Accuracy Evaluation of a Three-Dimensional Face Reconstruction Model Based on the Hifi3D Face Model and Clinical Two-Dimensional Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Acquisition of 2D Photographs and 3D Scans
2.3. Three-Dimensional Model Reconstruction
2.3.1. Initial Model Fitting
2.3.2. Optimization
2.3.3. Morphable Model Augmentation
2.3.4. Face Reflex Synthesis
2.4. Three-Dimensional Deviation Measurement
2.5. Soft Tissue Measurements
2.6. Statistical Analysis
3. Results
3.1. Three-Dimensional Deviation Analysis Results for the Full Face and Nine Regions
3.2. Three-Dimensional Deviation of Landmarks
3.3. Results of Soft Tissue Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, K.N.; Sabrish, S.; Mathew, S.; Shivamurthy, P.G.; Pattabiraman, V.; Sagarkar, R. Comparison of the influence of dental and facial aesthetics in determining overall attractiveness. Int. Orthod. 2018, 16, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, X.; Qin, Z.; Zhang, H.; Guo, D.; Xu, Y.; Jin, Z. Profiles of facial soft tissue changes during and after orthodontic treatment in female adults. BMC Oral Health 2022, 22, 257. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Gao, J.; Guo, D.; Zhang, H.; Zhang, X.; Qin, W.; Jin, Z. Three-dimensional quantitative study of soft tissue changes in nasolabial folds after orthodontic treatment in female adults. BMC Oral Health 2023, 23, 31. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, Q.; Liu, X.; Zeng, D. Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition. IEEE Trans. Pattern Anal. Mach. Intel. 2020, 42, 664–678. [Google Scholar] [CrossRef]
- Sariyanidi, E.; Zampella, C.J.; Schultz, R.T.; Tunc, B. Inequality-Constrained and Robust 3D Face Model Fitting. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 433–449. [Google Scholar]
- Meredith, G. Facial photography for the orthodontic office. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 463–470. [Google Scholar] [CrossRef]
- Blanz, V.; Vetter, T. A morphable model for the synthesis of 3D faces. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 8–13 August 1999; pp. 187–194. [Google Scholar]
- Lin, X.; Chen, Y.; Bao, L.; Zhang, H.; Zhang, Z. High-Fidelity 3D Digital Human Creation from RGB-D Selfies. ACM Trans. Graph. 2021, 41, 3. [Google Scholar]
- Anbarjafari, G.; Haamer, R.E.; Lusi, I.; Tikk, T.; Valgma, L. 3D face reconstruction with region based best fit blending using mobile phone for virtual reality based social media. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 125–132. [Google Scholar]
- Jiang, L.; Zhang, J.; Deng, B.; Li, H.; Liu, L. 3D Face Reconstruction with Geometry Details from a Single Image. IEEE Trans. Image Process. 2018, 27, 4756–4770. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Tewari, R.; Mendonca, P. A Self-Supervised Bootstrap Method for Single-Image 3D Face Reconstruction. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Hilton Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1014–1023. [Google Scholar]
- Mao, B.; Tian, Y.; Li, J.; Zhou, Y.; Wang, X. A quantitative analysis of facial changes after orthodontic treatment with vertical control in patients with idiopathic condylar resorption. Orthod. Craniofacial Res. 2023, 26, 402–414. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Y.; Wang, J.; Lu, Z.; Qi, K. 3-dimensional analysis of hard- and soft-tissue symmetry in a Chinese population. BMC Oral Health 2023, 23, 432. [Google Scholar] [CrossRef]
- Valenti, C.; Massironi, D.; Truffarelli, T.; Grande, F.; Catapano, S.; Eramo, S.; Tribbiani, G.; Pagano, S. Accuracy of a new photometric jaw tracking system in the frontal plane at different recording distances: An in-vitro study. J. Dent. 2024, 148, 105245. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, C.; Cai, R.; Yao, Y.; Zhao, Z.; Liao, W. Accuracy of 3-dimensional stereophotogrammetry: Comparison of the 3dMD and Bellus3D facial scanning systems with one another and with direct anthropometry. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.F.; Wang, X.; Ma, D.; Fang, M.J.; Bai, S.Z. Trueness of 4 three-dimensional facial scanners: An in vitro study. Chin. J. Stomatol. 2022, 57, 1036–1042. [Google Scholar]
- Khambay, B.; Nairn, N.; Bell, A.; Miller, J.; Bowman, A.; Ayoub, A.F. Validation and reproducibility of a high-resolution three-dimensional facial imaging system. Br. J. Oral. Maxillofac. Surg. 2008, 46, 27–32. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 9780203771587. [Google Scholar]
- Mao, B.; Li, J.; Tian, Y.; Zhou, Y. The accuracy of a three-dimensional face model reconstructing method based on conventional clinical two-dimensional photos. BMC Oral Health 2022, 22, 413. [Google Scholar] [CrossRef]
- Wang, X.W.; Liu, Z.J.; Diao, J.; Zhao, Y.J.; Jiang, J.H. Morphologic reproducibility in 6 regions of the 3-dimensional facial models acquired by a standardized procedure: An in vivo study. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e287–e295. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Strunga, M.; Havlínová, R.; Reháková, K.; Urban, R.; Surovková, J.; Kurilová, V. Smartphone-Based Facial Scanning as a Viable Tool for Facially Driven Orthodontics? Sensors 2022, 22, 7752. [Google Scholar] [CrossRef]
- Kazandjian, S.; Sameshima, G.T.; Champlin, T.; Sinclair, P.M. Accuracy of video imaging for predicting the soft tissue profile after mandibular set-back surgery. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 382–389. [Google Scholar] [CrossRef]
- Lu, C.-H.; Ko, E.W.C.; Huang, C.-S. The accuracy of video imaging prediction in soft tissue outcome after bimaxillary orthognathic surgery. J. Oral Maxillofac. Surg. 2003, 61, 333–342. [Google Scholar] [CrossRef]
- Mai, H.N.; Lee, D.H. Accuracy of Mobile Device-Compatible 3D Scanners for Facial Digitization: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e22228. [Google Scholar] [CrossRef]
- Palmer, R.L.; Helmholz, P.; Baynam, G. Cliniface: Phenotypic Visualisation and Analysis Using Non-Rigid Registration of 3D Facial Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B2-2020, 301–308. [Google Scholar] [CrossRef]
- Claes, P.; Walters, M.; Shriver, M.D.; Puts, D.; Gibson, G.; Clement, J.; Baynam, G.; Verbeke, G.; Vandermeulen, D.; Suetens, P. Sexual dimorphism in multiple aspects of 3D facial symmetry and asymmetry defined by spatially dense geometric morphometrics. J. Anat. 2012, 221, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Berends, B.; Bielevelt, F.; Schreurs, R.; Vinayahalingam, S.; Maal, T.; de Jong, G. Fully automated landmarking and facial segmentation on 3D photographs. Sci. Rep. 2024, 14, 6463. [Google Scholar] [CrossRef]
- Jong, M.A.d.; Wollstein, A.; Ruff, C.; Dunaway, D.; Hysi, P.; Spector, T.; Liu, F.; Niessen, W.; Koudstaal, M.J.; Kayser, M.; et al. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets. IEEE Trans. Image Process. 2016, 25, 580–588. [Google Scholar] [CrossRef]
- Huang, R.; Suttie, M.; Noble, J.A. An Automated CNN-based 3D Anatomical Landmark Detection Method to Facilitate Surface-Based 3D Facial Shape Analysis. In Proceedings of the Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures, Shenzhen, China, 17 October 2019; pp. 163–171. [Google Scholar]
- White, J.D.; Ortega-Castrillón, A.; Matthews, H.; Zaidi, A.A.; Ekrami, O.; Snyders, J.; Fan, Y.; Penington, T.; Van Dongen, S.; Shriver, M.D.; et al. MeshMonk: Open-source large-scale intensive 3D phenotyping. Sci. Rep. 2019, 9, 6085. [Google Scholar] [CrossRef]
- Scharstein, D.; Szeliski, R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, V. 3D Face Reconstruction in Deep Learning Era: A Survey. Arch. Comput. Methods Eng. 2022, 29, 3475–3507. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, J.; Xu, S.; Chen, D.; Jia, Y.; Tong, X. Accurate 3D Face Reconstruction With Weakly-Supervised Learning: From Single Image to Image Set. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2019), Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Wu, F.; Bao, L.; Chen, Y.; Ling, Y.; Song, Y.; Li, S.; Ngi Ngan, K.; Liu, W. MVF-Net: Multi-View 3D Face Morphable Model Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2019), Long Beach, CA, USA, 16–17 June 2019; pp. 959–968. [Google Scholar]
- Lium, O.; Kwon, Y.B.; Danelakis, A.; Theoharis, T. Robust 3D Face Reconstruction Using One/Two Facial Images. J. Imaging 2021, 7, 169. [Google Scholar] [CrossRef]
- Garrido, P.; Zollhöfer, M.; Wu, C.; Bradley, D.; Pérez, P.; Beeler, T.; Theobalt, C. Corrective 3D reconstruction of lips from monocular video. ACM Trans. Graph. 2016, 35, 219. [Google Scholar] [CrossRef]
- Li, T.; Bolkart, T.; Black, M.J.; Li, H.; Romero, J. Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. 2017, 36, 194. [Google Scholar] [CrossRef]
- Jayakrishnan, J.M.; Kumar, R.B.V. Forensic facial reconstruction using CBCT: A systematic review. Stomatologija 2022, 24, 49–55. [Google Scholar] [PubMed]
- Short, L.J.; Khambay, B.; Ayoub, A.; Erolin, C.; Rynn, C.; Wilkinson, C. Validation of a computer modelled forensic facial reconstruction technique using CT data from live subjects: A pilot study. Forensic Sci. Int. 2014, 237, 147.e1–147.e8. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Li, Y.; He, D.; Zhang, Q.; Zhang, L.; Zhang, Y.; Wang, J.; Xu, L.; Wang, X.; Zhang, Y.; et al. Sculptor:Skeleton-Consistent Face Creation Using a Learned Parametric Generator. ACM Trans. Graph. 2022, 41, 1–17. [Google Scholar] [CrossRef]
- Gao, X.; Zhong, C.; Xiang, J.; Hong, Y.; Guo, Y.; Zhang, J. Reconstructing Personalized Semantic Facial NeRF Models from Monocular Video. ACM Trans. Graph. 2022, 41, 200. [Google Scholar] [CrossRef]
ICC | Prn | Ls | Li | Rch | Lch | Pg’ | Gn’ | Me’ |
---|---|---|---|---|---|---|---|---|
total | 0.968 | 0.978 | 0.873 | 0.898 | 0.981 | 0.968 | 0.973 | 0.967 |
x | 0.871 | 0.866 | 0.902 | 0.838 | 0.870 | 0.944 | 0.872 | 0.959 |
y | 0.806 | 0.953 | 0.889 | 0.869 | 0.924 | 0.882 | 0.958 | 0.944 |
z | 0.965 | 0.969 | 0.818 | 0.887 | 0.952 | 0.967 | 0.970 | 0.942 |
Measurement Index | Definition |
---|---|
Outercanthal Width | Horizontal distance between the lateral canthi |
Labial Fissure Width (ChiL-ChiR) | Distance between the mouth commissures |
Nasolabial Angle (Prn-Sn-Ls) | Angle at Sn subtended by side Prn–Ls |
Facial Convexity (Gl-Sn-Pg’) | Angle at Sn subtended by side Gl–Pg’ |
Total Facial Convexity (Gl-Prn-Pg’) | Angle at Prn subtended by side Gl–Pg’ |
Outer Canthal, Nasal Angle | Angle at Sn subtended by the outer canthi |
Nasal Angle (N’-Prn-Sn) | Angle at Prn subtended by side N’–Sn |
Nasofrontal Angle (Gl-N’-Prn) | Angle at N’ subtended by side Gl–Prn |
Philtral Length (Sn-Ls) | Distance from nasal bone/base to the midline of the upper lip vermilion border |
Philtral Width (CphR-CphL) | Distance between philtral ridges, measured just above the vermilion border |
Philtral Depth | Depth measured at the deepest midline point between philtral ridges |
Facial Height (N’-Gn’) | Vertical height (length) of the face (N’-Gn) |
Upper Lip Height (Sn-Stos) | Vertical distance between Sn and Stos |
Lower Lip Height (Stoi-Sl) | Vertical distance between Stoi and Sl |
Upper Lip Protrusion (|Prn-Ls|z) | Sagittal distance between Prn and Ls |
Lower Lip Protrusion (|Prn-Li|z) | Sagittal distance between Prn and Li |
Mentolabial Furrow Depth (|Li-Sl|z) | Sagittal distance between Li and Sl |
Thickness of Upper Vermilion (|Ls-Stos|z) | Sagittal distance between Ls and Stos |
Thickness of Lower Vermilion (|Li-Stoi|z) | Sagittal distance between Li and Stoi |
Area | Face | Forehead | Nose | Upper Lip | Lower Lip | Chin | Paranasal (L) | Paranasal (R) | Cheek (L) |
---|---|---|---|---|---|---|---|---|---|
Mean | 2.00 | 1.52 | 1.72 | 1.87 | 2.28 | 2.10 | 1.71 | 1.64 | 2.13 |
SD | 0.38 | 0.88 | 0.75 | 0.67 | 0.67 | 1.15 | 0.71 | 0.72 | 0.89 |
Lower 95%CI | 1.84 | 1.14 | 1.39 | 1.58 | 1.99 | 1.60 | 1.40 | 1.33 | 1.74 |
Upper 95%CI | 2.17 | 1.90 | 2.04 | 2.16 | 2.57 | 2.59 | 2.01 | 1.95 | 2.52 |
D | Dx | Dy | Dz | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | 95%CI | Mean | SD | 95%CI | Mean | SD | 95%CI | Mean | SD | 95%CI | |||||
Prn | 1.18 | 1.10 | 0.71 | 1.65 | 0.10 | 0.11 | 0.06 | 0.15 | 0.14 | 0.18 | 0.06 | 0.21 | 1.16 | 1.08 | 0.70 | 1.63 |
Ls | 1.61 | 1.25 | 1.08 | 2.15 | 0.11 | 0.15 | 0.04 | 0.17 | 0.57 | 0.55 | 0.33 | 0.81 | 1.48 | 1.15 | 0.98 | 1.97 |
Li | 1.78 | 0.77 | 1.44 | 2.11 | 0.08 | 0.07 | 0.05 | 0.11 | 0.43 | 0.35 | 0.28 | 0.58 | 1.70 | 0.75 | 1.37 | 2.02 |
Lch | 1.53 | 1.02 | 1.10 | 1.97 | 0.21 | 0.18 | 0.14 | 0.29 | 0.65 | 0.46 | 0.45 | 0.85 | 1.35 | 0.92 | 0.95 | 1.75 |
Rch | 1.49 | 1.13 | 1.01 | 1.98 | 0.18 | 0.18 | 0.11 | 0.26 | 0.63 | 0.62 | 0.37 | 0.90 | 1.32 | 0.96 | 0.90 | 1.73 |
Pg’ | 1.58 | 1.66 | 0.86 | 2.30 | 0.04 | 0.05 | 0.02 | 0.06 | 0.31 | 0.59 | 0.06 | 0.57 | 1.53 | 1.58 | 0.84 | 2.21 |
Gn’ | 1.88 | 1.73 | 1.13 | 2.63 | 0.06 | 0.06 | 0.03 | 0.08 | 0.89 | 0.89 | 0.50 | 1.27 | 1.65 | 1.50 | 1.00 | 2.30 |
Me’ | 1.98 | 1.57 | 1.30 | 2.66 | 0.15 | 0.25 | 0.05 | 0.26 | 1.41 | 1.11 | 0.93 | 1.89 | 1.41 | 1.13 | 0.93 | 1.90 |
Measurement | Intrarater 1 ICC (95%CI) | Intrarater 2 ICC (95%CI) | Interrater ICC (95%CI) |
---|---|---|---|
Outercanthal width | 0.983 (0.970–0.991) | 0.946 (0.904–0.970) | 0.960 (0.925–0.978) |
Labial fissure width (ChiL-ChiR) | 0.934 (0.885–0.981) | 0.972 (0.951–0.985) | 0.951 (0.908–0.974) |
Nasolabial angle (Prn-Sn-Ls) | 0.983 (0.969–0.990) | 0.990 (0.981–0.994) | 0.972 (0.950–0.985) |
Facial convexity (Gl-Sn-Pg’) | 0.980 (0.960–0.989) | 0.991 (0.983–0.995) | 0.975 (0.803–0.992) |
Total facial convexity (Gl-Prn-Pg’) | 0.992 (0.986–0.996) | 0.998 (0.997–0.999) | 0.966 (0.919–0.984) |
Outer canthal, nasal angle | 0.967 (0.941–0.981) | 0.967 (0.944–0.981) | 0.930 (0.867–0.962) |
Nasal angle (N’-Prn-Sn) | 0.918 (0.856–0.954) | 0.990 (0.990–0.995) | 0.932 (0.875–0.963) |
Nasofrontal angle (Gl-N’-Prn) | 0.985 (0.972–0.992) | 0.995 (0.990–0.997) | 0.984 (0.971–0.991) |
Philtral length (Sn-Ls) | 0.963 (0.934–0.979) | 0.934 (0.882–0.963) | 0.941 (0.893–0.967) |
Philtral width (CphR-CphL) | 0.924 (0.866–0.957) | 0.912 (0.818–0.955) | 0.957 (0.923–0.976) |
Philtral depth | 0.945 (0.903–0.969) | 0.938 (0.890–0.972) | 0.905 (0.829–0.947) |
Facial height (N’-Gn’) | 0.995 (0.990–0.997) | 0.986 (0.975–0.992) | 0.962 (0.888–0.983) |
Upper lip height (Sn-Stos) | 0.935 (0.887–0.964) | 0.968 (0.943–0.982) | 0.946 (0.902–0.970) |
Lower lip height (Stoi-Sl) | 0.912 (0.846–0.950) | 0.955 (0.918–0.976) | 0.942 (0.894–0.968) |
Upper lip protrusion (|Prn-Ls|z) | 0.970 (0.947–0.983) | 0.998 (0.996–0.999) | 0.986 (0.975–0.992) |
Lower lip protrusion (|Prn-Li|z) | 0.926 (0.869–0.958) | 0.994 (0.989–0.996) | 0.962 (0.832–0.986) |
Mentolabial furrows depth (|Li-Sl|z) | 0.953 (0.917–0.974) | 0.948 (0.908–0.971) | 0.939 (0.812–0.974) |
Thickness of upper vermilion (|Ls-Stos|z) | 0.932 (0.880–0.961) | 0.934 (0.884–0.963) | 0.919 (0.851–0.956) |
Thickness of lower vermilion (|Li-Stoi|z) | 0.962 (0.933–0.979) | 0.931 (0.878–0.961) | 0.951 (0.906–0.974) |
Measurements | Face Scan Model (Mean ± SD) | Reconstruction Model (Mean ± SD) | Deviation of Two Models (Mean ± SD) | t | p |
---|---|---|---|---|---|
Outercanthal width | 92.95 ± 2.70 | 92.41 ± 1.26 | 0.54 ± 2.35 | 1.102 | 0.283 |
Labial fissure width (ChiL-ChiR) | 44.77 ± 2.89 | 45.68 ± 2.80 | −0.92 ± 2.79 | −1.587 | 0.129 |
Nasolabial angle (Prn-Sn-Ls) | 105.73 ± 7.61 | 100.92 ± 5.01 | 4.81 ± 8.77 | 2.627 | 0.015 * |
Facial convexity (Gl-Sn-Pg’) | 167.16 ± 4.11 | 167.81 ± 2.47 | −0.65 ± 2.86 | −1.090 | 0.288 |
Total facial convexity (Gl-Prn-Pg’) | 144.50 ± 4.42 | 144.65 ± 2.40 | −0.15 ± 3.79 | −0.190 | 0.851 |
Outer canthal, nasal angle | 93.49 ± 2.33 | 92.69 ± 2.99 | 0.80 ± 3.27 | 1.171 | 0.254 |
Nasal angle (N’-Prn-Sn) | 117.65 ± 3.83 | 122.31 ± 2.40 | −4.66 ± 3.81 | −5.865 | 0.000 * |
Nasofrontal angle (Gl-N’-Prn) | 142.54 ± 4.18 | 144.66 ± 2.86 | −2.12 ± 4.41 | −2.298 | 0.031 * |
Philtral length (Sn-Ls) | 14.82 ± 0.93 | 14.57 ± 1.38 | 0.24 ± 1.05 | 1.107 | 0.280 |
Philtral width (CphR-CphL) | 12.81 ± 0.68 | 12.42 ± 0.94 | 0.39 ± 0.91 | 2.040 | 0.054 |
Philtral depth | 1.72 ± 0.62 | 1.53 ± 0.44 | 0.19 ± 0.71 | 1.271 | 0.217 |
Facial height (N’-Gn’) | 115.11 ± 3.68 | 115.96 ± 2.43 | −0.85 ± 3.60 | −1.130 | 0.271 |
Upper lip height (Sn-Stos) | 21.68 ± 1.27 | 22.18 ± 1.43 | −0.50 ± 1.21 | −1.960 | 0.063 |
Lower lip height (Stoi-Sl) | 16.31 ± 1.23 | 16.43 ± 1.30 | −0.12 ± 1.20 | −0.464 | 0.647 |
Upper lip protrusion (|Prn-Ls|z) | 8.33 ± 2.02 | 7.62 ± 1.63 | 0.71 ± 2.14 | 1.587 | 0.127 |
Lower lip protrusion (|Prn-Li|z) | 11.53 ± 2.59 | 10.54 ± 1.62 | 0.99 ± 2.49 | 1.916 | 0.068 |
Mentolabial furrows depth (|Li-Sl|z) | 6.54 ± 1.23 | 6.57 ± 1.10 | −0.03 ± 1.14 | −0.122 | 0.904 |
Thickness of upper vermilion (|Ls-Stos|z) | 4.91 ± 1.10 | 5.00 ± 0.88 | −0.09 ± 1.29 | −0.321 | 0.751 |
Thickness of lower vermilion (|Li-Stoi|z) | 2.50 ± 1.18 | 2.84 ± 1.04 | −0.34 ± 1.36 | −1.203 | 0.242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Mao, B.; Nie, J.; Liu, J.; Wang, S.; Liu, D.; Zhou, Y. Accuracy Evaluation of a Three-Dimensional Face Reconstruction Model Based on the Hifi3D Face Model and Clinical Two-Dimensional Images. Bioengineering 2024, 11, 1174. https://doi.org/10.3390/bioengineering11121174
Xiao Y, Mao B, Nie J, Liu J, Wang S, Liu D, Zhou Y. Accuracy Evaluation of a Three-Dimensional Face Reconstruction Model Based on the Hifi3D Face Model and Clinical Two-Dimensional Images. Bioengineering. 2024; 11(12):1174. https://doi.org/10.3390/bioengineering11121174
Chicago/Turabian StyleXiao, Yujia, Bochun Mao, Jianglong Nie, Jiayi Liu, Shuo Wang, Dawei Liu, and Yanheng Zhou. 2024. "Accuracy Evaluation of a Three-Dimensional Face Reconstruction Model Based on the Hifi3D Face Model and Clinical Two-Dimensional Images" Bioengineering 11, no. 12: 1174. https://doi.org/10.3390/bioengineering11121174
APA StyleXiao, Y., Mao, B., Nie, J., Liu, J., Wang, S., Liu, D., & Zhou, Y. (2024). Accuracy Evaluation of a Three-Dimensional Face Reconstruction Model Based on the Hifi3D Face Model and Clinical Two-Dimensional Images. Bioengineering, 11(12), 1174. https://doi.org/10.3390/bioengineering11121174