Preclinical Experimental Study on New Cervical Implant Design to Improve Peri-Implant Tissue Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implants and Group Formation
2.2. Animal Model and Care
2.3. Implant Surgery and Distribution and Animal Euthanasia
2.4. Implant Stability Quotient (ISQ) Measurement
2.5. Histological Preparation and Measurements
2.6. Statistical Analysis
3. Results
3.1. Implant Stability Quotient (ISQ) Results
3.2. Histological Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perussolo, J.; Donos, N. Maintenance of peri-implant health in general dental practice. Br. Dent. J. 2024, 236, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Sartoretto, S.C.; Shibli, J.A.; Javid, K.; Cotrim, K.; Canabarro, A.; Louro, R.S.; Lowenstein, A.; Mourão, C.F.; Moraschini, V. Comparing the Long-Term Success Rates of Tooth Preservation and Dental Implants: A Critical Review. J. Funct. Biomater. 2023, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Naves, M.M.; Menezes, H.H.; Magalhães, D.; Ferreira, J.A.; Ribeiro, S.F.; de Mello, J.D.; Costa, H.L. Effect of Macrogeometry on the Surface Topography of Dental Implant. Int. J. Oral Maxillofac. Implant. 2015, 30, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Reis-Neta, G.R.D.; Cerqueira, G.F.M.; Ribeiro, M.C.O.; Magno, M.B.; Vásquez, G.A.M.; Maia, L.C.; Del Bel Cury, A.A.; Marcello-Machado, R.M. Is the clinical performance of dental implants influenced by different macrogeometries? A systematic review and meta-analysis. J. Prosthet. Dent. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Júnior, J.A.; Eirles Treichel, T.L.; Dedavid, B.A. Biomechanical and histological evaluation of four different implant macrogeometries in the early osseointegration process: An in vivo animal study. J. Mech. Behav. Biomed. Mater. 2022, 125, 104935. [Google Scholar] [CrossRef]
- Kreve, S.; Ferreira, I.; da Costa Valente, M.L.; Dos Reis, A.C. Relationship between dental implant macro-design and osseointegration: A systematic review. Oral Maxillofac. Surg. 2024, 28, 1–14. [Google Scholar] [CrossRef]
- Monje, A.; González-Martín, O.; Ávila-Ortiz, G. Impact of peri-implant soft tissue characteristics on health and esthetics. J. Esthet. Restor. Dent. 2023, 35, 183–196. [Google Scholar] [CrossRef]
- Schwarz, F.; Ramanauskaite, A. It is all about peri-implant tissue health. Periodontology 2022, 88, 9–12. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Liu, Y.; Zeng, J.; Chu, H.; Chen, P.; Zhou, T.; Yin, W.; Rong, M. The clinical sig-nificance and application of the peri-implant phenotype in dental implant surgery: A nar-rative review. Ann. Transl. Med. 2023, 11, 351. [Google Scholar] [CrossRef]
- Tur, M.; Sarıbaş, E. Investigation of the Clinical Effects of Peri-Implant Gingival Morphology on Tissue Health. J. Oral Implant. 2023, 49, 548–555. [Google Scholar] [CrossRef]
- Isler, S.C.; Romandini, M.; Akca, G.; Bakirarar, B.; Unsal, B.; Romanos, G.; Sculean, A. Soft-Tissue Phenotype as a Risk Indicator of Peri-Implantitis and Peri-Implant Soft-Tissue Dehiscence-A Cross-Sectional Study. J. Clin. Periodontol. 2024, 51, 1443–1457. [Google Scholar] [CrossRef] [PubMed]
- Robau-Porrua, A.; González, J.E.; Rodríguez-Guerra, J.; González-Mederos, P.; Navarro, P.; de la Rosa, J.E.; Carbonell-González, M.; Araneda-Hernández, E.; Torres, Y. Biomechanical Behavior of a New Design of Dental Implant: Influence of the Porosity and Location in the Maxilla. J. Mater. Res. Technol. 2024, 29, 3255–3267. [Google Scholar] [CrossRef]
- Montemezzi, P.; Ferrini, F.; Pantaleo, G.; Gherlone, E.; Capparè, P. Dental Implants with Different Neck Design: A Prospective Clinical Comparative Study with 2-Year Follow-Up. Materials 2020, 13, 1029. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.B.; Rheu, G.B.; Kim, Y.S.; Jeong, C.M.; Lee, J.Y.; Shin, S.W. Influence of Implant transmucosal design on early peri-implant tissue responses in beagle dogs. Clin. Oral Implant. Res. 2014, 25, 962–968. [Google Scholar] [CrossRef]
- Paul, S.J.; Nesic, D. Influence of the Transmucosal Surface of Dental Implants on the Soft Tissue Attachment Level and Marginal Bone Loss in Preclinical Studies: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2024, 39, 173–183. [Google Scholar] [CrossRef]
- Jensen, O.; Romanos, G.; Glick, P. Platform bone switch to increase cervical ring bone mass. Front. Oral Maxillofac. Med. 2021, 72, 18. [Google Scholar] [CrossRef]
- Niu, W.; Wang, P.; Zhu, S.; Liu, Z.; Ji, P. Marginal bone loss around dental implants with and without microthreads in the neck: A systematic review and meta-analysis. J. Prosthet. Dent. 2017, 117, 34–40. [Google Scholar] [CrossRef]
- Aslroosta, H.; Akbari, S.; Naddafpour, N.; Adnaninia, S.T.; Khorsand, A.; Namadmalian Esfahani, N. Effect of microthread design on the preservation of marginal bone around immediately placed implants: A 5-years prospective cohort study. BMC Oral Health. 2021, 21, 541. [Google Scholar] [CrossRef]
- Bianchini, M.A.; Junior, N.B.; Dedavid, B.A.; De Aza, P.N.; Gehrke, S.A. Comparative analysis of the mechanical limits of resistance in implant/abutment set of a new implant design: An in vitro study. PLoS ONE 2023, 18, e0280684. [Google Scholar] [CrossRef]
- Moctezuma-Ramirez, A.; Dworaczyk, D.; Whitehorn, J.; Li, K.; Cardoso, C.d.O.; Elgalad, A. Designing an In Vivo Preclinical Research Study. Surgeries 2023, 4, 544–555. [Google Scholar] [CrossRef]
- Scarano, A.; Khater, A.G.A.; Gehrke, S.A.; Inchingolo, F.; Tari, S.R. Animal Models for Investigating Osseointegration: An Overview of Implant Research over the Last Three Decades. J. Funct. Biomater. 2024, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.; Kühl, S.; Rawlinson, S.; Pippenger, B.; Bellon, B.; Shahdad, S. Primary stability and osseointegration comparing a novel tapered design tissue-level implant with a paral-lel design tissue-level implant. An. experimental in vivo study. Clin. Oral Implant. Res. 2024, 35, 1114–1127. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.P.; Cao, N.J.; Zhu, Y.H.; Wang, W. The osseointegration and stability of dental implants with different surface treatments in animal models: A network meta-analysis. Sci. Rep. 2021, 11, 13849. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, Z.; Su, Y.; Liu, Q.; Ge, Y.; Shan, Z. Osseointegration of a novel dental im-plant in canine. Sci. Rep. 2021, 11, 4317. [Google Scholar] [CrossRef]
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK54050/ (accessed on 10 June 2024).
- Gehrke, S.A.; Tumedei, M.; Aramburú Júnior, J.; Treichel, T.L.E.; Kolerman, R.; Lepore, S.; Piattelli, A.; Iezzi, G. Histological and Histomorphometrical Evaluation of a New Implant Macrogeometry. A Sheep Study. Int. J. Environ. Res. Public. Health. 2020, 17, 3477. [Google Scholar] [CrossRef] [PubMed]
- Trisi, P.; Berardini, M.; Falco, A.; Podaliri Vulpiani, M. Effect of Implant Thread Geometry on Secondary Stability, Bone Density, and Bone-to-Implant Contact: A Biomechanical and Histological Analysis. Implant. Dent. 2015, 24, 384–391. [Google Scholar] [CrossRef]
- Falco, A.; Berardini, M.; Trisi, P. Correlation Between Implant Geometry, Implant Surface, Insertion Torque, and Primary Stability: In Vitro Biomechanical Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 824–830. [Google Scholar] [CrossRef]
- Muktadar, A.K.; Gangaiah, M.; Chrcanovic, B.R.; Chowdhary, R. Evaluation of the effect of self-cutting and nonself-cutting thread designed implant with different thread depth on variable insertion torques: An histomorphometric analysis in rabbits. Clin. Implant. Dent. Relat. Res. 2018, 20, 507–514. [Google Scholar] [CrossRef]
- Al-Tarawneh, S.K.; Thalji, G.; Cooper, L.F. Macrogeometric Differentiation of Dental Implant Primary Stability: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2022, 37, 1110–1118. [Google Scholar] [CrossRef]
- Sant’Anna, H.R.; Casati, M.Z.; Mussi, M.C.; Cirano, F.R.; Pimentel, S.P.; Ribeiro, F.V.; Corrêa, M.G. Peri-Implant Repair Using a Modified Implant Macrogeometry in Diabetic Rats: Biomechanical and Molecular Analyses of Bone-Related Markers. Materials 2022, 15, 2317. [Google Scholar] [CrossRef]
- Mussi, M.C.; Ribeiro, F.V.; Corrêa, M.G.; Salmon, C.R.; Pimentel, S.P.; Cirano, F.R.; Casati, M.Z. Impact of a modified implant macrogeometry on biomechanical parameters and bone-related markers in rats. Braz. Oral Res. 2023, 37, e44. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, E.T.P.; de Oliveira, P.G.F.P.; Jimbo, R.; Neiva, R.; Gil, L.F.; Tovar, N.; Witek, L.; Bonfante, E.A.; Coelho, P.G. The Influence of Implant Design Features on the Bone Healing Pathway: An Experimental Study in Sheep. Int. J. Periodontics Restor. Dent. 2023, 43, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Benalcázar-Jalkh, E.B.; Nayak, V.V.; Gory, C.; Marquez-Guzman, A.; Bergamo, E.T.; Tovar, N.; Coelho, P.G.; Bonfante, E.A.; Witek, L. Impact of implant thread design on insertion torque and osseointegration: A preclinical model. Med. Oral Patol. Oral Y Cirugía Bucal 2023, 28, e48–e55. [Google Scholar] [CrossRef] [PubMed]
- Heimes, D.; Becker, P.; Pabst, A.; Smeets, R.; Kraus, A.; Hartmann, A.; Sagheb, K.; Kämmerer, P.W. How does dental implant macrogeometry affect primary implant stability? A narrative review. Int. J. Implant. Dent. 2023, 9, 20. [Google Scholar] [CrossRef]
- Gehrke, S.A.; Dedavid, B.A.; Aramburú, J.S., Jr.; Pérez-Díaz, L.; Calvo Guirado, J.L.; Canales, P.M.; De Aza, P.N. Effect of Different Morphology of Titanium Surface on the Bone Healing in Defects Filled Only with Blood Clot: A New Animal Study Design. Biomed Res. Int. 2018, 2018, 4265474. [Google Scholar] [CrossRef]
- Bergamo, E.T.P.; de Oliveira, P.G.F.P.; Jimbo, R.; Neiva, R.; Tovar, N.; Witek, L.; Gil, L.F.; Bonfante, E.A.; Coelho, P.G. Synergistic Effects of Implant Macrogeometry and Surface Physicochemical Modifications on Osseointegration: An In Vivo Experimental Study in Sheep. J. Long. Term. Eff. Med. Implant. 2019, 29, 295–302. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Miron, R.J. Health, Maintenance, and Recovery of Soft Tissues around Implant. Clin. Implant. Dent. Relat. Res. 2016, 18, 618–634. [Google Scholar] [CrossRef]
- Chávarri-Prado, D.; Brizuela-Velasco, A.; Diéguez-Pereira, M.; Pérez-Pevida, E.; Jiménez-Garrudo, A.; Viteri-Agustín, I.; Estrada-Martínez, A.; Montalbán-Vadillo, O. Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: An in vitro study. J. Clin. Exp. Dent. 2020, 12, e242–e248. [Google Scholar] [CrossRef]
- Bashutski, J.D.; D’Silva, N.J.; Wang, H.L. Implant compression necrosis: Current understanding and case report. J. Periodontol. 2009, 80, 700–704. [Google Scholar] [CrossRef]
- Hansson, S.; Werke, M. The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: A finite element study. J. Biomech. 2003, 36, 1247–1258. [Google Scholar] [CrossRef]
- Mosavar, A.; Ziaei, A.; Kadkhodaei, M. The effect of implant thread design on stress distribution in anisotropic bone with different osseointegration conditions: A finite element analysis. Int. J. Oral Maxillofac. Implant. 2015, 30, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, M.; Ferri, M.; Guzon, F.M.M.; Asano, A.; Alccayhuaman, K.A.A.; Rossi, E.F.; Botticelli, D. Influence on marginal bone levels at implants equipped with blades aiming to control the lateral pressure on the cortical bone. An experimental study in dogs. Oral Maxillofac. Surg. 2024, 28, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Balan, V.; Ferri, M.; Pires Godoy, E.; Artioli, L.G.; Botticelli, D.; Silva, E.R.; Xavier, S.P. Controlled Lateral Pressure on Cortical Bone Using Blade-Equipped Implants: An Exper-imental Study in Rabbits. Bioengineering 2024, 11, 835. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Li, J.; Hoffmann, W.; Gasser, A.; Brunski, J.B.; Helms, J.A. Mechanical and Biological Advantages of a Tri-Oval Implant Design. J. Clin. Med. 2019, 8, 427. [Google Scholar] [CrossRef] [PubMed]
- Mainetti, T.; Bengazi, F.; Velez, J.U.; De Rossi, E.F.; Sakaguchi, R.; Botticelli, D. Subcrestal Positioning of Implants with a Convergent Hyperbolic Collar Profile: An Experimental Study in Dogs. Int. J. Oral Maxillofac. Implant. 2022, 37, 1160–1168. [Google Scholar] [CrossRef]
- Musskopf, M.L.; Finger Stadler, A.; Fiorini, T.; Ramos, U.D.; de Sousa Rabelo, M.; de Castro Pinto, R.N.; Susin, C. Performance of a new implant system and drilling protocol-A minipig intraoral dental implant model study. Clin. Oral Implant. Res. 2024, 35, 40–51. [Google Scholar] [CrossRef]
- Parmar, V.; Elhammali, N.A.; Altaher Mohammed, O.B.; Chauhan, M.; Gupta, P.; Manas, A.; Raj, A.; Chetani, H. Dependability of Osstell ISQ’s for measuring implant stability. Bioinformation 2024, 20, 921–925. [Google Scholar] [CrossRef]
- Valente, M.L.D.C.; de Castro, D.T.; Macedo, A.P.; Shimano, A.C.; Dos Reis, A.C. Comparative analysis of stress in a new proposal of dental Implant. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 360–365. [Google Scholar] [CrossRef]
- Santamaría-Arrieta, G.; Brizuela-Velasco, A.; Fernández-González, F.J.; Chávarri-Prado, D.; Chento-Valiente, Y.; Solaberrieta, E.; Diéguez-Pereira, M.; Vega, J.A.; Yurrebaso-Asúa, J. Biomechanical evaluation of oversized drilling technique on primary implant stability measured by insertion torque and resonance frequency analysis. J. Clin. Exp. Dent. 2016, 8, e307–e311. [Google Scholar] [CrossRef]
- Khayat, P.G.; Arnal, H.M.; Tourbah, B.I.; Sennerby, L. Clinical outcome of dental implants placed with high insertion torques (up to 176 Ncm). Clin. Implant. Dent. Relat. Res. 2013, 15, 227–233. [Google Scholar] [CrossRef]
- Carmo Filho, L.C.D.; Marcello-Machado, R.M.; Castilhos, E.D.; Del Bel Cury, A.A.; Faot, F. Can implant surfaces affect implant stability during osseointegration? A randomized clinical trial. Braz. Oral Res. 2018, 32, e110. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gehrke, S.A.; Cortellari, G.C.; Júnior, J.A.; Treichel, T.L.E.; Bianchini, M.A.; Scarano, A.; De Aza, P.N. Preclinical Experimental Study on New Cervical Implant Design to Improve Peri-Implant Tissue Healing. Bioengineering 2024, 11, 1155. https://doi.org/10.3390/bioengineering11111155
Gehrke SA, Cortellari GC, Júnior JA, Treichel TLE, Bianchini MA, Scarano A, De Aza PN. Preclinical Experimental Study on New Cervical Implant Design to Improve Peri-Implant Tissue Healing. Bioengineering. 2024; 11(11):1155. https://doi.org/10.3390/bioengineering11111155
Chicago/Turabian StyleGehrke, Sergio Alexandre, Guillermo Castro Cortellari, Jaime Aramburú Júnior, Tiago Luis Eilers Treichel, Marco Aurelio Bianchini, Antonio Scarano, and Piedad N. De Aza. 2024. "Preclinical Experimental Study on New Cervical Implant Design to Improve Peri-Implant Tissue Healing" Bioengineering 11, no. 11: 1155. https://doi.org/10.3390/bioengineering11111155
APA StyleGehrke, S. A., Cortellari, G. C., Júnior, J. A., Treichel, T. L. E., Bianchini, M. A., Scarano, A., & De Aza, P. N. (2024). Preclinical Experimental Study on New Cervical Implant Design to Improve Peri-Implant Tissue Healing. Bioengineering, 11(11), 1155. https://doi.org/10.3390/bioengineering11111155