Finite Element Analysis of Head–Neck Kinematics in Rear-End Impact Conditions with Headrest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling
2.2. Validation
2.3. Whiplash Study
3. Results
3.1. Validation Analysis
3.2. Whiplash Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panjabi, M.M.; Cholewicki, J.; Nibu, K.; Babat, L.B.; Dvorak, J. Simulation of whiplash trauma using whole cervical spine specimens. Spine 1998, 23, 17–24. [Google Scholar] [CrossRef]
- Grauer, J.N.; Panjabi, M.M.; Cholewicki, J.; Nibu, K.; Dvorak, J. Whiplash produces an S-shaped curvature of the neck with hyperextension at lower levels. Spine 1997, 22, 2489–2494. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, M.M.; Cholewicki, J.; Nibu, K.; Grauer, J.N.; Babat, L.B.; Dvorak, J. Mechanism of whiplash injury. Clin. Biomech. 1998, 13, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, M.M.; Nibu, K.; Cholewicki, J. Whiplash injuries and the potential for mechanical instability. Eur. Spine J. 1998, 7, 484–492. [Google Scholar] [CrossRef]
- Nishida, N.; Suzuki, H.; Jiang, F.; Fuchigami, Y.; Tome, R.; Funaba, M.; Sakai, T. Posterior Fixation for Different Thoracic-Sacrum Alignments Containing a Thoracolumbar Vertebral Fracture: A Finite Element Analysis. World Neurosurg. 2023. [Google Scholar] [CrossRef]
- Xu, G.; Liang, Z.; Tian, T.; Meng, Q.; Bertin, K.M.; Mo, F. Development of a finite element full spine model with active muscles for quantitatively analyzing sarcopenia effects on lumbar load. Comput. Methods Programs Biomed. 2023, 240, 107709. [Google Scholar] [CrossRef]
- Panjabi, M.M. Cervical spine models for biomechanical research. Spine 1998, 23, 2684–2700. [Google Scholar] [CrossRef] [PubMed]
- Goel, V.K.; Clausen, J.D. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach. Spine 1998, 23, 684–691. [Google Scholar] [CrossRef]
- Ng, H.W.; Teo, E.C. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading. J. Spinal Disord. 2001, 14, 201–210. [Google Scholar] [CrossRef]
- Teo, E.C.; Ng, H.W. First cervical vertebra (atlas) fracture mechanism studies using finite element method. J. Biomech. 2001, 34, 13–21. [Google Scholar] [CrossRef]
- Puttlitz, C.M.; Goel, V.K.; Clark, C.R.; Traynelis, V.C.; Scifert, J.L.; Grosland, N.M. Biomechanical rationale for the pathology of rheumatoid arthritis in the craniovertebral junction. Spine 2000, 25, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Linder, A. A new mathematical neck model for a low-velocity rear-end impact dummy: Evaluation of components influencing head kinematics. Accid. Anal. Prev. 2000, 32, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Garcia, T.; Ravani, B. A biomechanical evaluation of whiplash using a multi-body dynamic model. J. Biomech. Eng. 2003, 125, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Tencer, A.F.; Mirza, S.; Bensel, K. Internal loads in the cervical spine during motor vehicle rear-end impacts: The effect of acceleration and head-to-head restraint proximity. Spine 2002, 27, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-C.; Goldsmith, W. Response of a human head/neck/upper-torso replica to dynamic loading-II: Analytical/numerical model. J. Biomech. 1987, 20, 487–497. [Google Scholar] [CrossRef]
- Stemper, B.D.; Kumaresan, S.; Yoganandan, N.; Pintar, F.A. Head-neck finite element model for motor vehicle inertial impact: Material sensitivity analysis. Biomed. Sci. Instrum. 2000, 36, 331–335. [Google Scholar]
- Camacho, D.L.; Nightingale, R.W.; Myers, B.S. Surface friction in near-vertex head and neck impact increases risk of injury. J. Biomech. 1999, 32, 293–301. [Google Scholar] [CrossRef]
- Li, T.C.; Liu, C.J.; Liu, S.Y.; Wang, X.; Feng, J.J.; Wang, J.T.; Du, C.F. Effect of muscle activation on dynamic responses of neck of pilot during emergency ejection: A finite element study. Med. Biol. Eng. Comput. 2023, 61, 2255–2268. [Google Scholar] [CrossRef]
- Li, F.; Lu, R.; Hu, W.; Li, H.; Hu, S.; Hu, J.; Wang, H.; Xie, H. The Influence of Neck Muscle Activation on Head and Neck Injuries of Occupants in Frontal Impacts. Appl. Bionics Biomech. 2018, 2018, 7279302. [Google Scholar] [CrossRef]
- Nasim, M.; Galvanetto, U. Muscle activity on head-first compression responses of a finite element neck model. Forces Mech. 2023, 10, 100163. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Teo, E.C.; Ng, H.W. Development and validation of a C0-C7 FE complex for biomechanical study. ASME J. Biomech. Eng. 2005, 127, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Gilad, I.; Nissan, M. A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine 1986, 11, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Ransford, A. The Cervical Spine; The Cervical Spine Research Society Editorial Committee, Ed.; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1998. [Google Scholar]
- Nightingale, R.W. The Dynamics of Head and Cervical Spine Impact. Ph.D Thesis, Duke University, Durham, NC, USA, 1993. [Google Scholar]
- Goel, V.K.; Clark, C.R.; Gallaes, K.; Liu, Y.K. Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J. Biomech. 1988, 21, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, M.M.; Crisco, J.J.; Vasavada, A.; Oda, T.; Cholewicki, J.; Nibu, K.; Shin, E. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine 2001, 26, 2692–2700. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Kim, Y.E.; Lee, C.S.; Hong, Y.M.; Jung, J.M.; Goel, V.K. Impact response of the intervertebral disc in a finite-element model. Spine 2000, 25, 2431–2439. [Google Scholar] [CrossRef]
Material | Young’s Modulus (MPa) | Poisson’s Ratio | Density (kg/mm3) |
---|---|---|---|
Cortical Bone | 12,000.0 | 0.29 | 1.83 × 10−6 |
Cancellous Bone | 450.0 | 0.29 | 1.00 × 10−6 |
Endplates | 500.0 | 0.40 | 1.83 × 10−6 |
Posterior Element | 3500.0 | 0.29 | 1.83 × 10−6 |
Annulus | 3.4 | 0.40 | 1.20 × 10−6 |
Nucleus | 1.0 | 0.49 | 1.36 × 10−6 |
Ligaments | |||
ALL | 30.0 | 0.30 | |
PLL | 20.0 | 0.30 | |
ISL, LF (C1–C2) | 10.0 | 0.30 | |
SSL, ISL, LF (C2–C7) | 1.5 | ||
CL (C1–C3) | 10.0 | 0.30 | |
CL (C3–C7) | 20.0 | ||
CL (C0–C1) | 1.0 | ||
AlL | 5.0 | 0.30 | |
TL | 20.0 | 0.30 | |
ApL | 20.0 | 0.30 | |
Anterior Membrane | 20.0 | 0.30 | |
Posterior Membrane | 20.0 | 0.30 | |
NL | 20.0 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jiang, H.; Teo, E.C.; Gu, Y. Finite Element Analysis of Head–Neck Kinematics in Rear-End Impact Conditions with Headrest. Bioengineering 2023, 10, 1059. https://doi.org/10.3390/bioengineering10091059
Wang Y, Jiang H, Teo EC, Gu Y. Finite Element Analysis of Head–Neck Kinematics in Rear-End Impact Conditions with Headrest. Bioengineering. 2023; 10(9):1059. https://doi.org/10.3390/bioengineering10091059
Chicago/Turabian StyleWang, Yuan, Hanhui Jiang, Ee Chon Teo, and Yaodong Gu. 2023. "Finite Element Analysis of Head–Neck Kinematics in Rear-End Impact Conditions with Headrest" Bioengineering 10, no. 9: 1059. https://doi.org/10.3390/bioengineering10091059
APA StyleWang, Y., Jiang, H., Teo, E. C., & Gu, Y. (2023). Finite Element Analysis of Head–Neck Kinematics in Rear-End Impact Conditions with Headrest. Bioengineering, 10(9), 1059. https://doi.org/10.3390/bioengineering10091059