Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-PEGDA Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Growth Media, and Inoculum Preparation
2.2. Construct Design
2.3. Hydrogel Development (Biocompatibility and Printability)
2.4. Bacteria-Laden Bioink Preparation
2.5. Bioprinting and Culture
2.6. Live/Dead Analysis
2.7. Mechanical Characterisation
3. Results
3.1. Hydrogel Printability
3.2. Hydrogel Biocompatibility
3.3. Live/Dead Analysis
3.4. Mechanical Characterisation of Hydrogel
4. Discussion
4.1. Approach
4.2. Construct Design
4.3. Hydrogel Development and Bioprinting
4.4. Mechanical Characterisation of Hydrogel
4.5. Hydrogel Biocompatibility
4.6. Hydrogel Culture
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douglas, C.M.; Lang, K.; Whitmer, W.M.; Wilson, J.A.; Mackenzie, K. The effect of tonsillectomy on the morbidity from recurrent tonsillitis. Clin. Otolaryngol. 2017, 42, 1206–1210. [Google Scholar] [CrossRef]
- Chole, R.A.; Faddis, B.T. Anatomical evidence of microbial biofilms in tonsillar tissues: A possible mechanism to explain chronicity. Arch. Otolaryngol.-Head Neck Surg. 2003, 129, 634–636. [Google Scholar] [CrossRef]
- SIGN. Management of Sore Throat and Indication of Tonsillectomy: SIGN 117. 2010. Available online: http://www.sign.ac.uk/guidelines/fulltext/117/ (accessed on 2 February 2024).
- Milner, T.D.; Hilmi, O.; Marshall, J.; MacKenzie, K. Pan-Scotland tonsillectomy outcomes: A national cross-sectional study. Clin. Otolaryngol. 2021, 46, 138–145. [Google Scholar] [CrossRef]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nat. News 2017, 543, 15. [Google Scholar] [CrossRef]
- Sun, W.; Starly, B.; Daly, A.C.; Burdick, J.A.; Groll, J.; Skeldon, G.; Shu, W.; Sakai, Y.; Shinohara, M.; Nishikawa, M.; et al. The bioprinting roadmap. Biofabrication 2020, 12, 022002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gao, L.; Ma, L.; Luo, Y.; Yang, H.; Cui, Z. 3D bioprinting: A novel avenue for manufacturing tissues and organs. Engineering 2019, 5, 777–794. [Google Scholar] [CrossRef]
- Turnbull, G.; Clarke, J.; Picard, F.; Zhang, W.; Riches, P.; Li, B.; Shu, W. 3D biofabrication for soft tissue and cartilage engineering. Med. Eng. Phys. 2020, 82, 13–39. [Google Scholar] [CrossRef] [PubMed]
- Faulkner-Jones, A.; Zamora, V.; Hortigon-Vinagre, M.P.; Wang, W.; Ardron, M.; Smith, G.L.; Shu, W. A bioprinted heart-on-a-chip with human pluripotent stem cell-derived cardiomyocytes for drug evaluation. Bioengineering 2022, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.M.; Charlton, A.; Derby, B.; Ewart, L.; Scott, A.; Shu, W. Rising to the challenge: Applying biofabrication approaches for better drug and chemical product development. Biofabrication 2017, 9, 033001. [Google Scholar] [CrossRef] [PubMed]
- Ning, E.; Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Vendrell, M.; Graham, D.; Wark, A.W.; Faulds, K.; Shu, W. 3D bioprinting of mature bacterial biofilms for antimicrobial resistance drug testing. Biofabrication 2019, 11, 045018. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Aubin-Tam, M.E.; Meyer, A.S. 3D printing for the fabrication of biofilm-based functional living materials. ACS Synth. Biol. 2019, 8, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Schmieden, D.T.; Basalo Vázquez, S.J.; Sangüesa, H.; Van Der Does, M.; Idema, T.; Meyer, A.S. Printing of patterned, engineered E. coli biofilms with a low-cost 3D printer. ACS Synth. Biol. 2018, 7, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Dubbin, K.; Dong, Z.; Park, D.M.; Alvarado, J.; Su, J.; Wasson, E.; Robertson, C.; Jackson, J.; Bose, A.; Moya, M.L.; et al. Projection microstereolithographic microbial bioprinting for engineered biofilms. Nano Lett. 2021, 21, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Aliyazdi, S.; Frisch, S.; Hidalgo, A.; Frank, N.; Krug, D.; Müller, R.; Schäfer, U.F.; Vogt, T.; Loretz, B.; Lehr, C.M. 3D bioprinting of E. coli MG1655 biofilms on human lung epithelial cells for building complex in vitro infection models. Biofabrication 2023, 15, 035019. [Google Scholar] [CrossRef] [PubMed]
- Saygili, E.; Dogan-Gurbuz, A.A.; Yesil-Celiktas, O.; Draz, M.S. 3D bioprinting: A powerful tool to leverage tissue engineering and microbial systems. Bioprinting 2020, 18, e00071. [Google Scholar] [CrossRef]
- Das, S.; Basu, B. An overview of hydrogel-based bioinks for 3D bioprinting of soft tissues. J. Indian Inst. Sci. 2019, 99, 405–428. [Google Scholar] [CrossRef]
- Łabowska, M.B.; Cierluk, K.; Jankowska, A.M.; Kulbacka, J.; Detyna, J.; Michalak, I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials 2021, 14, 858. [Google Scholar] [CrossRef]
- Benjamin, A.D.; Abbasi, R.; Owens, M.; Olsen, R.J.; Walsh, D.J.; LeFevre, T.B.; Wilking, J.N. Light-based 3D printing of hydrogels with high-resolution channels. Biomed. Phys. Eng. Express 2019, 5, 025035. [Google Scholar] [CrossRef]
- Khandaker, M.; Nomhwange, H.; Progri, H.; Nikfarjam, S.; Vaughan, M.B. Evaluation of polycaprolactone electrospun nanofiber-composites for artificial skin based on dermal fibroblast culture. Bioengineering 2022, 9, 19. [Google Scholar] [CrossRef]
- Zhu, W.; Tringale, K.R.; Woller, S.A.; You, S.; Johnson, S.; Shen, H.; Schimelman, J.; Whitney, M.; Steinauer, J.; Xu, W.; et al. Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater. Today 2018, 21, 951–959. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, X.; Chen, Z.; Li, S.; Yan, C. Thiol–Ene click reaction initiated rapid gelation of PEGDA/silk fibroin hydrogels. Polymers 2019, 11, 2102. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Mashayekhan, S.; Baradaran-Rafii, A.; Kim, K. Development and in vitro evaluation of photocurable GelMA/PEGDA hybrid hydrogel for corneal stromal cells delivery. Mater. Today Commun. 2021, 27, 102459. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Ma, M.; Lu, W.; Zhang, B.; Guo, Y. A GelMA-PEGDA-nHA composite hydrogel for bone tissue engineering. Materials 2020, 13, 3735. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Lin, X.; Yang, Q.; Yang, G. Printability of external and internal structures based on digital light processing 3D printing technique. Pharmaceutics 2020, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Scales, B.S.; Dickson, R.P.; LiPuma, J.J.; Huffnagle, G.B. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin. Microbiol. Rev. 2014, 27, 927–948. [Google Scholar] [CrossRef]
- State College PM, Inc. Minitab 20.4 Statistical Software. 2021. Available online: www.minitab.com (accessed on 2 February 2024).
- Şener Raman, T.; Kuehnert, M.; Daikos, O.; Scherzer, T.; Krömmelbein, C.; Mayr, S.G.; Abel, B.; Schulze, A. A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation. Front. Chem. 2023, 10, 1094981. [Google Scholar] [CrossRef] [PubMed]
- Kurian, A.G.; Singh, R.K.; Patel, K.D.; Lee, J.-H.; Kim, H.-W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 2022, 8, 267–295. [Google Scholar] [CrossRef] [PubMed]
- Sancakli, A.; Basaran, B.; Arican, F.; Polat, O. Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties. SN Appl. Sci. 2021, 3, 8. [Google Scholar] [CrossRef]
- Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 2009, 75, 1932–1937. [Google Scholar] [CrossRef]
- Maclean, M.; McKenzie, K.; Anderson, J.G.; Gettinby, G.; MacGregor, S.J. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J. Hosp. Infect. 2014, 88, 1–11. [Google Scholar] [CrossRef]
Gelatin Concentration | Bioink Formulation |
---|---|
5% | 10% w/v PEGDA, 5% w/v Gelatin, 1% w/v LAP, 84% w/v DI water, 0.5 mg/mL tartrazine |
3% | 10% w/v PEGDA, 3% w/v Gelatin, 1% w/v LAP, 86% w/v DI water, 0.5 mg/mL tartrazine |
1% | 10% w/v PEGDA, 1% w/v Gelatin, 1% w/v LAP, 88% w/v DI water, 0.5 mg/mL tartrazine |
Pins and Voids | Infinity Sign | Bars and Gaps | |
---|---|---|---|
Under Exposed | Number of pins < Number of voids | Small gap in the middle of the infinity sign | Bars that fit down gaps with extra room |
Over Exposed | Number of pins > Number of voids | Small overlap in the middle of the infinity sign | Bars too big to fit down gaps |
Correctly Exposed | Number of pins = Number of voids | Middle of the infinity sign just touching | Bars and gaps that are the same size |
Gelatin Concentration | Measurement | |||
---|---|---|---|---|
1% | 3% | 5% | ||
Pore Length (μm) | 1120 ± 17.8 | 798 ± 109 | 874 ± 51.8 | 1000 |
Distance Between Pores (μm) | 156 ± 57.8 | 413 ± 84.5 | 280 ± 19.3 | 200 |
Printability | 0.998 ± 0.033 | 1.44 ± 0.054 | 1.31 ± 0.085 | 1 |
Exposure Time (Seconds) | Number of Pins and Voids | Infinity Sign | Bars and Gaps | Conclusion | |
---|---|---|---|---|---|
Pins | Voids | ||||
8 | 6 | 10 | Underexposure | ||
8.5 | 9 | 10 | Underexposure | ||
8.75 | 10 | 10 | Correct Exposure | ||
9 | 11 | 10 | Overexposure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denton, O.; Wan, Y.; Beattie, L.; Jack, T.; McGoldrick, P.; McAllister, H.; Mullan, C.; Douglas, C.M.; Shu, W. Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-PEGDA Hydrogel. Bioengineering 2024, 11, 202. https://doi.org/10.3390/bioengineering11030202
Denton O, Wan Y, Beattie L, Jack T, McGoldrick P, McAllister H, Mullan C, Douglas CM, Shu W. Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-PEGDA Hydrogel. Bioengineering. 2024; 11(3):202. https://doi.org/10.3390/bioengineering11030202
Chicago/Turabian StyleDenton, Oliver, Yifei Wan, Laura Beattie, Téa Jack, Preston McGoldrick, Holly McAllister, Cara Mullan, Catriona M. Douglas, and Wenmiao Shu. 2024. "Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-PEGDA Hydrogel" Bioengineering 11, no. 3: 202. https://doi.org/10.3390/bioengineering11030202
APA StyleDenton, O., Wan, Y., Beattie, L., Jack, T., McGoldrick, P., McAllister, H., Mullan, C., Douglas, C. M., & Shu, W. (2024). Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-PEGDA Hydrogel. Bioengineering, 11(3), 202. https://doi.org/10.3390/bioengineering11030202