Investigation of How Corneal Densitometry Artefacts Affect the Imaging of Normal and Keratoconic Corneas
Abstract
:1. Introduction
2. Methods
2.1. Subject Data Collection and Processing
2.2. Measurement of Corneal Densitometry
2.3. Processing Corneal Densitometry Measurements
2.4. KC Cone Centre Location and Boundary Analyses
3. Statistical Analyses
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CSV | Comma-separated values file |
IOP | Intraocular pressure |
KC | Keratoconic |
N | Normal |
NaN | Not a number |
NGSU | Normalised grey-scale unit |
NRSD | Normalised radial summation of densitometry |
RGP | Rigid gas-permeable |
STD | Standard deviation |
References
- Otri, A.M.; Fares, U.; Al-Aqaba, M.A.; Dua, H.S. Corneal Densitometry as an Indicator of Corneal Health. Ophthalmology 2012, 119, 501–508. [Google Scholar] [CrossRef]
- Li, S.; Siggel, R.; Guo, Y.; Loreck, N.; Rokohl, A.C.; Kurschat, C.; Heindl, L.M. Corneal densitometry: A potential indicator for early diagnosis of Fabry disease. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 941–948. [Google Scholar] [CrossRef]
- Ní Dhubhghaill, S.; Rozema, J.J.; Jongenelen, S.; Ruiz Hidalgo, I.; Zakaria, N.; Tassignon, M.-J. Normative Values for Corneal Densitometry Analysis by Scheimpflug Optical Assessment. Investig. Ophthalmol. Vis. Sci. 2014, 55, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Zhang, T.Q.; Rachwani, A.R.; Blanco-Domínguez, I.; Rocha de Lossada, C.; Adán-Civiera, A.M.; Peraza-Nieves, J. New algorithm for corneal densitometry assessment based on anterior segment optical coherence tomography. Eye 2022, 36, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Murgoitio-Esandi, J.; Qian, X.; Li, R.; Gong, C.; Nankali, A.; Hao, L.; Xu, B.Y.; Shung, K.K.; Oberai, A.; et al. High-Frequency Ultrasound Elastography to Assess the Nonlinear Elastic Properties of the Cornea and Ciliary Body. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Qian, X.; Gong, C.; Zhang, J.; Liu, Y.; Xu, B.; Humayun, M.S.; Zhou, Q. Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography. IEEE Trans. Biomed. Eng. 2023, 70, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Consejo, A.; Jiménez-García, M.; Rozema, J.J.; Abass, A. Influence of eye tilt on corneal densitometry. Ophthalmic Physiol. Opt. 2022, 42, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Miażdżyk, M.; Consejo, A.; Iskander, D.R. OCT based corneal densitometry: The confounding effect of epithelial speckle. Biomed. Opt. Express 2023, 14, 3871–3880. [Google Scholar] [CrossRef] [PubMed]
- Sankaridurg, P.; Bakaraju, R.C.; Morgan, J.; Chen, X.; Tilia, D.; Ho, A.; Ehrmann, K.; Weng, R.; Conrad, F.; Smith, E.L.; et al. Novel contact lenses designed to slow progress of myopia: 12 month results. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2391. [Google Scholar]
- Chen, X.; Shen, Y.; Xu, H.; Wang, X.; Zhou, X. One-year natural course of corneal densitometry in high myopic patients after implantation of an implantable collamer lens (model V4c). BMC Ophthalmol. 2020, 20, 50. [Google Scholar] [CrossRef]
- Shah, K.; Eghrari, A.O.; Vanner, E.A.; O’Brien, T.P.; Koo, E.H. Scheimpflug Corneal Densitometry Values and Severity of Guttae in Relation to Visual Acuity in Fuchs Endothelial Corneal Dystrophy. Cornea 2022, 41, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Kormányos, K.; Kovács, K.; Németh, O.; Tóth, G.; Sándor, G.L.; Csorba, A.; Czakó, C.N.; Módis, L.; Langenbucher, A.; Nagy, Z.Z.; et al. Corneal Densitometry and In Vivo Confocal Microscopy in Patients with Monoclonal Gammopathy—Analysis of 130 Eyes of 65 Subjects. J. Clin. Med. 2022, 11, 1848. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Han, T.; Jhanji, V.; Shang, J.; Zhao, J.; Li, M.; Zhou, X. Correlation Between Corneal Topographic, Densitometry, and Biomechanical Parameters in Keratoconus Eyes. Transl. Vis. Sci. Technol. 2019, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xue, C.; Wang, J.; Chen, X.; Wang, X.; Wang, Y. Analysis of the correlation between biomechanical properties and corneal densitometry in myopic eyes. Front. Bioeng. Biotechnol. 2023, 11, 1182372. [Google Scholar] [CrossRef]
- Alzahrani, K.; Cristian, C.; Harper, S.; Carley, F.; Brahma, A.; Morley, D.; Hillarby, M.C. Corneal imaging and densitometry measurements in keratoconus patients to monitor disease progression and treatment outcomes after contact lens or Intacs treatment. Clin. Ophthalmol. 2018, 12, 1653–1658. [Google Scholar] [CrossRef]
- Rodrigues, P.F.; Moscovici, B.K.; Ferrara, G.; Lamazales, L.; Freitas, M.M.S.; Torquetti, L.; Ambrósio, R.; Gomes, J.A.P. Corneal densitometry in patients with keratoconus undergoing intrastromal Ferrara ring implantation. Eur. J. Ophthalmol. 2021, 31, 3505–3510. [Google Scholar] [CrossRef]
- Lopes, B.; Ramos, I.; Ambrósio, R., Jr. Corneal densitometry in keratoconus. Cornea 2014, 33, 1282–1286. [Google Scholar] [CrossRef]
- Mounir, A.; Awny, I.; Yousef, H.S.; Mostafa, E.M. Distribution of corneal densitometry in different grades of keratoconus. Indian J. Ophthalmol. 2023, 71, 830–836. [Google Scholar] [CrossRef]
- Goudie, C.; Tatham, A.; Davies, R.; Sifton, A.; Wright, M. The effect of the timing of the cessation of contact lens use on the results of biometry. Eye 2018, 32, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Cavas-Martinez, F.; De la Cruz Sanchez, E.; Nieto Martinez, J.; Fernandez Canavate, F.J.; Fernandez-Pacheco, D.G. Corneal topography in keratoconus: State of the art. Eye Vis. 2016, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Eliasy, A.; Abass, A.; Lopes, B.T.; Vinciguerra, R.; Zhang, H.; Vinciguerra, P.; Ambrósio, R.; Roberts, C.J.; Elsheikh, A. Characterization of cone size and centre in keratoconic corneas. J. R. Soc. Interface 2020, 17, 20200271. [Google Scholar] [CrossRef]
- Abass, A.; Vinciguerra, R.; Lopes, B.T.; Bao, F.; Vinciguerra, P.; Ambrósio, R.; Elsheikh, A. Positions of Ocular Geometrical and Visual Axes in Brazilian, Chinese and Italian Populations. Curr. Eye Res. 2018, 43, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Marsaglia, G.; Tsang, W.W.; Wang, J. Evaluating Kolmogorov’s Distribution. J. Stat. Softw. 2003, 8, 1–4. [Google Scholar] [CrossRef]
- Everitt, B.S.; Skrondal, A. The Cambridge Dictionary of Statistics, 4th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Doğuizi, S.; Özateş, S.; Hoşnut, F.; Şahin, G.E.; Şekeroğlu, M.A.; Yılmazbaş, P. Assessment of corneal and lens clarity in children with Wilson disease. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2019, 23, 147.e141–147.e148. [Google Scholar] [CrossRef] [PubMed]
- Tack, M.; Kreps, E.O.; De Zaeytijd, J.; Consejo, A. Scheimpflug-Based Analysis of the Reflectivity of the Cornea in Marfan Syndrome. Transl. Vis. Sci. Technol. 2021, 10, 34. [Google Scholar] [CrossRef]
- Busch, C.; Koh, S.; Oie, Y.; Ichii, M.; Kanakura, Y.; Nishida, K. Increased corneal densitometry as a subclinical corneal change associated with multiple myeloma. Eye 2017, 31, 1745–1746. [Google Scholar] [CrossRef]
- Ishikawa, S.; Kato, N.; Takeuchi, M. Quantitative evaluation of corneal epithelial edema after cataract surgery using corneal densitometry: A prospective study. BMC Ophthalmol. 2018, 18, 334. [Google Scholar] [CrossRef]
- Poyales, F.; Garzón, N.; Mendicute, J.; Illarramendi, I.; Caro, P.; Jáñez, O.; Argüeso, F.; López, A. Corneal densitometry after photorefractive keratectomy, laser-assisted in situ keratomileusis, and small-incision lenticule extraction. Eye 2017, 31, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Pillunat, K.R.; Orphal, J.; Haase, M.; Pillunat, L.E.; Herber, R. Scheimpflug Corneal Densitometry Changes After Trabeculectomy. Cornea 2021, 40, 408–414. [Google Scholar] [CrossRef]
- Alnawaiseh, M.; Rosentreter, A.; Prokosch, V.; Eveslage, M.; Eter, N.; Zumhagen, L. Changes in Corneal Densitometry in Patients with Fuchs Endothelial Dystrophy after Endothelial Keratoplasty. Curr. Eye Res. 2017, 42, 163–167. [Google Scholar] [CrossRef]
- Karmiris, E.; Soulantzou, K.; Machairoudia, G.; Ntravalias, T.; Tsiogka, A.; Chalkiadaki, E. Corneal Densitometry Assessed With Scheimpflug Camera in Healthy Corneas and Correlation With Specular Microscopy Values and Age. Cornea 2022, 41, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.M.; Resende, S.S.; Sousa, T.N.; Brito, C.F.A. A systematic scoping review of the genetic ancestry of the Brazilian population. Genet. Mol. Biol. 2019, 42, 495–508. [Google Scholar] [CrossRef]
- Realini, T.; Gurka, M.J.; Weinreb, R.N. Reproducibility of Central Corneal Thickness Measurements in Healthy and Glaucomatous Eyes. J. Glaucoma 2017, 26, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Meek, K.M.; Tuft, S.J.; Huang, Y.; Gill, P.S.; Hayes, S.; Newton, R.H.; Bron, A.J. Changes in collagen orientation and distribution in keratoconus corneas. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
Clinical Classification | Normal (N) | Keratoconic (KC) | ||
---|---|---|---|---|
Minimum corneal thickness (µm) | 550 ± 33 | 492:660 | 466 ± 39 | 307:568 |
Flat radius of curvature in the central 3 mm zone K1 (D) | 42.6 ± 1.4 | 39.4:46.6 | 44.7 ± 3.1 | 36.7:55.3 |
Steep radius of curvature in the central 3 mm zone K2 (D) | 43.8 ± 1.5 | 40.3:47.9 | 48.4 ± 3.7 | 41.8:59.4 |
Topographical KC classification TKC (level) | NA | NA | 2.1 ± 0.7 | 1:3.5 |
Index of Bad D (D/mm)—less than 1.5 is normal [20] | 0.4 ± 0.5 | −0.9:1.4 | 7.0 ± 3.3 | 1.5:20.8 |
Right Eye Angles (°) | Left Eye Angles (°) | |||
---|---|---|---|---|
r (mm) | N | KC | N | KC |
0.5 | 69 | 74 | 45 | 84 |
1.0 | 59 | 60 | 69 | 68 |
1.5 | 63 | 63 | 66 | 62 |
2.0 | 61 | 62 | 67 | 64 |
2.5 | 62 | 62 | 67 | 65 |
3.0 | 65 | 64 | 63 | 64 |
3.5 | 65 | 64 | 62 | 64 |
4.0 | 66 | 65 | 63 | 64 |
4.5 | 66 | 65 | 64 | 64 |
5.0 | 66 | 66 | 64 | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, R.; Esporcatte, L.P.G.; White, L.; Salomão, M.Q.; Lopes, B.T.; Ambrósio Jr., R.; Abass, A. Investigation of How Corneal Densitometry Artefacts Affect the Imaging of Normal and Keratoconic Corneas. Bioengineering 2024, 11, 148. https://doi.org/10.3390/bioengineering11020148
Alanazi R, Esporcatte LPG, White L, Salomão MQ, Lopes BT, Ambrósio Jr. R, Abass A. Investigation of How Corneal Densitometry Artefacts Affect the Imaging of Normal and Keratoconic Corneas. Bioengineering. 2024; 11(2):148. https://doi.org/10.3390/bioengineering11020148
Chicago/Turabian StyleAlanazi, Rami, Louise Pellegrino Gomes Esporcatte, Lynn White, Marcella Q. Salomão, Bernardo T. Lopes, Renato Ambrósio Jr., and Ahmed Abass. 2024. "Investigation of How Corneal Densitometry Artefacts Affect the Imaging of Normal and Keratoconic Corneas" Bioengineering 11, no. 2: 148. https://doi.org/10.3390/bioengineering11020148
APA StyleAlanazi, R., Esporcatte, L. P. G., White, L., Salomão, M. Q., Lopes, B. T., Ambrósio Jr., R., & Abass, A. (2024). Investigation of How Corneal Densitometry Artefacts Affect the Imaging of Normal and Keratoconic Corneas. Bioengineering, 11(2), 148. https://doi.org/10.3390/bioengineering11020148