Toward Smart, Automated Junctional Tourniquets—AI Models to Interpret Vessel Occlusion at Physiological Pressure Points
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Phantom Setup
2.2. Tissue Phantom Imaging
2.3. Ex Vivo Swine Model Setup
2.4. Ultrasound Image Processing
2.5. Neural Network Model Training
2.6. Evaluation of Neural Network Model Performance
3. Results
3.1. Determination of the Optimal Threshold for Occlusion
3.2. ShrapML and MobileNetV2 Performance for Tracking Tissue Phantom Vessel Occlusion
3.3. Effect of Three Classes on ShrapML Model Performance for Tracking Junctional Vessel Occlusion
3.4. Performance of ShrapML Model for Tracking Junctional Vessel Occlusion in an Ex Vivo Swine Model
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
DoD Disclaimer
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goolsby, C.; Rouse, E.; Rojas, L.; Goralnick, E.; Levy, M.J.; Kirsch, T.; Eastman, A.L.; Kellermann, A.; Strauss-Riggs, K.; Hurst, N. Post-Mortem Evaluation of Potentially Survivable Hemorrhagic Death in a Civilian Population. J. Am. Coll. Surg. 2018, 227, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Eastridge, B.J.; Mabry, R.L.; Seguin, P.; Cantrell, J.; Tops, T.; Uribe, P.; Mallett, O.; Zubko, T.; Oetjen-Gerdes, L.; Rasmussen, T.E.; et al. Death on the Battlefield (2001–2011): Implications for the Future of Combat Casualty Care. J. Trauma Acute Care Surg. 2012, 73, S431–S437. [Google Scholar] [CrossRef]
- Goolsby, C.; Jacobs, L.; Hunt, R.C.; Goralnick, E.; Singletary, E.M.; Levy, M.J.; Goodloe, J.M.; Epstein, J.L.; Strauss-Riggs, K.; Seitz, S.R.; et al. Stop the Bleed Education Consortium: Education Program Content and Delivery Recommendations. J. Trauma Acute Care Surg. 2018, 84, 205. [Google Scholar] [CrossRef]
- Kotwal, R.S.; Mazuchowski, E.L.; Janak, J.C.; Howard, J.T.; Harcke, H.T.; Holcomb, J.B.; Eastridge, B.J.; Gurney, J.M.; Shackelford, S.A. United States Military Fatalities during Operation New Dawn. J. Trauma Acute Care Surg. 2021, 91, 375–383. [Google Scholar] [CrossRef] [PubMed]
- van Oostendorp, S.E.; Tan, E.C.T.H.; Geeraedts, L.M.G. Prehospital Control of Life-Threatening Truncal and Junctional Haemorrhage Is the Ultimate Challenge in Optimizing Trauma Care: A Review of Treatment Options and Their Applicability in the Civilian Trauma Setting. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 110. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Laird, C.; Porter, K.; Bloch, M. Haemostatic Dressings in Prehospital Care. Emerg. Med. J. 2013, 30, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Kragh, J.F.; Aden, J.K.; Steinbaugh, J.; Bullard, M.; Dubick, M.A. Gauze vs XSTAT in Wound Packing for Hemorrhage Control. Am. J. Emerg. Med. 2015, 33, 974–976. [Google Scholar] [CrossRef] [PubMed]
- Kheirabadi, B.S.; Scherer, M.R.; Estep, J.S.; Dubick, M.A.; Holcomb, J.B. Determination of Efficacy of New Hemostatic Dressings in a Model of Extremity Arterial Hemorrhage in Swine. J. Trauma 2009, 67, 450–459, 450–459; discussion 459–460. [Google Scholar] [CrossRef]
- Swan, K.G.; Wright, D.S.; Barbagiovanni, S.S.; Swan, B.C.; Swan, K.G. Tourniquets Revisited. J. Trauma 2009, 66, 672–675. [Google Scholar] [CrossRef]
- Pikman Gavriely, R.; Lior, Y.; Gelikas, S.; Levy, S.; Ahimor, A.; Glassberg, E.; Shapira, S.; Benov, A.; Avital, G. Manual Pressure Points Technique for Massive Hemorrhage Control-A Prospective Human Volunteer Study. Prehosp. Emerg. Care 2022, 27, 586–591. [Google Scholar] [CrossRef]
- Slevin, J.P.; Harrison, C.; Da Silva, E.; White, N.J. Martial Arts Technique for Control of Severe External Bleeding. Emerg. Med. J. 2019, 36, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; White, J.; Wanis, K.N.; Beckett, A.; McAlister, V.C.; Hilsden, R. The Effectiveness of Junctional Tourniquets: A Systematic Review and Meta-Analysis. J. Trauma Acute Care Surg. 2019, 86, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Kotwal, R.S.; Butler, F.K. Junctional Hemorrhage Control for Tactical Combat Casualty Care. Wilderness Environ. Med. 2017, 28, S33–S38. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.; Naumann, D.N.; Ahmed, Z. Use of Haemostatic Devices for the Control of Junctional and Abdominal Traumatic Haemorrhage: A Systematic Review. Trauma Care 2022, 2, 23–34. [Google Scholar] [CrossRef]
- Kragh, J.F.; Kotwal, R.S.; Cap, A.P.; Aden, J.K.; Walters, T.J.; Kheirabadi, B.S.; Gerhardt, R.T.; DeLorenzo, R.A.; Pidcoke, H.F.; Cancio, L.C. Performance of Junctional Tourniquets in Normal Human Volunteers. Prehosp. Emerg. Care 2015, 19, 391–398. [Google Scholar] [CrossRef]
- Chen, J.; Benov, A.; Nadler, R.; Landau, G.; Sorkin, A.; Aden, J.K.; Kragh, J.F.; Glassberg, E. Testing of Junctional Tourniquets by Medics of the Israeli Defense Force in Control of Simulated Groin Hemorrhage. J. Spec. Oper. Med. Peer Rev. J. SOF Med. Prof. 2016, 16, 36–42. [Google Scholar] [CrossRef]
- Kragh, J.F.; Geracci, J.J.; Parsons, D.L.; Robinson, J.B.; Biever, K.A.; Rein, E.B.; Glassberg, E.; Strandenes, G.; Chen, J.; Benov, A.; et al. Junctional Tourniquet Training Experience. J. Spec. Oper. Med. Peer Rev. J. SOF Med. Prof. 2015, 15, 20–30. [Google Scholar] [CrossRef]
- Schauer, S.G.; April, M.D.; Fisher, A.D.; Cunningham, C.W.; Gurney, J.M. Junctional Tourniquet Use During Combat Operations in Afghanistan: The Prehospital Trauma Registry Experience. J. Spec. Oper. Med. Peer Rev. J. SOF Med. Prof. 2018, 18, 71–74. [Google Scholar] [CrossRef]
- Gaspary, M.J.; Zarow, G.J.; Barry, M.J.; Walchak, A.C.; Conley, S.P.; Roszko, P.J.D. Comparison of Three Junctional Tourniquets Using a Randomized Trial Design. Prehosp. Emerg. Care 2019, 23, 187–194. [Google Scholar] [CrossRef]
- Garrick, B.; Hillis, G.; LaRavia, L.; Lyon, M.; Gordon, R. 330 Effectiveness of Common Femoral Artery Compression in Elimination of Popliteal Blood Flow. Ann. Emerg. Med. 2016, 68, S126–S127. [Google Scholar] [CrossRef]
- Michel, W.B.; Lachance, A.; Turcotte, A.-S.; Morris, J. Point-of Care Ultrasonographically Guided Proximal External Aortic Compression in the Emergency Department. Ann. Emerg. Med. 2019, 74, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Akinniyi, O.; Rahman, M.M.; Sandhu, H.S.; El-Baz, A.; Khalifa, F. Multi-Stage Classification of Retinal OCT Using Multi-Scale Ensemble Deep Architecture. Bioengineering 2023, 10, 823. [Google Scholar] [CrossRef] [PubMed]
- Zaitseva, E.; Levashenko, V.; Rabcan, J.; Kvassay, M. A New Fuzzy-Based Classification Method for Use in Smart/Precision Medicine. Bioengineering 2023, 10, 838. [Google Scholar] [CrossRef]
- Habib, M.; Faris, M.; Qaddoura, R.; Alomari, A.; Faris, H. A Predictive Text System for Medical Recommendations in Telemedicine: A Deep Learning Approach in the Arabic Context. IEEE Access 2021, 9, 85690–85708. [Google Scholar] [CrossRef]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial Intelligence in Healthcare: Transforming the Practice of Medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Bindra, S.; Jain, R. Artificial Intelligence in Medical Science: A Review. Ir. J. Med. Sci. 2023, 1–11. [Google Scholar] [CrossRef]
- Liu, R.; Rong, Y.; Peng, Z. A Review of Medical Artificial Intelligence. Glob. Health J. 2020, 4, 42–45. [Google Scholar] [CrossRef]
- Ali, O.; Abdelbaki, W.; Shrestha, A.; Elbasi, E.; Alryalat, M.A.A.; Dwivedi, Y.K. A Systematic Literature Review of Artificial Intelligence in the Healthcare Sector: Benefits, Challenges, Methodologies, and Functionalities. J. Innov. Knowl. 2023, 8, 100333. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in Health and Medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, S.X.; Ni, D.; Wang, T. Deep Learning in Medical Ultrasound Analysis: A Review. Engineering 2019, 5, 261–275. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, L.; Yang, G.; Yue, T.; Chen, Q.; Fu, H.; Xu, Y. Breast Tumor Detection in Ultrasound Images Using Deep Learning. In Proceedings of the Patch-Based Techniques in Medical Imaging; Wu, G., Munsell, B.C., Zhan, Y., Bai, W., Sanroma, G., Coupé, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 121–128. [Google Scholar]
- Diaz-Escobar, J.; Ordóñez-Guillén, N.E.; Villarreal-Reyes, S.; Galaviz-Mosqueda, A.; Kober, V.; Rivera-Rodriguez, R.; Rizk, J.E.L. Deep-Learning Based Detection of COVID-19 Using Lung Ultrasound Imagery. PLoS ONE 2021, 16, e0255886. [Google Scholar] [CrossRef] [PubMed]
- Gil-Rodríguez, J.; Pérez de Rojas, J.; Aranda-Laserna, P.; Benavente-Fernández, A.; Martos-Ruiz, M.; Peregrina-Rivas, J.-A.; Guirao-Arrabal, E. Ultrasound Findings of Lung Ultrasonography in COVID-19: A Systematic Review. Eur. J. Radiol. 2022, 148, 110156. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.; Li, F.; Funk, C.; Peethumangsin, E.; Morris, M.; Anderson, J.T.; Hersh, A.M.; Aylward, S. Detection of Pneumothorax on Ultrasound Using Artificial Intelligence. J. Trauma Acute Care Surg. 2023, 94, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Torres, S.I.; Bedolla, C.; Berard, D.; Snider, E.J. An Extended Focused Assessment with Sonography in Trauma Ultrasound Tissue-Mimicking Phantom for Developing Automated Diagnostic Technologies. Front. Bioeng. Biotechnol. 2023, 11, 1244616. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015, arXiv:1506.02640. [Google Scholar] [CrossRef]
- Chiang, T.-C.; Huang, Y.-S.; Chen, R.-T.; Huang, C.-S.; Chang, R.-F. Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation. IEEE Trans. Med. Imaging 2019, 38, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Brattain, L.J.; Pierce, T.T.; Gjesteby, L.A.; Johnson, M.R.; DeLosa, N.D.; Werblin, J.S.; Gupta, J.F.; Ozturk, A.; Wang, X.; Li, Q.; et al. AI-Enabled, Ultrasound-Guided Handheld Robotic Device for Femoral Vascular Access. Biosensors 2021, 11, 522. [Google Scholar] [CrossRef]
- Edwards, J.; Abdou, H.; Patel, N.; Madurska, M.J.; Poe, K.; Bonin, J.E.; Richmond, M.J.; Rasmussen, T.E.; Morrison, J.J. The Functional Vascular Anatomy of the Swine for Research. Vascular 2022, 30, 392–402. [Google Scholar] [CrossRef]
- Bushi, D.; Assaf, Y.; Grad, Y.; Nishri, B.; Yodfat, O.; Tanne, D. Similarity of the Swine Vasculature to the Human Carotid Bifurcation: Analysis of Arterial Diameters. J. Vasc. Interv. Radiol. 2008, 19, 245–251. [Google Scholar] [CrossRef]
- Lopes-Berkas, V.C.; Jorgenson, M.A. Measurement of Peripheral Arterial Vasculature in Domestic Yorkshire Swine by Using Quantitative Vascular Angiography. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 628–634. [Google Scholar] [PubMed]
- Boice, E.N.; Berard, D.; Hernandez Torres, S.I.; Avital, G.; Snider, E.J. Development and Characterization of an Ex Vivo Testing Platform for Evaluating Automated Central Vascular Access Device Performance. J. Pers. Med. 2022, 12, 1287. [Google Scholar] [CrossRef] [PubMed]
- Snider, E.J.; Hernandez-Torres, S.I.; Boice, E.N. An Image Classification Deep-Learning Algorithm for Shrapnel Detection from Ultrasound Images. Sci. Rep. 2022, 12, 8427. [Google Scholar] [CrossRef] [PubMed]
- Boice, E.N.; Hernandez-Torres, S.I.; Snider, E.J. Comparison of Ultrasound Image Classifier Deep Learning Algorithms for Shrapnel Detection. J. Imaging 2022, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2018, arXiv:1801.04381. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Song, D.; Yao, J.; Jiang, Y.; Shi, S.; Cui, C.; Wang, L.; Wang, L.; Wu, H.; Tian, H.; Ye, X.; et al. A New xAI Framework with Feature Explainability for Tumors Decision-Making in Ultrasound Data: Comparing with Grad-CAM. Comput. Methods Programs Biomed. 2023, 235, 107527. [Google Scholar] [CrossRef]
- Yang, J.; Shi, X.; Wang, B.; Qiu, W.; Tian, G.; Wang, X.; Wang, P.; Yang, J. Ultrasound Image Classification of Thyroid Nodules Based on Deep Learning. Front. Oncol. 2022, 12, 905955. [Google Scholar] [CrossRef]
- Hsu, S.-T.; Su, Y.-J.; Hung, C.-H.; Chen, M.-J.; Lu, C.-H.; Kuo, C.-E. Automatic Ovarian Tumors Recognition System Based on Ensemble Convolutional Neural Network with Ultrasound Imaging. BMC Med. Inform. Decis. Mak. 2022, 22, 298. [Google Scholar] [CrossRef]
- Hernandez-Torres, S.I.; Boice, E.N.; Snider, E.J. Using an Ultrasound Tissue Phantom Model for Hybrid Training of Deep Learning Models for Shrapnel Detection. J. Imaging 2022, 8, 270. [Google Scholar] [CrossRef]
Distal Pressure Reduction Percent Threshold from Full Flow | |||||
---|---|---|---|---|---|
50% | 60% | 70% | 80% | 90% | |
Accuracy | 0.937 | 0.924 | 0.935 | 0.885 | 0.904 |
Precision | 0.940 | 0.889 | 0.897 | 0.833 | 0.861 |
Recall | 0.958 | 0.996 | 0.994 | 0.997 | 0.978 |
Specificity | 0.905 | 0.823 | 0.864 | 0.744 | 0.821 |
F1 Score | 0.948 | 0.939 | 0.943 | 0.907 | 0.916 |
MobileNetV2 | ShrapML | |||||||
---|---|---|---|---|---|---|---|---|
Without Data Augmentation | With Data Augmentation | Without Data Augmentation | With Data Augmentation | |||||
Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | |
Accuracy | 0.853 | 0.072 | 0.845 | 0.117 | 0.759 | 0.172 | 0.934 | 0.010 |
Precision | 0.976 | 0.042 | 0.993 | 0.006 | 0.718 | 0.197 | 0.986 | 0.012 |
Recall | 0.675 | 0.144 | 0.646 | 0.275 | 0.859 | 0.017 | 0.859 | 0.032 |
Specificity | 0.990 | 0.018 | 0.996 | 0.004 | 0.683 | 0.316 | 0.991 | 0.008 |
F1 Score | 0.794 | 0.114 | 0.757 | 0.223 | 0.771 | 0.120 | 0.918 | 0.014 |
70% Occlusion Threshold | 90% Occlusion Threshold | |||
---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | |
Accuracy | 0.909 | 0.015 | 0.942 | 0.029 |
Precision | 0.971 | 0.025 | 0.980 | 0.014 |
Recall | 0.857 | 0.040 | 0.933 | 0.032 |
Specificity | 0.970 | 0.027 | 0.961 | 0.027 |
F1 Score | 0.910 | 0.017 | 0.956 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avital, G.; Hernandez Torres, S.I.; Knowlton, Z.J.; Bedolla, C.; Salinas, J.; Snider, E.J. Toward Smart, Automated Junctional Tourniquets—AI Models to Interpret Vessel Occlusion at Physiological Pressure Points. Bioengineering 2024, 11, 109. https://doi.org/10.3390/bioengineering11020109
Avital G, Hernandez Torres SI, Knowlton ZJ, Bedolla C, Salinas J, Snider EJ. Toward Smart, Automated Junctional Tourniquets—AI Models to Interpret Vessel Occlusion at Physiological Pressure Points. Bioengineering. 2024; 11(2):109. https://doi.org/10.3390/bioengineering11020109
Chicago/Turabian StyleAvital, Guy, Sofia I. Hernandez Torres, Zechariah J. Knowlton, Carlos Bedolla, Jose Salinas, and Eric J. Snider. 2024. "Toward Smart, Automated Junctional Tourniquets—AI Models to Interpret Vessel Occlusion at Physiological Pressure Points" Bioengineering 11, no. 2: 109. https://doi.org/10.3390/bioengineering11020109
APA StyleAvital, G., Hernandez Torres, S. I., Knowlton, Z. J., Bedolla, C., Salinas, J., & Snider, E. J. (2024). Toward Smart, Automated Junctional Tourniquets—AI Models to Interpret Vessel Occlusion at Physiological Pressure Points. Bioengineering, 11(2), 109. https://doi.org/10.3390/bioengineering11020109