Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context
Abstract
:1. Introduction
2. Description of Conventional Methods for Wastewater Treatment
3. Emerging Trends
3.1. Advanced Oxidation Processes
3.2. Electrochemical Methods
3.3. Bioelectrochemical Remediation
Conducting Materials—Electron Sinks/Redox Shuttlers
3.4. Integrated Bioelectrochemical Remediation
4. Sustainable Intervention
4.1. Resource Recovery
4.2. Circular Economy and Low-Carbon Footprints
5. Way Forward
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASP | Activated sludge process |
AOPs | Advanced oxidation processes |
BET | Bioelectrochemical treatment |
ClO2 | Chlorine dioxide |
COD | Chemical oxygen demand |
CWs | Constructed wetlands |
DIET | Direct interspecies electron transfer |
DAO | Direct anodic oxidation |
EES | Ecologically engineered systems |
EO | Electrochemical oxidation |
EABs | Electrochemically active bacteria |
EET | Extracellular electron transfer |
HRT | Hydraulic retention time |
H2O2 | Hydrogen peroxide |
OH * | Hydroxyl radicals |
OCl− | Hypochlorite |
IAO | Indirect anodic oxidation |
IET | Interspecies electron transfer |
O * | Nascent oxygen |
O3 | Ozone |
POPs | Persistent organic pollutants |
SBR | Sequential batch process |
SDGs | Sustainable development goals |
References
- Sathya, R.; Arasu, M.V.; Al-Dhabi, N.A.; Vijayaraghavan, P.; Ilavenil, S.; Rejiniemon, T.S. Towards Sustainable Wastewater Treatment by Biological Methods—A Challenges and Advantages of Recent Technologies. Urban Clim. 2023, 47, 101378. [Google Scholar] [CrossRef]
- Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm Mediated Wastewater Treatment: A Comprehensive Review. Mater. Adv. 2023, 4, 1415–1443. [Google Scholar] [CrossRef]
- González, J.; Sánchez, M.E.; Gómez, X. Enhancing Anaerobic Digestion: The Effect of Carbon Conductive Materials. C J. Carbon Res. 2018, 4, 59. [Google Scholar] [CrossRef]
- Moscoviz, R.; Toledo-Alarcón, J.; Trably, E.; Bernet, N. Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends Biotechnol. 2016, 34, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, S.; Liang, D.; Li, N. Conductive Materials in Anaerobic Digestion: From Mechanism to Application. Bioresour. Technol. 2020, 298, 122403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Zhang, Y.; Lovley, D.R. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. Iscience 2020, 23, 101794. [Google Scholar] [CrossRef] [PubMed]
- Sravan, J.S.; Tharak, A.; Modestra, J.A.; Chang, I.S.; Mohan, S.V. Emerging Trends in Microbial Fuel Cell Diversification-Critical Analysis. Bioresour. Technol. 2021, 326, 124676. [Google Scholar]
- Gong, Z.; Yu, H.; Zhang, J.; Li, F.; Song, H. Microbial Electro-Fermentation for Synthesis of Chemicals and Biofuels Driven by Bi-Directional Extracellular Electron Transfer. Synth. Syst. Biotechnol. 2020, 5, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Prévoteau, A.; Carvajal-Arroyo, J.M.; Ganigué, R.; Rabaey, K. Microbial Electrosynthesis from CO2: Forever a Promise? Curr. Opin. Biotechnol. 2020, 62, 48–57. [Google Scholar] [CrossRef]
- Sharma, M.; Alvarez-Gallego, Y.; Achouak, W.; Pant, D.; Sarma, P.M.; Dominguez-Benetton, X. Electrode Material Properties for Designing Effective Microbial Electrosynthesis Systems. J. Mater. Chem. A 2019, 7, 24420–24436. [Google Scholar] [CrossRef]
- Vassilev, I.; Hernandez, P.A.; Batlle-Vilanova, P.; Freguia, S.; Krömer, J.O.; Keller, J.J.; Ledezma, P.; Virdis, B.; Krömer, J.O.; Keller, J.J.; et al. Microbial Electrosynthesis of Isobutyric, Butyric, Caproic Acids, and Corresponding Alcohols from Carbon Dioxide. ACS Sustain. Chem. Eng. 2018, 6, 8485–8493. [Google Scholar] [CrossRef]
- Yang, L.; Xu, X.; Wang, H.; Yan, J.; Zhou, X.; Ren, N.; Lee, D.-J.; Chen, C. Biological Treatment of Refractory Pollutants in Industrial Wastewaters under Aerobic or Anaerobic Condition: Batch Tests and Associated Microbial Community Analysis. Bioresour. Technol. Rep. 2022, 17, 100927. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced Oxidation Processes: Performance, Advantages, and Scale-up of Emerging Technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef]
- Sravan, J.S.; Hemalatha, M.; Mohan, S.V. Cascading Integration of Electrofermentation and Photosynthesis—Low-Carbon Biorefinery in Closed Loop Approach. Adv. Sustain. Syst. 2023, 7, 2300142. [Google Scholar] [CrossRef]
- Hemalatha, M.; Sravan, J.S.; Yeruva, D.K.; Mohan, S.V. Integrated Ecotechnology Approach towards Treatment of Complex Wastewater with Simultaneous Bioenergy Production. Bioresour. Technol. 2017, 242, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, J. Various Additives for Improving Dark Fermentative Hydrogen Production: A Review. Renew. Sustain. Energy Rev. 2018, 95, 130–146. [Google Scholar] [CrossRef]
- Chen, H.; Dong, F.; Minteer, S.D. The Progress and Outlook of Bioelectrocatalysis for the Production of Chemicals, Fuels and Materials. Nat. Catal. 2020, 3, 225–244. [Google Scholar] [CrossRef]
- Velvizhi, G.; Modestra, J.A.; Yeruva, D.K.; Sravan, J.S.; Mohan, S.V. Bioelectrochemical Treatment: Present Trends and Prospective. In Microbial Electrochemical Technologies; CRC Press: Boca Raton, FL, USA, 2020; pp. 402–421. [Google Scholar]
- Burboa-Charis, V.A.; Alvarez, L.H. Methane Production from Antibiotic Bearing Swine Wastewater Using Carbon-based Materials as Electrons’ Conduits during Anaerobic Digestion. Int. J. Energy Res. 2020, 44, 10996–11005. [Google Scholar] [CrossRef]
- Sravan, J.S.; Sarkar, O.; Mohan, S.V. Electron-Regulated Flux towards Biogas Upgradation—Triggering Catabolism for an Augmented Methanogenic Activity. Sustain. Energy Fuels 2020, 4, 700–712. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Quan, X.; Zhang, Y. Towards Engineering Application: Potential Mechanism for Enhancing Anaerobic Digestion of Complex Organic Waste with Different Types of Conductive Materials. Water Res. 2017, 115, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food Waste Biorefinery: Sustainable Strategy for Circular Bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- Madondo, N.I.; Tetteh, E.K.; Rathilal, S.; Bakare, B.F. Synergistic Effect of Magnetite and Bioelectrochemical Systems on Anaerobic Digestion. Bioengineering 2021, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Srivastava, M.; Mishra, P.K.; Kausar, M.A.; Saeed, M.; Gupta, V.K.; Singh, R.; Ramteke, P.W. Advances in Nanomaterials Induced Biohydrogen Production Using Waste Biomass. Bioresour. Technol. 2020, 307, 123094. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; King, P.W. Coupling Biology to Synthetic Nanomaterials for Semi-Artificial Photosynthesis. Photosynth. Res. 2020, 143, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Baniamerian, H.; Isfahani, P.G.; Tsapekos, P.; Alvarado-Morales, M.; Shahrokhi, M.; Vossoughi, M.; Angelidaki, I. Application of Nano-Structured Materials in Anaerobic Digestion: Current Status and Perspectives. Chemosphere 2019, 229, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Effects of Co and Ni Nanoparticles on Biogas and Methane Production from Anaerobic Digestion of Slurry. Energy Convers. Manag. 2017, 141, 108–119. [Google Scholar] [CrossRef]
- Johnson, M.B.; Mehrvar, M. Waste Activated Sludge-High Rate (WASHR) Treatment Process: A Novel, Economically Viable, and Environmentally Sustainable Method to Co-Treat High-Strength Wastewaters at Municipal Wastewater Treatment Plants. Bioengineering 2023, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Sravan, J.S.; Kumar, A.N.; Mohan, S.V. Multi-Pollutant Treatment of Crystalline Cellulosic Effluent: Function of Dissolved Oxygen on Process Control. Bioresour. Technol. 2016, 217, 245–251. [Google Scholar] [CrossRef]
- Sarkar, O.; Venkata Mohan, S. Synergy of Anoxic Microenvironment and Facultative Anaerobes on Acidogenic Metabolism in a Self-Induced Electrofermentation System. Bioresour. Technol. 2020, 313, 123604. [Google Scholar] [CrossRef] [PubMed]
- Nabgan, W.; Saeed, M.; Jalil, A.A.; Nabgan, B.; Gambo, Y.; Ali, M.W.; Ikram, M.; Fauzi, A.A.; Owgi, A.H.K.; Hussain, I. A State of the Art Review on Electrochemical Technique for the Remediation of Pharmaceuticals Containing Wastewater. Environ. Res. 2022, 210, 112975. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Sheob, M.; Saeed, B.; Khan, S.U.; Shirinkar, M.; Frontistis, Z.; Basheer, F.; Farooqi, I.H. Use of Electrocoagulation for Treatment of Pharmaceutical Compounds in Water/Wastewater: A Review Exploring Opportunities and Challenges. Water 2021, 13, 2105. [Google Scholar] [CrossRef]
- Martins, R.A.; Salgado, E.M.; Gonçalves, A.L.; Esteves, A.F.; Pires, J.C.M. Microalgae-Based Remediation of Real Textile Wastewater: Assessing Pollutant Removal and Biomass Valorisation. Bioengineering 2024, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Raffa, C.M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, D.; Wu, Y.; Zhang, H.; Zhang, X. Operation Mode of a Step-Feed Anoxic/Oxic Process with Distribution of Carbon Source from Anaerobic Zone on Nutrient Removal and Microbial Properties. Sci. Rep. 2019, 9, 1153. [Google Scholar] [CrossRef] [PubMed]
- Yeruva, D.K.; Ranadheer, P.; Venkata Mohan, S. Eco-Electrogenic Engineered Flow through Wetland System for Tertiary Treatment of Acidogenic Effluents from Biohydrogen Production. J. Hazard. Toxic Radioact. Waste 2020, 24, 4020020. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Enhanced Antibiotic Degradation and Hydrogen Production of Deacetoxycephalosporin C Fermentation Residue by Gamma Radiation Coupled with Nano Zero-Valent Iron. J. Hazard. Mater. 2022, 424, 127439. [Google Scholar] [CrossRef]
- Wu, G.; Yin, Q. Microbial Niche Nexus Sustaining Biological Wastewater Treatment. npj Clean Water 2020, 3, 33. [Google Scholar] [CrossRef]
- Frontistis, Z. Current and Future Trends in Environmental Electrochemistry for Wastewater Treatment. Water 2022, 14, 1817. [Google Scholar] [CrossRef]
- Yang, K.; Ji, M.; Liang, B.; Zhao, Y.; Zhai, S.; Ma, Z.; Yang, Z. Bioelectrochemical Degradation of Monoaromatic Compounds: Current Advances and Challenges. J. Hazard. Mater. 2020, 398, 122892. [Google Scholar] [CrossRef]
- Yadav, R.K.; Das, S.; Patil, S.A. Are Integrated Bioelectrochemical Technologies Feasible for Wastewater Management? Trends Biotechnol. 2023, 41, 484–496. [Google Scholar] [CrossRef]
- Xu, L.; Yu, W.; Graham, N.; Zhao, Y.; Qu, J. Application of Integrated Bioelectrochemical-Wetland Systems for Future Sustainable Wastewater Treatment. Environ. Sci. Technol. 2019, 53, 1741–1743. [Google Scholar] [CrossRef]
- Giannakopoulos, S.; Kokkinos, P.; Hasa, B.; Frontistis, Z.; Katsaounis, A.; Mantzavinos, D. Electrochemical Oxidation of Pharmaceuticals on a Pt–SnO2/Ti Electrode. Electrocatalysis 2022, 13, 363–377. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, F.; Tang, Y.; Wen, Y.; Wu, Z.; Fang, Z.; Tian, X. Rapid Degradation of Rhodamine B through Visible-Photocatalytic Advanced Oxidation Using Self-Degradable Natural Perylene Quinone Derivatives—Hypocrellins. Bioengineering 2022, 9, 307. [Google Scholar] [CrossRef]
- Pueyo, N.; Ormad, M.P.; Miguel, N.; Kokkinos, P.; Ioannidi, A.; Mantzavinos, D.; Frontistis, Z. Electrochemical Oxidation of Butyl Paraben on Boron Doped Diamond in Environmental Matrices and Comparison with Sulfate Radical-AOP. J. Environ. Manag. 2020, 269, 110783. [Google Scholar] [CrossRef]
- Petala, A.; Bampos, G.; Frontistis, Z. Using Sawdust Derived Biochar as a Novel 3D Particle Electrode for Micropollutants Degradation. Water 2022, 14, 357. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Alizadeh, S.M.; Frontistis, Z.; Kabdaşlı, I.; Karamati Niaragh, E.; Al Qodah, Z.; Naghdali, Z.; Mahmoud, A.E.D.; Sandoval, M.A.; Butler, E. Electrocoagulation as a Promising Defluoridation Technology from Water: A Review of State of the Art of Removal Mechanisms and Performance Trends. Water 2021, 13, 656. [Google Scholar] [CrossRef]
- Zou, H.; Wang, Y. Azo Dyes Wastewater Treatment and Simultaneous Electricity Generation in a Novel Process of Electrolysis Cell Combined with Microbial Fuel Cell. Bioresour. Technol. 2017, 235, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Bampos, G.; Petala, A.; Frontistis, Z. Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. Environments 2021, 8, 85. [Google Scholar] [CrossRef]
- Naderi, A.; Hasham Firooz, M.; Gharibzadeh, F.; Giannakis, S.; Ahmadi, M.; Rezaei Kalantary, R.; Kakavandi, B. Anchoring ZnO on Spinel Cobalt Ferrite for Highly Synergic Sono-Photo-Catalytic, Surfactant-Assisted PAH Degradation from Soil Washing Solutions. J. Environ. Manag. 2023, 326, 116584. [Google Scholar] [CrossRef]
- Pareek, A.; Sravan, J.S.; Mohan, S.V. Fabrication of Three-Dimensional Graphene Anode for Augmenting Performance in Microbial Fuel Cells. Carbon Resour. Convers. 2019, 2, 134–140. [Google Scholar] [CrossRef]
- Pareek, A.; Sravan, J.S.; Mohan, S.V. Exploring Chemically Reduced Graphene Oxide Electrode for Power Generation in Microbial Fuel Cell. Mater. Sci. Energy Technol. 2019, 2, 600–606. [Google Scholar] [CrossRef]
- Yeruva, D.K.; Sravan, J.S.; Butti, S.K.; Modestra, J.A.; Mohan, S.V. Spatial Variation of Electrode Position in Bioelectrochemical Treatment System: Design Consideration for Azo Dye Remediation. Bioresour. Technol. 2018, 256, 374–383. [Google Scholar] [CrossRef]
- Jain, P.; Sharma, M.; Dureja, P.; Sarma, P.M.; Lal, B. Bioelectrochemical Approaches for Removal of Sulfate, Hydrocarbon and Salinity from Produced Water. Chemosphere 2017, 166, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Molognoni, D.; Chiarolla, S.; Cecconet, D.; Callegari, A.; Capodaglio, A.G. Industrial Wastewater Treatment with a Bioelectrochemical Process: Assessment of Depuration Efficiency and Energy Production. Water Sci. Technol. 2018, 77, 134–144. [Google Scholar] [CrossRef]
- Sravan, J.S.; Venkata Mohan, S. Bioelectrocatalytic Reduction of Tellurium Oxyanions toward Their Cathodic Recovery: Concentration Dependence and Anodic Electrogenic Activity. ACS ES&T Water 2021, 2, 40–51. [Google Scholar] [CrossRef]
- Bagchi, S.; Behera, M. Assessment of Heavy Metal Removal in Different Bioelectrochemical Systems: A Review. J. Hazard. Toxic Radioact. Waste 2020, 24, 4020010. [Google Scholar] [CrossRef]
- Xu, C.; Lu, J.; Zhao, Z.; Lu, X.; Zhang, Y.; Cheng, M.; Zhang, J. Simultaneous Bioelectricity Generation, Desalination, Organics Degradation, and Nitrogen Removal in Air—Cathode Microbial Desalination Cells. SN Appl. Sci. 2020, 2, 212. [Google Scholar] [CrossRef]
- Yao, H.; Xiao, J.; Tang, X. Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering 2023, 10, 886. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Elsaid, K.; Rezk, H.; Abdelkareem, M.A. Recent Progress of Graphene Based Nanomaterials in Bioelectrochemical Systems. Sci. Total Environ. 2020, 749, 141225. [Google Scholar] [CrossRef] [PubMed]
- Wilberforce, T.; Sayed, E.T.; Abdelkareem, M.A.; Elsaid, K.; Olabi, A.G. Value Added Products from Wastewater Using Bioelectrochemical Systems: Current Trends and Perspectives. J. Water Process Eng. 2021, 39, 101737. [Google Scholar] [CrossRef]
- Sravan, J.S.S.; Mohan, S.V.V. Hybrid Electrosynthesis as Non-Genetic Approach for Regulating Microbial Metabolism towards Waste Valorization in Circular Framework. Microb. Biotechnol. 2022, 16, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Leicester, D.; Amezaga, J.; Heidrich, E. Is Bioelectrochemical Energy Production from Wastewater a Reality? Identifying and Standardising the Progress Made in Scaling up Microbial Electrolysis Cells. Renew. Sustain. Energy Rev. 2020, 133, 110279. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhang, Y.; Pan, Y.R.; Li, L.; Liu, J.; Butler, D. Stepwise PH Control to Promote Synergy of Chemical and Biological Processes for Augmenting Short-Chain Fatty Acid Production from Anaerobic Sludge Fermentation. Water Res. 2019, 155, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Sravan, J.S.; Tharak, A.; Mohan, S.V. Chapter 1—Status of Biogas Production and Biogas Upgrading: A Global Scenario. In Emerging Technologies and Biological Systems for Biogas Upgrading; Aryal, N., Mørck Ottosen, L.D., Wegener Kofoed, M.V., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–26. ISBN 978-0-12-822808-1. [Google Scholar]
- Kaushik, A.; Singh, A. Metal Removal and Recovery Using Bioelectrochemical Technology: The Major Determinants and Opportunities for Synchronic Wastewater Treatment and Energy Production. J. Environ. Manag. 2020, 270, 110826. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; He, Z. Cathode-Enhanced Wastewater Treatment in Bioelectrochemical Systems. npj Clean Water 2018, 1, 23. [Google Scholar] [CrossRef]
- Naderi, A.; Kakavandi, B.; Giannakis, S.; Angelidaki, I.; Rezaei Kalantary, R. Putting the Electro-Bugs to Work: A Systematic Review of 22 Years of Advances in Bio-Electrochemical Systems and the Parameters Governing Their Performance. Environ. Res. 2023, 229, 115843. [Google Scholar] [CrossRef]
- Altamirano-Corona, M.F.; Anaya-Reza, O.; Durán-Moreno, A. Biostimulation of Food Waste Anaerobic Digestion Supplemented with Granular Activated Carbon, Biochar and Magnetite: A Comparative Analysis. Biomass Bioenergy 2021, 149, 106105. [Google Scholar] [CrossRef]
- Qiu, L.; Deng, Y.F.; Wang, F.; Davaritouchaee, M.; Yao, Y.Q. A Review on Biochar-Mediated Anaerobic Digestion with Enhanced Methane Recovery. Renew. Sustain. Energy Rev. 2019, 115, 109373. [Google Scholar] [CrossRef]
- Aryal, N.; Halder, A.; Tremblay, P.-L.; Chi, Q.; Zhang, T. Enhanced Microbial Electrosynthesis with Three-Dimensional Graphene Functionalized Cathodes Fabricated via Solvothermal Synthesis. Electrochim. Acta 2016, 217, 117–122. [Google Scholar] [CrossRef]
- Tian, N.; Giannakis, S.; Akbarzadeh, L.; Hasanvandian, F.; Dehghanifard, E.; Kakavandi, B. Improved Catalytic Performance of ZnO via Coupling with CoFe2O4 and Carbon Nanotubes: A New, Photocatalysis-Mediated Peroxymonosulfate Activation System, Applied towards Cefixime Degradation. J. Environ. Manag. 2023, 329, 117022. [Google Scholar] [CrossRef] [PubMed]
- Yellappa, M.; Sravan, J.S.; Sarkar, O.; Reddy, Y.V.R.; Mohan, S.V. Modified Conductive Polyaniline-Carbon Nanotube Composite Electrodes for Bioelectricity Generation and Waste Remediation. Bioresour. Technol. 2019, 284, 148–154. [Google Scholar] [CrossRef]
- Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane Production and Conductive Materials: A Critical Review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Sang, B.-I. Extracellular Electron Transfer from Cathode to Microbes: Application for Biofuel Production. Biotechnol. Biofuels 2016, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Kim, J.; Kim, J.; Lee, C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Energies 2018, 11, 107. [Google Scholar] [CrossRef]
- Olfatmehr, N.; Kakavandi, B.; Khezri, S.M. Peroxydisulfate Activation by Enhanced Catalytic Activity of CoFe2O4 Anchored on Activated Carbon: A New Sulfate Radical-Based Oxidation Study on the Cefixime Degradation. Sep. Purif. Technol. 2022, 302, 121991. [Google Scholar] [CrossRef]
- Rathour, R.; Patel, D.; Shaikh, S.; Desai, C. Eco-Electrogenic Treatment of Dyestuff Wastewater Using Constructed Wetland-Microbial Fuel Cell System with an Evaluation of Electrode-Enriched Microbial Community Structures. Bioresour. Technol. 2019, 285, 121349. [Google Scholar] [CrossRef]
- Mohammadi, T.; Esmaeelifar, A. Wastewater Treatment Using Ultrafiltration at a Vegetable Oil Factory. Desalination 2004, 166, 329–337. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Zhang, J.; Yin, J.; Wang, H. Investigation of Microfiltration for Treatment of Emulsified Oily Wastewater from the Processing of Petroleum Products. Desalination 2009, 249, 1223–1227. [Google Scholar] [CrossRef]
- Yellappa, M.; Sarkar, O.; Reddy, Y.V.R.; Mohan, S.V. Municipal Landfill Leachate Remediation Coupling Acidogenesis and Bioelectrogenesis for Biohydrogen and Volatile Fatty Acids Production. Process Saf. Environ. Prot. 2023, 172, 716–726. [Google Scholar] [CrossRef]
- Petrinic, I.; Korenak, J.; Povodnik, D.; Hélix-Nielsen, C. A Feasibility Study of Ultrafiltration/Reverse Osmosis (UF/RO)-Based Wastewater Treatment and Reuse in the Metal Finishing Industry. J. Clean. Prod. 2015, 101, 292–300. [Google Scholar] [CrossRef]
- Salahi, A.; Badrnezhad, R.; Abbasi, M.; Mohammadi, T.; Rekabdar, F. Oily Wastewater Treatment Using a Hybrid UF/RO System. Desalination Water Treat. 2011, 28, 75–82. [Google Scholar] [CrossRef]
- Krishna, K.V.; Sarkar, O.; Venkata Mohan, S. Bioelectrochemical Treatment of Paper and Pulp Wastewater in Comparison with Anaerobic Process: Integrating Chemical Coagulation with Simultaneous Power Production. Bioresour. Technol. 2014, 174, 142–151. [Google Scholar] [CrossRef]
- Sarkar, O.; Matsakas, L.; Rova, U.; Christakopoulos, P. Ultrasound-Controlled Acidogenic Valorization of Wastewater for Biohydrogen and Volatile Fatty Acids Production: Microbial Community Profiling. iScience 2023, 26, 106519. [Google Scholar] [CrossRef]
- Mostafazadeh, A.K.; Drogui, P.; Brar, S.K.; Tyagi, R.D.; Le Bihan, Y.; Buelna, G. Microbial Electrosynthesis of Solvents and Alcoholic Biofuels from Nutrient Waste: A Review. J. Environ. Chem. Eng. 2017, 5, 940–954. [Google Scholar] [CrossRef]
- Rozmysłowicz, B.; Yeap, J.H.; Elkhaiary, A.M.I.; Amiri, M.T.; Shahab, R.L.; Questell-Santiago, Y.M.; Xiros, C.; Le Monnier, B.P.; Studer, M.H.; Luterbacher, J.S. Catalytic Valorization of the Acetate Fraction of Biomass to Aromatics and Its Integration into the Carboxylate Platform. Green Chem. 2019, 21, 2801–2809. [Google Scholar] [CrossRef]
- Atilano-Camino, M.M.; Luévano-Montaño, C.D.; García-González, A.; Olivo-Alanis, D.S.; Álvarez-Valencia, L.H.; García-Reyes, R.B. Evaluation of Dissolved and Immobilized Redox Mediators on Dark Fermentation: Driving to Hydrogen or Solventogenic Pathway. Bioresour. Technol. 2020, 317, 123981. [Google Scholar] [CrossRef]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front. Microbiol. 2017, 7, 2106. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Mutrakulcharoen, P.; Chuetor, S.; Cheenkachorn, K.; Tantayotai, P.; Panakkal, E.J.; Sriariyanun, M. Recent Situation and Progress in Biorefining Process of Lignocellulosic Biomass: Toward Green Economy. Appl. Sci. Eng. Prog. 2020, 13, 299–311. [Google Scholar] [CrossRef]
- Sarkar, O.; Katakojwala, R.; Mohan, S.V.; Venkata Mohan, S. Low Carbon Hydrogen Production from a Waste-Based Biorefinery System and Environmental Sustainability Assessment. Green Chem. 2021, 23, 561–574. [Google Scholar] [CrossRef]
- Reiner, J.E.; Geiger, K.; Hackbarth, M.; Fink, M.; Lapp, C.J.; Jung, T.; Dötsch, A.; Hügler, M.; Wagner, M.; Hille-Reichel, A. From an Extremophilic Community to an Electroautotrophic Production Strain: Identifying a Novel Knallgas Bacterium as Cathodic Biofilm Biocatalyst. ISME J. 2020, 14, 1125–1140. [Google Scholar] [CrossRef] [PubMed]
- Muduli, M.; Chanchpara, A.; Choudhary, M.; Saravaia, H.; Haldar, S.; Ray, S. Critical Review on Sustainable Bioreactors for Wastewater Treatment and Water Reuse. Sustain. Water Resour. Manag. 2022, 8, 159. [Google Scholar] [CrossRef]
Wastewater | Treatment Process/Method | Treatment Efficiency | Reference |
---|---|---|---|
Vegetable oil factory | Ultrafiltration | COD removal: 91% TSS removal: 100% | [81] |
Synthetic emulsified oily wastewater | Microfiltration | Organic pollutant removal: 95% | [82] |
Landfill leachate | Integration of acidogenic and bioelectrochemical systems | COD removal: 71.21% | [83] |
Metal finishing industry | Ultrafiltration integrated with reverse osmosis | Contaminant removal: 90–99% | [84] |
Phenolic wastewater from paper mill industry | Ultrafiltration integrated with nanofiltration and reverse osmosis | COD removal: 95.5% Phenol removal: 94.9% | [85] |
Paper and pulp wastewater | Bioelectrochemical treatment system | COD removal: 95% Color removal: 100% | [86] |
Designed synthetic wastewater | Bioelectrochemical treatment system with PANi/CNT nanocomposite anode | COD removal: 80% | [75] |
Glucose-based synthetic wastewater | Sono-bioreactor with 20 kHz: 2 W and 4 W | COD removal: >90% | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sravan, J.S.; Matsakas, L.; Sarkar, O. Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering 2024, 11, 281. https://doi.org/10.3390/bioengineering11030281
Sravan JS, Matsakas L, Sarkar O. Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering. 2024; 11(3):281. https://doi.org/10.3390/bioengineering11030281
Chicago/Turabian StyleSravan, J. Shanthi, Leonidas Matsakas, and Omprakash Sarkar. 2024. "Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context" Bioengineering 11, no. 3: 281. https://doi.org/10.3390/bioengineering11030281
APA StyleSravan, J. S., Matsakas, L., & Sarkar, O. (2024). Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering, 11(3), 281. https://doi.org/10.3390/bioengineering11030281