Optimization of Culture Conditions for High Cell Productivity and Astaxanthin Accumulation in Vietnam’s Green Microalgae Haematococcus pluvialis HB and a Neuroprotective Activity of Its Astaxanthin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Cultivation
2.2. Cell Culture and Treatment
2.3. Effect of Different Culture Media on Cell Growth
2.4. Combined Effects of Lighting Regime, Nitrate Concentration, and Cultivation Model on Cell Growth
2.5. Extraction of Astaxanthin from H. pluvialis HB by the Soxhlet Method
2.6. Influence of Nutrient Conditions on Astaxanthin Production and Its Bioactivity in Microalgae
2.7. Statistical Analysis
3. Results
3.1. Morphological Changes in the Life Cycle of H. pluvialis Strain HB
3.2. Determination of Optimal Culture Conditions for the Growth of H. pluvialis Strain HB
3.2.1. Selection of the Optimal Culture Medium for Strain HB
3.2.2. Combined Effects of Illumination, Nitrate Concentration, and Cultivation Model on Cell Growth
3.2.3. Effects of Bicarbonate (HCO3−) Concentration on Astaxanthin Accumulation
3.3. Astaxanthin Extraction from H. pluvialis Biomass
3.4. Antioxidant Properties of Astaxanthin
Acetylcholinesterase (AChE) Inhibitory Activity of Astaxanthin
3.5. Cytotoxic Effect of Astaxanthin on C6 Cells
3.6. Neuroprotective Effects of Astaxanthin Against Oxidative Stress-Induced Damage in C6 Cells
3.7. Protective Effects of Astaxanthin Against Aβ25–35-Induced Cytotoxicity in C6 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, F.; Wan, M.; Huang, J.; Wang, W.; Bai, W.; He, M.; Li, Y. Modeling of Astaxanthin Production in the Two-Stage Cultivation of Haematococcus pluvialis and Its Application on the Optimization of Vertical Multi-Column Airlift Photobioreactor. Algal Res. 2021, 58, 102301. [Google Scholar] [CrossRef]
- Fábregas, J.; Domínguez, A.; Regueiro, M.; Maseda, A.; Otero, A. Optimization of Culture Medium for the Continuous Cultivation of the Microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 2000, 53, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.D.; Sim, S.J. Direct Extraction of Astaxanthin from Haematococcus Culture Using Vegetable Oils. Biotechnol. Lett. 2008, 30, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Yazgin, O.; Keskin-Gundogdu, T. Production of Biogas and Astaxanthin from Fruit and Vegetable Wastes Using an Integrated System. Int. J. Second. Metab. 2020, 7, 35–46. [Google Scholar] [CrossRef]
- Rizzo, A.; Ross, M.E.; Norici, A.; Jesus, B. A Two-Step Process for Improved Biomass Production and Non-Destructive Astaxanthin and Carotenoids Accumulation in Haematococcus pluvialis. Appl. Sci. 2022, 12, 1261. [Google Scholar] [CrossRef]
- Hata, N.; Ogbonna, J.C.; Hasegawa, Y.; Taroda, H.; Tanaka, H. Production of Astaxanthin by Haematococcus pluvialis in a Sequential Heterotrophic-Photoautotrophic Culture. J. Appl. Phycol. 2001, 13, 395–402. [Google Scholar] [CrossRef]
- Wan, M.; Zhang, Z.; Wang, J.; Huang, J.; Fan, J.; Yu, A.; Wang, W.; Li, Y. Sequential Heterotrophy–Dilution–Photoinduction Cultivation of Haematococcus pluvialis for Efficient Production of Astaxanthin. Bioresour. Technol. 2015, 198, 557–563. [Google Scholar] [CrossRef]
- Harker, M.; Tsavalos, A.J.; Young, A.J. Autotrophic Growth and Carotenoid Production of Haematococcus pluvialis in a 30 Liter Air-Lift Photobioreactor. J. Ferment. Bioeng. 1996, 82, 113–118. [Google Scholar] [CrossRef]
- Li, J.; Zhu, D.; Niu, J.; Shen, S.; Wang, G. An Economic Assessment of Astaxanthin Production by Large Scale Cultivation of Haematococcus pluvialis. Biotechnol. Adv. 2011, 29, 568–574. [Google Scholar] [CrossRef]
- Capelli, B.; Bagchi, D.; Cysewski, G.R. Synthetic Astaxanthin Is Significantly Inferior to Algal-Based Astaxanthin as an Antioxidant and May Not Be Suitable as a Human Nutraceutical Supplement. Nutrafoods 2013, 12, 145–152. [Google Scholar] [CrossRef]
- Elbahnaswy, S.; Elshopakey, G. Recent Progress in Practical Carotenoid Astaxanthin in Aquaculture Industry: A Review. Fish Physiol. Biochem. 2024, 50, 97–126. [Google Scholar] [CrossRef] [PubMed]
- Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. Anti-Inflammatory Action of Astaxanthin and Its Use in the Treatment of Various Diseases. Biomed. Pharmacother. 2022, 145, 112179. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Ding, F.; Zhang, Y.; Wang, Y.; Wang, Y.; Zhang, Y.; Zhu, F.; Zhang, G.; Zheng, X.; Jia, G.; et al. Astaxanthin Inhibits H2O2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation. Mar. Drugs 2024, 22, 57. [Google Scholar] [CrossRef] [PubMed]
- Do, T.T.; Tran, B.H.T.; Ong, B.N.; Le, T.L.; Nguyen, T.C.; Quan, Q.D.; Le, T.C.; Tran, D.L.; Melkonian, M.; Tran, H.D. Effects of Red and Blue Light Emitting Diodes on Biomass and Astaxanthin of Haematococcus pluvialis in Pilot Scale Angled Twin-Layer Porous Substrate Photobioreactors. Vietnam. J. Sci. Technol. Eng. 2021, 63, 81–88. [Google Scholar] [CrossRef]
- Tran, H.D.; Do, T.T.; Le, T.L.; Nguyen, M.L.T.; Pham, C.-H.; Melkonian, M. Cultivation of Haematococcus pluvialis for Astaxanthin Production on Angled Bench-Scale and Large-Scale Biofilm-Based Photobioreactors. Vietnam. J. Sci. Technol. Eng. 2019, 61, 61–70. [Google Scholar] [CrossRef]
- Tam, L.T.; Hoang, D.D.; Mai, D.T.N.; Thu, N.T.H.; Anh, H.T.L.; Hong, D.D. Study on the Effect of Salt Concentration on Growth and Astaxanthin Accumulation of Microalgae Haematococcus pluvialis as the Initial Basis for Two Phase Culture of Astaxanthin Production. Acad. J. Biol. 2012, 34, 213–223. [Google Scholar] [CrossRef]
- Vinh, T.Q. Astaxanthin Extraction from Microalgae Haematococcus pluvialis and Yeast Rhodosporidium sp., Testing Some Biological Activities. Ph.D. Thesis, Graduate University of Science and Technology, Hanoi, Vietnam, 2023. Available online: https://gust.edu.vn/media/29/uftai-ve-tai-day29727.pdf (accessed on 8 November 2024).
- Huy, T.Q.; Trung, V.H.; Hien, T.N.; Phuc, N.T.H. Cultural Trategy Increase Accumulation of Carotenoid and Lipid in Haematococcus pluvialis. Ho Chi Minh City Univ. Educ.—J. Sci. 2022, 19, 492–500. [Google Scholar]
- Trung, V.H.; Phuc, N.T.H.; Bac, N.T.K. Light Intensity Effect on the Growth, Pigment, Phenolic Compound Accumulation, and Antioxidant Capacity of Haematococcus pluvialis Microalgae. Ho Chi Minh City Univ. Educ.—J. Sci. 2021, 18, 559–571. [Google Scholar]
- Ngoc, N.T.B.; Hoa, N.L.H.; Hoa, H.T.M.; Loan, N.T. Investigation the Effect of Molasses Residue on the Growth and Astaxanthin Accumulation of Haematococcus pluvialis. J. Sci. Technol. 2022, 17, 6–13. [Google Scholar]
- Oslan, S.N.H.; Shoparwe, N.F.; Yusoff, A.H.; Rahim, A.A.; Chang, C.S.; Tan, J.S.; Oslan, S.N.; Arumugam, K.; Ariff, A.B.; Sulaiman, A.Z.; et al. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules 2021, 11, 256. [Google Scholar] [CrossRef]
- Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Lee, M.H.; Lee, S.; Cho, E.J. Neuroprotective Effect of Alpha-Linolenic Acid against Aβ-Mediated Inflammatory Responses in C6 Glial Cell. J. Agric. Food Chem. 2018, 66, 4853–4861. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.D.; Hoang, D.D.; Thuy, N.T.; Anh, H.T.L. Choosing Optimal Medium For Cultivation Of Rich—Astaxanthin Green Microalga Haematococcus pluvialis. Acad. J. Biol. 2010, 32, 43–53. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kakizono, T.; Nagai, S. Astaxanthin Production by a Green Alga, Haematococcus pluvialis Accompanied with Morphological Changes in Acetate Media. J. Ferment. Bioeng. 1991, 71, 335–339. [Google Scholar] [CrossRef]
- Imamoglu, E.; Sukan, F.V.; Dalay, M.C. Effect of Different Culture Media and Light Intensities on Growth of Haematococcus pluvialis. Int. J. Nat. Eng. Sci. 2007, 1, 5–9. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Hien, H.T.M.; Oanh, H.T.; Quynh, Q.T.; Thu, N.T.H.; Van Hanh, N.; Hong, D.D.; Hoang, M.H. Astaxanthin-Loaded Nanoparticles Enhance Its Cell Uptake, Antioxidant and Hypolipidemic Activities in Multiple Cell Lines. J. Drug Deliv. Sci. Technol. 2023, 80, 104133. [Google Scholar] [CrossRef]
- Sun, W.; Lin, H.; Zhai, Y.; Cao, L.; Leng, K.; Xing, L. Separation, Purification, and Identification of (3S,3′S)-trans-Astaxanthin from Haematococcus pluvialis. Sep. Sci. Technol. 2015, 50, 1377–1383. [Google Scholar] [CrossRef]
- Wu, K.; Ying, K.; Zhou, J.; Liu, D.; Liu, L.; Tao, Y.; Hanotu, J.; Zhu, X.; Cai, Z. Optimizing the Growth of Haematococcus pluvialis Based on a Novel Microbubble-Driven Photobioreactor. iScience 2021, 24, 103461. [Google Scholar] [CrossRef]
- Del Río, E.; Acién, F.G.; García-Malea, M.C.; Rivas, J.; Molina-Grima, E.; Guerrero, M.G. Efficient One-Step Production of Astaxanthin by the Microalga Haematococcus pluvialis in Continuous Culture. Biotechnol. Bioeng. 2005, 91, 808–815. [Google Scholar] [CrossRef]
- Ranjbar, R.; Inoue, R.; Shiraishi, H.; Katsuda, T.; Katoh, S. High Efficiency Production of Astaxanthin by Autotrophic Cultivation of Haematococcus pluvialis in a Bubble Column Photobioreactor. Biochem. Eng. J. 2008, 39, 575–580. [Google Scholar] [CrossRef]
- Cabello-Pasini, A.; Macías-Carranza, V.; Abdala, R.; Korbee, N.; Figueroa, F.L. Effect of Nitrate Concentration and UVR on Photosynthesis, Respiration, Nitrate Reductase Activity, and Phenolic Compounds in Ulva Rigida (Chlorophyta). J. Appl. Phycol. 2011, 23, 363–369. [Google Scholar] [CrossRef]
- Selvakumar, V. Ultraviolet-B Radiation (280–315 Nm) Invoked Antioxidant Defence Systems in Vigna unguiculata (L.) Walp. and Crotalaria juncea L. Photosynthetica 2008, 46, 98–106. [Google Scholar] [CrossRef]
- Orosa, M.; Franqueira, D.; Cid, A.; Abalde, J. Carotenoid Accumulation in Haematococcus pluvialis in Mixotrophic Growth. Biotechnol. Lett. 2001, 23, 373–378. [Google Scholar] [CrossRef]
- Gardner, R.D.; Lohman, E.; Gerlach, R.; Cooksey, K.E.; Peyton, B.M. Comparison of CO2 and Bicarbonate as Inorganic Carbon Sources for Triacylglycerol and Starch Accumulation in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2013, 110, 87–96. [Google Scholar] [CrossRef]
- Gardner, R.D.; Cooksey, K.E.; Mus, F.; Macur, R.; Moll, K.; Eustance, E.; Peyton, B.M. Use of Sodium Bicarbonate to Stimulate Triacylglycerol Accumulation in the Chlorophyte Scenedesmus sp. and the Diatom Phaeodactylum tricornutum. J. Appl. Phycol. 2012, 24, 1311–1320. [Google Scholar] [CrossRef]
- Jin, H.; Lao, Y.M.; Zhou, J.; Zhang, H.J.; Cai, Z.H. Simultaneous Determination of 13 Carotenoids by a Simple C18 Column-Based Ultra-High-Pressure Liquid Chromatography Method for Carotenoid Profiling in the Astaxanthin-Accumulating Haematococcus pluvialis. J. Chromatogr. A 2017, 1488, 93–103. [Google Scholar] [CrossRef]
- Kang, C.D.; Lee, J.S.; Park, T.H.; Sim, S.J. Comparison of Heterotrophic and Photoautotrophic Induction on Astaxanthin Production by Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 2005, 68, 237–241. [Google Scholar] [CrossRef]
DPPH Scavenging Activity (%) | DPPH Scavenging Activity (%) | ||
---|---|---|---|
Concentration (mg mL−1) | Astaxanthin | Concentration (µg mL−1) | Ascorbic Acid |
0.1 | 7.39 ± 0.13 | 4 | 30.30 ± 0.43 |
0.4 | 12.87 ± 0.09 | 20 | 65.05 ± 1.23 |
2 | 29.87 ± 0.54 | 100 | 91.45 ± 1.34 |
IC50 (mg mL−1) | 3.74 ± 0.25 | IC50 (µg mL−1) | 18.53 ± 0.97 |
AChE Inhibitory Activity (%) | AChE Inhibitory Activity (%) | ||
---|---|---|---|
Concentrations (µg mL−1) | Astaxanthin | Concentrations (µg mL−1) | Galantamine |
4 | 3.21 ± 0.09 | 0.08 | 8.98 ± 0.45 |
20 | 20.87 ± 0.78 | 0.4 | 24.89 ± 1.21 |
100 | 45.21 ± 1.12 | 2 | 52.78 ± 1.34 |
500 | 68.76 ± 3.76 | 10 | 86.56 ± 1.98 |
IC50 (µg mL−1) | 297.99 ± 5.23 | IC50 (µg mL−1) | 4.11 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, N.C.; Tam, L.T.; Hien, H.T.M.; Thu, N.T.H.; Hong, D.D.; Thom, L.T. Optimization of Culture Conditions for High Cell Productivity and Astaxanthin Accumulation in Vietnam’s Green Microalgae Haematococcus pluvialis HB and a Neuroprotective Activity of Its Astaxanthin. Bioengineering 2024, 11, 1176. https://doi.org/10.3390/bioengineering11121176
Ha NC, Tam LT, Hien HTM, Thu NTH, Hong DD, Thom LT. Optimization of Culture Conditions for High Cell Productivity and Astaxanthin Accumulation in Vietnam’s Green Microalgae Haematococcus pluvialis HB and a Neuroprotective Activity of Its Astaxanthin. Bioengineering. 2024; 11(12):1176. https://doi.org/10.3390/bioengineering11121176
Chicago/Turabian StyleHa, Nguyen Cam, Luu Thi Tam, Hoang Thi Minh Hien, Ngo Thi Hoai Thu, Dang Diem Hong, and Le Thi Thom. 2024. "Optimization of Culture Conditions for High Cell Productivity and Astaxanthin Accumulation in Vietnam’s Green Microalgae Haematococcus pluvialis HB and a Neuroprotective Activity of Its Astaxanthin" Bioengineering 11, no. 12: 1176. https://doi.org/10.3390/bioengineering11121176
APA StyleHa, N. C., Tam, L. T., Hien, H. T. M., Thu, N. T. H., Hong, D. D., & Thom, L. T. (2024). Optimization of Culture Conditions for High Cell Productivity and Astaxanthin Accumulation in Vietnam’s Green Microalgae Haematococcus pluvialis HB and a Neuroprotective Activity of Its Astaxanthin. Bioengineering, 11(12), 1176. https://doi.org/10.3390/bioengineering11121176