčík, M.; Ernst, D.; Komár, M.; Urík, M.; Šebesta, M.; Dobročka, E.; Černý, I.; Illa, R.; Kanike, R.; Qian, Y.; et al. Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria italica L.) under Field Conditions. Nanomaterials 2019, 9, 1559. [Google Scholar] [CrossRef]
- Samundeswari, R.; Jeyapandiyan, N.; Anitha, M.; Kalaiarasi, J.P.; Poonguzhali, R.S.; Jayapradha, C.; Rathikannu, S.; Kumar, K.U. Impact of Different Levels of Iron Fertilizer on Growth and Yield Physiology of Kodo Millet under Rainfed Conditions—An Overview. J. Appl. Biol. Biotechnol. 2022, 11, 33–40. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-Enabled Strategies to Enhance Crop Nutrition and Protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Sarker, N.C.; Ray, P.; Pfau, C.; Kalavacharla, V.; Hossain, K.; Quadir, M. Development of Functional Nanomaterials from Wheat Bran Derived Arabinoxylan for Nucleic Acid Delivery. J. Agric. Food Chem. 2020, 68, 4367–4373. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, R.; Gayathiri, E.; Sankar, S.; Venkidasamy, B.; Prakash, P.; Rekha, K.; Savaner, V.; Pari, A.; Thirumalaivasan, N.; Thiruvengadam, M. Emerging Trends of Nanotechnology and Genetic Engineering in Cyanobacteria to Optimize Production for Future Applications. Life 2022, 12, 2013. [Google Scholar] [CrossRef] [PubMed]
- Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; et al. Recent Advances in Green Technology and Industrial Revolution 4.0 for a Sustainable Future. Environ. Sci. Pollut. Res. 2022, 9, 1–32. [Google Scholar] [CrossRef]
- Shaban, E.E.; Elbakry, H.F.H.; Ibrahim, K.S.; El Sayed, E.M.; Salama, D.M.; Farrag, A.-R.H. The Effect of White Kidney Bean Fertilized with Nano-Zinc on Nutritional and Biochemical Aspects in Rats. Biotechnol. Rep. 2019, 23, e00357. [Google Scholar] [CrossRef]
- Shaban, E.E.; Salama, D.M.; Abd El-Aziz, M.E.; Ibrahim, K.S.; Nasr, S.M.; Desouky, H.M.; Elbakry, H.F.H. The Effect of Exposure to MoO3-NP and Common Bean Fertilized by MoO3-NPs on Biochemical, Hematological, and Histopathological Parameters in Rats. Sci. Rep. 2022, 12, 12074. [Google Scholar] [CrossRef]
- Kumar, N.; Samota, S.R.; Venkatesh, K.; Tripathi, S.C. Global Trends in Use of Nano-Fertilizers for Crop Production: Advantages and Constraints—A Review. Soil Tillage Res. 2023, 228, 105645. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Arunkumar, P.; Joo, S.-W.; Gnanasekaran, L.; Kamyab, H.; Rajendran, S.; Balakrishnan, D.; Chelliapan, S.; Klemeš, J.J. Metal-Organic Framework-Enabled Pesticides Are an Emerging Tool for Sustainable Cleaner Production and Environmental Hazard Reduction. J. Clean. Prod. 2022, 373, 133966. [Google Scholar] [CrossRef]
- Su, Y.; Zhou, X.; Meng, H.; Xia, T.; Liu, H.; Rolshausen, P.; Roper, C.; McLean, J.E.; Zhang, Y.; Keller, A.A.; et al. Cost–Benefit Analysis of Nanofertilizers and Nanopesticides Emphasizes the Need to Improve the Efficiency of Nanoformulations for Widescale Adoption. Nat. Food 2022, 3, 1020–1030. [Google Scholar] [CrossRef]
- Schwab, F. Opportunities and Limitations of Nanoagrochemicals. Helv. Chim. Acta 2023, 106, e202200136. [Google Scholar] [CrossRef]
- Khan, M.R.; Adam, V.; Rizvi, T.F.; Zhang, B.; Ahamad, F.; Jośko, I.; Zhu, Y.; Yang, M.; Mao, C. Nanoparticle–Plant Interactions: Two-Way Traffic. Small 2019, 15, 1901794. [Google Scholar] [CrossRef] [PubMed]
- Nongbet, A.; Mishra, A.K.; Mohanta, Y.K.; Mahanta, S.; Ray, M.K.; Khan, M.; Baek, K.-H.; Chakrabartty, I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. Plants 2022, 11, 2587. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Pizarro, R.; Martín, M.; Svobodova-Sedlackova, A.; Calderón, A.; Haurie, L.; Fernández, A.I.; Barreneche, C. Manufacturing of Nano-Enhanced Shape Stabilized Phase Change Materials with Montmorillonite by Banbury Oval Rotor Mixer for Buildings Applications. J. Energy Storage 2022, 55, 105289. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, Z.; Ji, Y.; Tian, L.; Chen, W.; Zhang, T. Natural Organic Matter Facilitates Formation and Microbial Methylation of Mercury Selenide Nanoparticles. Environ. Sci. Nano 2021, 8, 67–75. [Google Scholar] [CrossRef]
- Oh, J.Y.; Choi, E.; Jana, B.; Go, E.M.; Jin, E.; Jin, S.; Lee, J.; Bae, J.; Yang, G.; Kwak, S.K.; et al. Protein-Precoated Surface of Metal-Organic Framework Nanoparticles for Targeted Delivery. Small 2023, 19, 2300218. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.; Chauhan, R.; Yadav, A.S.; Bajpai, S. LCA of Nanomaterials for Bioremediation. In Nanotechnology for Environmental Remediation; Thomas, S., Thomas, M.S., Pothen, L.A., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 413–431. ISBN 978-3-527-34927-2. [Google Scholar]
- Joshi, S. Can Nanotechnology Improve the Sustainability of Biobased Products? J. Ind. Ecol. 2008, 12, 474–489. [Google Scholar] [CrossRef]
- Marques, S.M.; Kumar, L. Improving the Sustainability of Biobased Products Using Nanotechnology. In Sustainable Nanotechnology; Pathak, Y.V., Parayil, G., Patel, J.K., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 51–70. ISBN 978-1-119-64997-7. [Google Scholar]
- Álvarez-Chávez, C.R.; Edwards, S.; Moure-Eraso, R.; Geiser, K. Sustainability of Bio-Based Plastics: General Comparative Analysis and Recommendations for Improvement. J. Clean. Prod. 2012, 23, 47–56. [Google Scholar] [CrossRef]
- Wang, H.; Ding, K. Effect of Self-Made TiO2 Nanoparticle Size on the Performance of the PVDF Composite Membrane in MBR for Landfill Leachate Treatment. Membranes 2022, 12, 216. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Chung, S.J. Reclamation of Hexavalent Chromium Using Catalytic Activity of Highly Recyclable Biogenic Pd(0) Nanoparticles. Sci. Rep. 2020, 10, 640. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Sedaghat Doost, A.; Gupta, V.; Bin Sintang, M.D.; Van De Walle, D.; Van Der Meeren, P.; Dewettinck, K. Stability and Functionality of Xanthan Gum–Shellac Nanoparticles for the Encapsulation of Cinnamon Bark Extract. Food Hydrocoll. 2020, 100, 105377. [Google Scholar] [CrossRef]
- Ahmed, B.; Rizvi, A.; Ali, K.; Lee, J.; Zaidi, A.; Khan, M.S.; Musarrat, J. Nanoparticles in the Soil–Plant System: A Review. Environ. Chem. Lett. 2021, 19, 1545–1609. [Google Scholar] [CrossRef]
- Li, F.; Li, R.; Lu, F.; Xu, L.; Gan, L.; Chu, W.; Yan, M.; Gong, H. Adverse Effects of Silver Nanoparticles on Aquatic Plants and Zooplankton: A Review. Chemosphere 2023, 338, 139459. [Google Scholar] [CrossRef] [PubMed]
Common Names | Scientific Names | Commercial Name of the Final Product | Microbes or Biomolecules | Nanocomposite | Stress Conditions | Mode of Application | Impact on Plant | Reference | |
---|---|---|---|---|---|---|---|---|---|
Pulse Crops | 1. Chickpea | Cicer arietinum | - | pluramin amino acid | Iron + zinc nano-fertilizers | Normal | Seed | Increase in pod numbers, grain yield, and biomass | [147] |
2. Soyabean | Glycine max | ZnONP | Rhizobium japoniscum | Zn2+ | Normal | Seed | Increase in seed yield | [148] | |
3. Mungbean | Vigna radiata | As-ZnO NPs | Azospirillum | Zn2+ | Normal | Seed | Increase in seed germination rate and leaf area index | [149] | |
4. Urdbean | V. mungo | IFFCO nano fertilizer | - | Nano-Zn and Nano-Cu | Normal | Seed | Increase in grain yield | [146] | |
5. Dry bean | Phaseolus vulgaris | MN-NPs | - | ZnO, MnO2 and MoO3 | Normal | Seed | Improvement in vegetative yield, flower number, and yield | [150] | |
6. Lentil | Lens culinaris | MgO-NPs | - | MgO | Normal | Seed | Improvement in protein content | [151] | |
7. Pigeonpea | Cajanus cajan | CuO-NP | - | CuO | Normal | Soil | Increase in total yield | [152] | |
8. Cowpea | Vigna unguiculata | - | Burkholderia seminalis | nanohydroxyapatite (nHA) particles | Normal | Seed | Growth of endophytic root nodules | [100] | |
9. Dry broad beans | Vicia faba | FeNPs | - | Fe | Normal | Seed | Increase in the production of growth-promoting phytohormones and photosynthetic pigments | [153] | |
10. Dry peas | Pisum sativum | FA–APP @ ZnO | fulvic acid (FA) and ammonium phosphate | ZnO nanorods | Normal | Seed | Induced stronger roots, and increase in yield | [154] | |
11. Peanut beans | Arachis hypogaea | - | - | nano-zeolite phosphorus | Normal | Seed | Increased yield of pods, and oil content | [155] | |
12. Vetches | Vicia sativa | - | - | CuONPs, ZnONPs, MgHNPs, and MgONPs | Normal | Seed | Increased the number of bean pods | [156] | |
13. Lupins | Lupinus mutabilis | - | - | ZnO_MnO-NPs | Normal | Seed | Increase in root size and photosynthetic pigments | [157] | |
Cereal crops | 1. Wheat | Triticum aestivum | ZnO | - | zinc nitrate | Oxidative stress | Seed | Increase in catalase, peroxidase, and superoxide dismutase | [158] |
2. Barley | Hordeum vulgare | - | Acinetobacter baumannii | Nano phosphozink | Normal | Foliar spray | Improvement in the yield of Barley | [159] | |
3. Oats | Avena sativa | - | - | Nano copper | Normal | Seed | Increase in the yield of oats | [160] | |
4. Rye | Secale cereale | Nagro | - | Nagro | Normal | Seed | Improvement in the phytohormones | [161] | |
5. Triticale | Triticosecale | - | Azotobacter crocococcus, Azospirillium methylpofrom, and Pseudomonas putida | Nano Fe | Normal | Seed | Increase in yield and photosynthetic pigments | [162] | |
6. Maize | Zea mays | ZnO | - | ZnO | Normal | Seed | Improvement in growth, photosynthetic pigments, and antioxidant in maize | [163] | |
7. Rice | Oryza sativa | - | - | nano-N (nN), nano-P (nP), nano-K (nK), and nano-NPK (nNPK) | Normal | Seed | Grain quality enhanced | [164] | |
Millets | 1. Sorghum | Sorghum bicolor (L.) | - | Azotobacter | Nano-fertilizer | Normal | Foliar spray | Increased chlorophyll content, carotenoid | [13] |
2. Pearl Millet | Pennisetum glaucum | - | - | Zn and Ag Nanoparticles | Normal | Foliar spray | Caused toxicity and oxidative stress | [146] | |
3. Finger Millet | Eleusine coracana | IFFCO nano urea | - | nano urea | Normal | Foliar spray | Overcame deficiency of nitrogen in the soil | [165] | |
4. Foxtail Millet | Setaria italica | - | - | ZnO NPs | Normal | Foliar spray | Improved grain nutritional properties | [166] | |
5. Kodo Millet | Paspalum scrobiculatum | - | - | Fe2SO4 | Normal | Foliar spray | Increase in the grain weight and grain yield | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garg, D.; Sridhar, K.; Stephen Inbaraj, B.; Chawla, P.; Tripathi, M.; Sharma, M. Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications. Bioengineering 2023, 10, 1010. https://doi.org/10.3390/bioengineering10091010
Garg D, Sridhar K, Stephen Inbaraj B, Chawla P, Tripathi M, Sharma M. Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications. Bioengineering. 2023; 10(9):1010. https://doi.org/10.3390/bioengineering10091010
Chicago/Turabian StyleGarg, Diksha, Kandi Sridhar, Baskaran Stephen Inbaraj, Prince Chawla, Manikant Tripathi, and Minaxi Sharma. 2023. "Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications" Bioengineering 10, no. 9: 1010. https://doi.org/10.3390/bioengineering10091010
APA StyleGarg, D., Sridhar, K., Stephen Inbaraj, B., Chawla, P., Tripathi, M., & Sharma, M. (2023). Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications. Bioengineering, 10(9), 1010. https://doi.org/10.3390/bioengineering10091010