Simultaneous High-Frame-Rate Acoustic Plane-Wave and Optical Imaging of Intracranial Cavitation in Polyacrylamide Brain Phantoms during Blunt Force Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of Polyacrylamide Hydrogel Brain Phantoms
2.2. Fabrication and Assembly of the Head Models
2.3. Drop Tower Assembly for Blunt Impacts
2.4. High-Speed Optical Imaging of Cavitation in Two Skull Geometries, with and without a Transducer Port
2.5. Shadowgraph Imaging for Cavitation and Shockwave Visualization
2.6. High-Frame-Rate Acoustic Plane-Wave Imaging in Conjunction with Optical and Shadowgraph Imaging
2.7. Acoustic Spectral Analysis and Cavitation Mapping
3. Results
3.1. Drop Tower Characterization Based on Mass and Drop Height
3.2. Validation and Comparison of Cavitation Behavior with a Change of Skull Geometry to Accommodate an Ultrasound Transducer
3.3. Comparison of Acoustic Plane-Wave Imaging and Optical Imaging for Intracranial Cavitation Detection with Varying Numbers of Pre-Existing Bubbles
3.4. Acoustic Spectral Analysis and Cavitation Mapping
4. Discussion
4.1. Benefits and Limitations of PAA for Mimicking Brain Tissue
4.2. Head Model Characteristics
4.3. Confirmation of Inducing a Blunt Impact Based on Drop Tower Characterization
4.4. Minimizing Trapped Bubbles during the Assembly Process
4.5. Cavitation Comparison of Transducer Port Skull Modification with High-Speed Optical Imaging
4.6. Evaluation of Acoustic Plane-Wave Images for Intracranial Cavitation Detection
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
TBI | Traumatic brain injury |
DI | Deionized water |
CSF | Cerebrospinal fluid |
PWI | Plane-wave imaging |
FPS | Frames per second |
PAA | Polyacrylamide |
MRI | Magnetic resonance imaging |
PLA | Polylactic acid |
KE | Kinetic energy |
FOV | Field of view |
FFT | Fast Fourier transform |
STFT | Short-time Fourier transform |
References
- Barlow, K.M. Traumatic brain injury. Handb. Clin. Neurol. 2013, 112, 891–904. [Google Scholar] [CrossRef]
- Blennow, K.; Brody, D.L.; Kochanek, P.M.; Levin, H.; McKee, A.; Ribbers, G.M.; Yaffe, K.; Zetterberg, H. Traumatic brain injuries. Nat. Rev. Dis. Prim. 2016, 2, 1–19. [Google Scholar] [CrossRef]
- Chapman, J.C.; Diaz-arrastia, R. Military traumatic brain injury: A review. Alh. Dement. 2014, 10, 97–104. [Google Scholar] [CrossRef]
- Bryden, D.W.; Tilghman, J.I.; Hinds, S.R. Blast-Related Traumatic Brain Injury: Current Concepts and Research Considerations. J. Exp. Neurosci. 2019, 13, 7–10. [Google Scholar] [CrossRef]
- Huh, K.R.; Kim, J.Y.; Choi, S.H.; Yoon, Y.H.; Park, S.J.; Lee, E.S. Comparison of traumatic brain injury patients with brain computed tomography in the emergency department by age group. Clin. Exp. Emerg. Med. 2020, 7, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Rutland-Brown, W.; Langlois, J.A.; Thomas, K.E.; Xi, Y.L. Incidence of Traumatic Brain Injury in the United States, 2003. J. Head Trauma Rehabil. 2006, 21, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Coronado, V.G.; McGuire, L.C.; Sarmiento, K.; Bell, J.; Lionbarger, M.R.; Jones, C.D.; Geller, A.I.; Khoury, N.; Xu, L. Trends in Traumatic Brain Injury in the U.S. and the public health response: 1995–2009. J. Saf. Res. 2012, 43, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Bass, C.R.; Panzer, M.B.; Rafaels, K.A.; Wood, G.; Shridharani, J.; Capehart, B. Brain injuries from blast. Ann. Biomed. Eng. 2012, 40, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D. Improvised explosive devices and traumatic brain injury: The military experience in Iraq and Afghanistan. Australas. Psychiatry 2009, 17, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, L.K.; Love, H.C.; Elbogen, E.B. Traumatic Brain Injury in Iraq and Afghanistan Veterans: New Results From a National Random Sample Study. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 254–259. [Google Scholar] [CrossRef]
- A clinical comparison of penetrating and blunt traumatic brain injuries. Brain Inj. 2012, 26, 107–125. [CrossRef]
- Young, L.; Rule, G.T.; Bocchieri, R.T.; Walilko, T.J.; Capehart, B.P.; Pollard, H.; Rafaels, K.A. When physics meets biology: Low and high-velocity penetration, blunt impact, and blast injuries to the brain. Front. Neurol. 2015, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.D.; Carroll, L.J.; Peloso, P.M.; Borg, J.; Von Holst, H.; Holm, L.; Kraus, J.; Coronado, V.G. Incidence, risk factors and prevention of mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 2004, 36, 28–60. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, R.E.; Demery, J.A.; Martinovich, Z.; Kelly, J.P. Effects of acute injury characteristics on neuropsychological status and vocational outcome following mild traumatic brain injuuy. Brain Inj. 1999, 13, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.L.; Bentil, S.A. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front. Neurol. 2021, 12, 626393. [Google Scholar] [CrossRef] [PubMed]
- Panzer, M.B.; Myers, B.S.; Capehart, B.P.; Bass, C.R. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 2012, 40, 1530–1544. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wu, T.; Nguyen, T.T.N.; Ghajari, M. Investigation of blast-induced cerebrospinal fluid cavitation: Insights from a simplified head surrogate. Int. J. Impact Eng. 2022, 162, 104146. [Google Scholar] [CrossRef]
- Salzar, R.S.; Treichler, D.; Wardlaw, A.; Weiss, G.; Goeller, J. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads. J. Neurotrauma 2017, 34, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Haniff, S.; Taylor, P.A. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury. Shock Waves 2017, 27, 929–945. [Google Scholar] [CrossRef]
- Lubock, P.; Goldsmith, W. Experimental cavitation studies in a model head-neck system. J. Biomech. 1980, 13, 1041–1052. [Google Scholar] [CrossRef]
- Nusholtz, G.S.; Wylie, E.B.; Glascoe, L.G. Internal Cavitation in Simple Head Impact Model. J. Neurotrauma 1995, 12, 707–714. [Google Scholar] [CrossRef]
- Goeller, J.; Wardlaw, A.; Treichler, D.; O’Bruba, J.; Weiss, G. Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury. J. Neurotrauma 2012, 29, 1970–1981. [Google Scholar] [CrossRef]
- Miller, S.T.; Cooper, C.F.; Elsbernd, P.; Kerwin, J.; Mejia-Alvarez, R.; Willis, A.M. Localizing Clinical Patterns of Blast Traumatic Brain Injury Through Computational Modeling and Simulation. Front. Neurol. 2021, 12, 547655. [Google Scholar] [CrossRef]
- Nakagawa, A.; Manley, G.T.; Gean, A.D.; Ohtani, K.; Armonda, R.; Tsukamoto, A.; Yamamoto, H.; Takayama, K.; Tominaga, T. Mechanisms of primary blast-induced traumatic brain injury: Insights from shock-wave research. J. Neurotrauma 2011, 28, 1101–1119. [Google Scholar] [CrossRef]
- Monson, K.L.; Converse, M.I.; Manley, G.T. Cerebral blood vessel damage in traumatic brain injury. Clin. Biomech. 2019, 64, 98–113. [Google Scholar] [CrossRef]
- Huang, A.P.H.; Lai, D.M.; Hsu, Y.H.; Kung, Y.; Lan, C.; Yeh, C.S.; Tsai, H.H.; Lin, C.F.; Chen, W.S. Cavitation-induced traumatic cerebral contusion and intracerebral hemorrhage in the rat brain by using an off-the-shelf clinical shockwave device. Sci. Rep. 2019, 9, 15614. [Google Scholar] [CrossRef]
- Shively, S.B.; Horkayne-Szakaly, I.; Jones, R.V.; Kelly, J.P.; Armstrong, R.C.; Perl, D.P. Characterisation of interface astroglial scarring in the human brain after blast exposure: A post-mortem case series. Lancet Neurol. 2016, 15, 944–953. [Google Scholar] [CrossRef]
- Hong, Y.; Sarntinoranont, M.; Subhash, G.; Canchi, S.; King, M.A. Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation. Exp. Mech. 2016, 56, 97–109. [Google Scholar] [CrossRef]
- Kerwin, J.; Yücesoy, A.; Vidhate, S.; Dávila-Montero, B.M.; Van Orman, J.L.; Pence, T.J.; Tartis, M.; Mejía-Alvarez, R.; Willis, A.M. Sulcal Cavitation in Linear Head Acceleration: Possible Correlation With Chronic Traumatic Encephalopathy. Front. Neurol. 2022, 13, 832370. [Google Scholar] [CrossRef]
- Kang, W.; Adnan, A.; O’Shaughnessy, T.; Bagchi, A. Cavitation nucleation in gelatin: Experiment and mechanism. Acta Biomater. 2018, 67, 295–306. [Google Scholar] [CrossRef]
- Mikami, H.; Gao, L.; Goda, K. Ultrafast optical imaging technology: Principles and applications of emerging methods. Nanophotonics 2016, 5, 441–453. [Google Scholar] [CrossRef]
- Haworth, K.J.; Bader, K.B.; Rich, K.T.; Holland, C.K.; Mast, T.D. Quantitative frequency-domain passive cavitation imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017, 64, 177–191. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Ye, D.; Laforest, R.; Williamson, J.; Liu, Y.; Chen, H. Cavitation dose painting for focused ultrasound-induced blood-brain barrier disruption. Sci. Rep. 2019, 9, 2840. [Google Scholar] [CrossRef]
- Song, J.H.; Johansen, K.; Prentice, P. An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves. J. Acoust. Soc. Am. 2016, 140, 2494–2505. [Google Scholar] [CrossRef]
- Izadifar, Z.; Babyn, P.; Chapman, D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J. Med. Biol. Eng. 2019, 39, 259–276. [Google Scholar] [CrossRef]
- Leighton, T. The Acoustic Bubble; Academic Press: London, UK, 1994; Chapter 4. [Google Scholar]
- Bercoff, J. Ultrafast Ultrasound Imaging. Ultrasound Imaging—Medical Applications; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Matrone, G.; Savoia, A.S.; Caliano, G.; Magenes, G. Ultrasound plane-wave imaging with delay multiply and sum beamforming and coherent compounding. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3223–3226. [Google Scholar] [CrossRef]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 489–506. [Google Scholar] [CrossRef]
- Denarie, B.; Tangen, T.A.; Ekroll, I.K.; Rolim, N.; Torp, H.; Bjåstad, T.; Lovstakken, L. Coherent Plane Wave Compounding for Very High Frame Rate Ultrasonography of Rapidly Moving Targets. IEEE Trans. Med. Imaging 2013, 32, 1265–1276. [Google Scholar] [CrossRef]
- Kusonose, J.; Caskey, C.F. Fast, low frequency plane-wave imaging for ultrasound contrast imaging. Ultrasound Med. Biol. 2018, 44, 2131–2142. [Google Scholar] [CrossRef]
- Wermer, A.; Kerwin, J.; Welsh, K.; Mejia-Alvarez, R.; Tartis, M.; Willis, A. Materials Characterization of Cranial Simulants for Blast-Induced Traumatic Brain Injury. Mil. Med. 2020, 185, 205–213. [Google Scholar] [CrossRef]
- Knutsen, A.K.; Vidhate, S.; McIlvain, G.; Luster, J.; Galindo, E.J.; Johnson, C.L.; Pham, D.L.; Butman, J.A.; Mejia-Alvarez, R.; Tartis, M.; et al. Characterization of material properties and deformation in the ANGUS phantom during mild head impacts using MRI. J. Mech. Behav. Biomed. Mater. 2023, 138, 105586. [Google Scholar] [CrossRef]
- Baker, A.J.; Galindo, E.J.; Angelos, J.D.; Salazar, D.K.; Sterritt, S.M.; Willis, A.M.; Tartis, M.S. Mechanical characterization data of polyacrylamide hydrogel formulations and 3D printed PLA for application in human head phantoms. Data Brief 2023, 48, 109114. [Google Scholar] [CrossRef] [PubMed]
- Craven, J. Cerebrospinal fluid and its circulation. Anaesth. Intensive Care Med. 2004, 5, 322. [Google Scholar] [CrossRef]
- ASTM D2240-15; Standard Test Methods for Rubber Property-Durometer Hardness. ASTM: West Conshohocken, PA, USA, 2015.
- Zell, K.; Sperl, J.I.; Vogel, M.W.; Niessner, R.; Haisch, C. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys. Med. Biol. 2007, 52, N475–N484. [Google Scholar] [CrossRef] [PubMed]
- Forte, A.E.; Gentleman, S.M.; Dini, D. On the characterization of the heterogeneous mechanical response of human brain tissue. Biomech. Model. Mechanobiol. 2017, 16, 907–920. [Google Scholar] [CrossRef]
- Barber, T.W.; Brockway, J.A.; Higgins, L.S. The density of tissues in and about the head. Acta Neurol. Scand. 1970, 46, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Velardi, F.; Fraternali, F.; Angelillo, M. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 2006, 5, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Destrade, M.; Gilchrist, M.D.; Murphy, J.G.; Rashid, B.; Saccomandi, G. Extreme softness of brain matter in simple shear. Int. J. -Non-Linear Mech. 2015, 75, 54–58. [Google Scholar] [CrossRef]
- Tejo-Otero, A.; Fenollosa-Artés, F.; Achaerandio, I.; Rey-Vinolas, S.; Buj-Corral, I.; Mateos-Timoneda, M.Á.; Engel, E. Soft-Tissue-Mimicking Using Hydrogels for the Development of Phantoms. Gels 2022, 8, 40. [Google Scholar] [CrossRef]
- Jin, K.; Zhang, T.; Shaw, M.; Sachdev, P.; Cherbuin, N. Relationship Between Sulcal Characteristics and Brain Aging. Front. Aging Neurosci. 2018, 10, 339. [Google Scholar] [CrossRef]
- Subramani, R.; Izquierdo-Alvarez, A.; Bhattacharya, P.; Meerts, M.; Moldenaers, P.; Ramon, H.; Van Oosterwyck, H. The Influence of Swelling on Elastic Properties of Polyacrylamide Hydrogels. Front. Mater. 2020, 7, 212. [Google Scholar] [CrossRef]
- Denisin, A.K.; Pruitt, B.L. Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications. Acs Appl. Mater. Interfaces 2016, 8, 21893–21902. [Google Scholar] [CrossRef]
- Lopez, D.M.B.; Ahmad, R. Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling. Polymers 2020, 12, 651. [Google Scholar] [CrossRef]
- Hubbard, R.P. Flexure of layered cranial bone. J. Biomech. 1971, 4, 251–263. [Google Scholar] [CrossRef]
- McElhaney, J.H.; Fogle, J.L.; Melvin, J.W.; Haynes, R.R.; Roberts, V.L.; Alem, N.M. Mechanical properties of cranial bone. J. Biomech. 1970, 3, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Rismalia, M.; Hidajat, S.C.; Permana, I.G.; Hadisujoto, B.; Muslimin, M.; Triawan, F. Infill pattern and density effects on the tensile properties of 3D printed PLA material. J. Physics: Conf. Ser. 2019, 1402, 2–8. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Alexander, S.L.; Rafaels, K.; Gunnarsson, C.A.; Weerasooriya, T. Structural analysis of the frontal and parietal bones of the human skull. J. Mech. Behav. Biomed. Mater. 2019, 90, 689–701. [Google Scholar] [CrossRef] [PubMed]
- K, S.; B, S.M. Estimation of the Cranial Capacity in Dry Human Skull Bones. Int. J. Anat. Res. 2018, 6, 5181–5185. [Google Scholar] [CrossRef]
- Hartmann, P.; Ramseier, A.; Gudat, F.; Mihatsch, M.; Polasek, W. Normal weight of the brain in adults in relation to age, sex, body height and weight. Der Pathol. 1994, 15, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Lüders, E.; Steinmetz, H.; Jäncke, L. Brain size and grey matter volume in the healthy human brain. NeuroReport 2002, 13, 2371–2374. [Google Scholar] [CrossRef] [PubMed]
- Siegenthaler, L.; Strehl, M.; Vaghi, A.; Zysset, P.; Kneubuehl, B.P.; Frenz, M. Threshold of the skull injury for blunt force impacts under free and constraint boundary conditions. Int. J. Leg. Med. 2019, 134, 553–563. [Google Scholar] [CrossRef]
- Raymond, D.; Van Ee, C.; Crawford, G.; Bir, C. Tolerance of the skull to blunt ballistic temporo-parietal impact. J. Biomech. 2009, 42, 2479–2485. [Google Scholar] [CrossRef]
- Cai, Z.; Xia, Y.; Bao, Z.; Mao, H. Creating a human head finite element model using a multi-block approach for predicting skull response and brain pressure. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 169–179. [Google Scholar] [CrossRef]
- Babo, S.; Ferreira, J.L.; Ramos, A.M.; Micheluz, A.; Pamplona, M.; Casimiro, M.H.; Ferreira, L.M.; Melo, M.J. Characterization and long-term stability of historical pmma: Impact of additives and acrylic sheet industrial production processes. Polymers 2020, 12, 2198, Correction in Polymers 2021, 13, 4105. [Google Scholar] [CrossRef]
- Castrejón-García, R.; Castrejón-Pita, J.R.; Martin, G.D.; Hutchings, I.M. The shadowgraph imaging technique and its modern application to fluid jets and drops. Rev. Mex. Fis. 2011, 57, 266–275. [Google Scholar]
- Luo, J.; Niu, Z. Jet and Shock Wave from Collapse of Two Cavitation Bubbles. Sci. Rep. 2019, 9, 1352. [Google Scholar] [CrossRef]
- Johnston, K.; Tapia-Siles, C.; Gerold, B.; Postema, M.; Cochran, S.; Cuschieri, A.; Prentice, P. Periodic shock-emission from acoustically driven cavitation clouds: A source of the subharmonic signal. Ultrasonics 2014, 54, 2151–2158. [Google Scholar] [CrossRef]
- McIlvain, G.; Schwarb, H.; Cohen, N.J.; Telzer, E.H.; Johnson, C.L. Mechanical properties of the in vivo adolescent human brain. Dev. Cogn. Neurosci. 2018, 34, 27–33. [Google Scholar] [CrossRef]
- Márquez, M.G.; Dotson, R.; Pias, S.; Frolova, L.V.; Tartis, M.S. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020, 4, 40–56. [Google Scholar] [CrossRef]
- Abadi, S.H.; Haworth, K.J.; Mercado-Shekhar, K.P.; Dowling, D.R. Frequency-sum beamforming for passive cavitation imaging. J. Acoust. Soc. Am. 2018, 144, 198–209. [Google Scholar] [CrossRef]
- Salgaonkar, V.A.; Datta, S.; Holland, C.K.; Mast, T.D. Passive cavitation imaging with ultrasound arrays. J. Acoust. Soc. Am. 2009, 126, 3071–3083. [Google Scholar] [CrossRef] [PubMed]
- Baad, M.; Lu, Z.F.; Reiser, I.; Paushter, D. Clinical significance of US Artifacts. Radiographics 2017, 37, 1408–1423. [Google Scholar] [CrossRef] [PubMed]
Parameter | Requirement |
---|---|
Infill percentage | 100 |
Infill pattern | Grid |
Layer height | 0.2 mm |
Wall thickness | 0.8 mm |
Wall line count | 2 |
Top and bottom layers | 2 |
Extruder temperature | 205 °C |
Build plate temperature | 60 °C |
Print speed | 40 mm/s |
Parameter | Requirement |
---|---|
Spectral window size | 64 samples |
Spectral window type | Hanning (Periodic) |
Overlap length | 32 samples |
FFT length | 64 samples |
Frequency range | One-sided |
Input vector size | 2048 × 1 |
Output matrix size | 63 × 33 |
Impactor Mass (kg) | Drop Height (cm) | Velocity (m/s) | Impact Energy (J) | Skull Displacement (mm) | Peak Impact Force (kN) |
---|---|---|---|---|---|
2 | 20 40 60 | 1.28 ± 0.03 1.42 ± 0.06 1.61 ± 0.03 | 1.65 ± 0.08 2.02 ± 0.18 2.60 ± 0.09 | 1.26 ± 0.08 1.40 ± 0.12 1.62 ± 0.12 | 2.60 ± 0.25 2.90 ± 0.05 3.15 ± 0.25 |
3 | 20 40 60 | 1.31 ± 0.05 1.58 ± 0.06 1.74 ± 0.05 | 2.57 ± 0.20 3.73 ± 0.28 4.54 ± 0.29 | 1.69 ± 0.07 2.29 ± 0.10 2.60 ± 0.07 | 3.11 ± 0.37 3.25 ± 0.15 3.43 ± 0.03 |
4 | 20 40 60 | 1.44 ± 0.06 1.71 ± 0.02 1.83 ± 0.09 | 4.12 ± 0.33 5.82 ± 0.16 6.71 ± 0.63 | 1.98 ± 0.17 2.83 ± 0.11 2.93 ± 0.27 | 3.95 ± 0.35 4.11 ± 0.12 4.98 ± 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindo, E.J.; Flores, R.R.; Mejia-Alvarez, R.; Willis, A.M.; Tartis, M.S. Simultaneous High-Frame-Rate Acoustic Plane-Wave and Optical Imaging of Intracranial Cavitation in Polyacrylamide Brain Phantoms during Blunt Force Impact. Bioengineering 2024, 11, 132. https://doi.org/10.3390/bioengineering11020132
Galindo EJ, Flores RR, Mejia-Alvarez R, Willis AM, Tartis MS. Simultaneous High-Frame-Rate Acoustic Plane-Wave and Optical Imaging of Intracranial Cavitation in Polyacrylamide Brain Phantoms during Blunt Force Impact. Bioengineering. 2024; 11(2):132. https://doi.org/10.3390/bioengineering11020132
Chicago/Turabian StyleGalindo, Eric J., Riley R. Flores, Ricardo Mejia-Alvarez, Adam M. Willis, and Michaelann S. Tartis. 2024. "Simultaneous High-Frame-Rate Acoustic Plane-Wave and Optical Imaging of Intracranial Cavitation in Polyacrylamide Brain Phantoms during Blunt Force Impact" Bioengineering 11, no. 2: 132. https://doi.org/10.3390/bioengineering11020132
APA StyleGalindo, E. J., Flores, R. R., Mejia-Alvarez, R., Willis, A. M., & Tartis, M. S. (2024). Simultaneous High-Frame-Rate Acoustic Plane-Wave and Optical Imaging of Intracranial Cavitation in Polyacrylamide Brain Phantoms during Blunt Force Impact. Bioengineering, 11(2), 132. https://doi.org/10.3390/bioengineering11020132