Outcome of Percutaneous Endoscopic Lumbar Discectomy in Relation to the Surgeon’s Experience: Propensity Score Matching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Surgical Indication of PELD and Surgeon Profile
2.3. Patient Sample and Grouping
2.4. Data Collection
2.5. PSM and Grouping
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Pain Improvement and Patient Satisfaction
3.3. Radiological Outcomes
3.4. Surgery-Related Outcomes
3.5. Perioperative Complications and Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofstetter, C.P.; Ahn, Y.; Choi, G.; Gibson, J.N.A.; Ruetten, S.; Zhou, Y.; Li, Z.Z.; Siepe, C.J.; Wagner, R.; Lee, J.H.; et al. AOSpine Consensus Paper on Nomenclature for Working-Channel Endoscopic Spinal Procedures. Glob. Spine J. 2020, 10, 111s–121s. [Google Scholar] [CrossRef]
- Muthu, S.; Ramakrishnan, E.; Chellamuthu, G. Is Endoscopic Discectomy the Next Gold Standard in the Management of Lumbar Disc Disease? Systematic Review and Superiority Analysis. Glob. Spine J. 2021, 11, 1104–1120. [Google Scholar] [CrossRef]
- Li, X.C.; Zhong, C.F.; Deng, G.B.; Liang, R.W.; Huang, C.M. Full-Endoscopic Procedures Versus Traditional Discectomy Surgery for Discectomy: A Systematic Review and Meta-analysis of Current Global Clinical Trials. Pain. Physician 2016, 19, 103–118. [Google Scholar]
- Yang, C.C.; Chen, C.M.; Lin, M.H.; Huang, W.C.; Lee, M.H.; Kim, J.S.; Chen, K.T. Complications of Full-Endoscopic Lumbar Discectomy versus Open Lumbar Microdiscectomy: A Systematic Review and Meta-Analysis. World Neurosurg. 2022, 168, 333–348. [Google Scholar] [CrossRef]
- Kang, T.W.; Park, S.Y.; Oh, H.; Lee, S.H.; Park, J.H.; Suh, S.W. Risk of reoperation and infection after percutaneous endoscopic lumbar discectomy and open lumbar discectomy: A nationwide population-based study. Bone Jt. J. 2021, 103-b, 1392–1399. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Zhao, B.; Li, H.; Hou, X.; Yin, L. Comparison of percutaneous transforaminal endoscopic discectomy and open lumbar discectomy for lumbar disc herniations: A systematic review and meta-analysis. Front. Surg. 2022, 9, 984868. [Google Scholar] [CrossRef]
- Ruan, W.; Feng, F.; Liu, Z.; Xie, J.; Cai, L.; Ping, A. Comparison of percutaneous endoscopic lumbar discectomy versus open lumbar microdiscectomy for lumbar disc herniation: A meta-analysis. Int. J. Surg. 2016, 31, 86–92. [Google Scholar] [CrossRef]
- Song, S.K.; Son, S.; Choi, S.W.; Kim, H.K. Comparison of the Outcomes of Percutaneous Endoscopic Interlaminar Lumbar Discectomy and Open Lumbar Microdiscectomy at the L5-S1 Level. Pain. Physician 2021, 24, E467–E475. [Google Scholar]
- Kotheeranurak, V.; Liawrungrueang, W.; Kuansongtham, V.; Sriphirom, P.; Bamrungthin, N.; Keorochana, G.; Pruttikul, P.; Limthongkul, W.; Singhatanadgige, W.; Pongmanee, S.; et al. Surgeons’ Perspective, Learning Curve, Motivation, and Obstacles of Full-Endoscopic Spine Surgery in Thailand: Results from A Nationwide Survey. BioMed Res. Int. 2022, 2022, 4971844. [Google Scholar] [CrossRef]
- Son, S.; Yoo, B.R.; Lee, S.G.; Kim, W.K.; Jung, J.M. Full-Endoscopic versus Minimally Invasive Lumbar Interbody Fusion for Lumbar Degenerative Diseases: A Systematic Review and Meta-Analysis. J. Korean Neurosurg. Soc. 2022, 65, 539–548. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, S.; Son, S.; Kim, H. Learning Curve for Interlaminar Endoscopic Lumbar Discectomy: A Systematic Review. World Neurosurg. 2021, 150, 93–100. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, S.; Son, S.; Kim, H.; Kim, J.E. Learning Curve for Transforaminal Percutaneous Endoscopic Lumbar Discectomy: A Systematic Review. World Neurosurg. 2020, 143, 471–479. [Google Scholar] [CrossRef]
- Son, S.; Ahn, Y.; Lee, S.G.; Kim, W.K. Learning curve of percutaneous endoscopic interlaminar lumbar discectomy versus open lumbar microdiscectomy at the L5-S1 level. PLoS ONE 2020, 15, e0236296. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, S.H. Learning curve for percutaneous endoscopic lumbar discectomy. Neurol. Med. Chir. 2008, 48, 383–388; discussion 388–389. [Google Scholar] [CrossRef]
- Gadjradj, P.S.; Vreeling, A.; Depauw, P.R.; Schutte, P.J.; Harhangi, B.S. Surgeons Learning Curve of Transforaminal Endoscopic Discectomy for Sciatica. Neurospine 2022, 19, 594–602. [Google Scholar] [CrossRef]
- Xu, H.; Liu, X.; Liu, G.; Zhao, J.; Fu, Q.; Xu, B. Learning curve of full-endoscopic technique through interlaminar approach for L5/S1 disk herniations. Cell Biochem. Biophys. 2014, 70, 1069–1074. [Google Scholar] [CrossRef]
- Yang, J.; Guo, C.; Kong, Q.; Zhang, B.; Wang, Y.; Zhang, L.; Wu, H.; Peng, Z.; Yan, Y.; Zhang, D. Learning curve and clinical outcomes of percutaneous endoscopic transforaminal decompression for lumbar spinal stenosis. Int. Orthop. 2020, 44, 309–317. [Google Scholar] [CrossRef]
- Son, S.; Ahn, Y.; Lee, S.G.; Kim, W.K.; Yoo, B.R.; Jung, J.M.; Cho, J. Learning curve of percutaneous endoscopic transforaminal lumbar discectomy by a single surgeon. Medicine 2021, 100, e24346. [Google Scholar] [CrossRef]
- Choi, K.C.; Lee, J.H.; Kim, J.S.; Sabal, L.A.; Lee, S.; Kim, H.; Lee, S.H. Unsuccessful percutaneous endoscopic lumbar discectomy: A single-center experience of 10,228 cases. Neurosurgery 2015, 76, 372–380; discussion 380–371, quiz 381. [Google Scholar] [CrossRef]
- Broekema, A.E.H.; Molenberg, R.; Kuijlen, J.M.A.; Groen, R.J.M.; Reneman, M.F.; Soer, R. The Odom Criteria: Validated at Last: A Clinimetric Evaluation in Cervical Spine Surgery. J. Bone Jt. Surg. Am. 2019, 101, 1301–1308. [Google Scholar] [CrossRef]
- Pfirrmann, C.W.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001, 26, 1873–1878. [Google Scholar] [CrossRef]
- Son, S.; Lee, S.G.; Kim, W.K.; Ahn, Y.; Jung, J.M. Disc height discrepancy between supine and standing positions as a screening metric for discogenic back pain in patients with disc degeneration. Spine J. 2021, 21, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Yoo, C.J.; Yoo, B.R.; Kim, W.S.; Jeong, T.S. Learning curve of trans-sacral epiduroscopic laser decompression in herniated lumbar disc disease. BMC Surg. 2021, 21, 39. [Google Scholar] [CrossRef]
- Shuman, W.H.; Baron, R.B.; Neifert, S.N.; Martini, M.L.; Chapman, E.K.; Schupper, A.J.; Caridi, J.M.; Steinberger, J. MIS-TLIF Procedure is Improving with Experience: Systematic Review of the Learning Curve Over the Last Decade. Clin. Spine Surg. 2022, 35, 376–382. [Google Scholar] [CrossRef]
- Sclafani, J.A.; Kim, C.W. Complications associated with the initial learning curve of minimally invasive spine surgery: A systematic review. Clin. Orthop. Relat. Res. 2014, 472, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Ferry, C. Characterizing the Surgeon Learning Curve in Instrumented Minimally Invasive Spinal Surgery: Does the Evidence Account for Training and Experience? A Systematic Literature Review. Clin. Spine Surg. 2021, 34, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.T.; Chang, S.J.; Yang, S.S.; Chai, C.L. Learning curve of full-endoscopic lumbar discectomy. Eur. Spine J. 2013, 22, 727–733. [Google Scholar] [CrossRef]
- Ahn, S.S.; Kim, S.H.; Kim, D.W. Learning Curve of Percutaneous Endoscopic Lumbar Discectomy Based on the Period (Early vs. Late) and Technique (in-and-out vs. in-and-out-and-in): A Retrospective Comparative Study. J. Korean Neurosurg. Soc. 2015, 58, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Gadjradj, P.S.; Schutte, P.; Vreeling, A.; Depauw, P.; Harhangi, B.S. Assessing the Learning Process of Transforaminal Endoscopic Discectomy for Sciatica. Neurospine 2022, 19, 563–570. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Telfeian, A.E.; Hellinger, S.; Jorge Felipe Ramírez, L.; Paulo Sérgio Teixeira de, C.; Ramos, M.R.F.; Kim, H.S.; Hanson, D.W.; Salari, N.; Yeung, A. Difficulties, Challenges, and the Learning Curve of Avoiding Complications in Lumbar Endoscopic Spine Surgery. Int. J. Spine Surg. 2021, 15, S21–S37. [Google Scholar] [CrossRef]
Beginner (n = 75) | Experienced (n = 75) | p-Value | |
---|---|---|---|
Age | 46.95 ± 14.70 | 49.07 ± 15.51 | 0.392 † |
Sex: Male/Female | 46/29 | 39/36 | 0.249 ‡ |
Height (cm) | 168.34 ± 9.58 | 168.22 ± 9.44 | 0.930 † |
Weight (kg) | 69.27 ± 16.21 | 68.59 ± 12.43 | 0.750 † |
Body mass index (kg/m2) | 24.28 ± 4.06 | 24.17 ± 3.54 | 0.851 † |
Smoking: Yes/No | 10/65 | 13/62 | 0.497 ‡ |
Alcohol: Yes/No | 28/47 | 27/48 | 0.855 ‡ |
Surgery level: L3-L4/L4-L5/L5-S1 | 2/56/17 | 7/45/23 | 0.087 ‡ |
Type of procedure: TELD/IELD/EELD | 66/6/3 | 62/7/6 | 0.548 ‡ |
Dominant symptom side: Right/Left/Equivocal | 26/48/1 | 23/52/0 | 0.654 ‡ |
Symptom duration (weeks) | 9.6 (IQR, 2.0–15.7) | 13.8 (IQR, 4.3–30.0) | 0.228 † |
Motor weakness: Yes/No | 25/50 | 21/54 | 0.776 ‡ |
Previous nerve block: Yes/No | 36/39 | 42/33 | 0.274 ‡ |
Aggravating trauma: Yes/No | 8/67 | 3/72 | 0.209 ‡ |
Beginner (n = 75) | Experienced (n = 75) | p-Value | |
---|---|---|---|
VAS back | |||
Preoperative | 6.5 (IQR, 0.0–8.0) | 6.0 (IQR, 0.0–7.5) | 0.770 † |
4 weeks | 2.0 (IQR, 1.0–3.0) | 2.0 (IQR, 0.0–2.75) | 0.679 † |
1 year | 1.0 (IQR, 0.0–1.0) | 0.0 (IQR, 0.0–1.0) | 0.592 † |
3 years | 1.0 (IQR, 0.0–1.0) | 0.0 (IQR, 0.0–1.75) | 0.732 † |
VAS leg | |||
Preoperative | 7.5 (IQR, 7.0–9.0) | 8.0 (IQR, 7.0–9.0) | 0.869 † |
4 weeks | 2.0 (IQR, 1.0–4.0) | 2.0 (IQR, 2.0–3.0) | 0.826 † |
1 year | 1.0 (IQR, 0.0–2.0) | 1.0 (IQR, 0.0–2.0) | 0.725 † |
3 years | 0.0 (IQR, 0.0–1.0) | 1.0 (IQR, 0.0–2.0) | 0.432 † |
Odom’s criteria: Excellent/Good/Fair/Poor | |||
4 weeks with success rate | 31/34/10/0 (86.67%) | 29/44/2/0 (97.33%) | 0.078 ‡ |
1 year with success rate | 53/18/4/0 (94.67%) | 62/12/1/0 (98.67%) | 0.157 ‡ |
3 years with success rate | 65/9/1/0 (98.67%) | 69/5/1/0 (98.67%) | 0.423 ‡ |
Beginner (n = 75) | Experienced (n = 75) | p-Value | |
---|---|---|---|
Pfirrmann grade: III/IV/V | 46/26/3 | 32/41/2 | 0.213 † |
Type of ruptured disc: Migrated/Subligamentous | 54/21 | 56/19 | 0.875 † |
Disc height ratio to vertebral body (%) | |||
Preoperative | 29.26 ± 10.25 | 27.81 ± 7.32 | 0.362 ‡ |
3 years | 28.57 ± 9.91 | 27.28 ± 9.06 | 0.449 ‡ |
Segmental angle of the surgery level (°) | |||
Preoperative | 11.35 ± 6.51 | 11.61 ± 6.47 | 0.824 ‡ |
3 years | 11.38 ± 5.04 | 12.06 ± 4.99 | 0.450 ‡ |
Range of motion of the surgery level (°) | |||
Preoperative | 6.95 ± 6.92 | 5.55 ± 5.32 | 0.208 ‡ |
3 years | 6.14 ± 6.09 | 4.38 ± 4.00 | 0.075 ‡ |
Segmental angle of the lumbar spine (°) | |||
Preoperative | 35.65 ± 11.26 | 36.06 ± 15.24 | 0.864 ‡ |
3 years | 36.00 ± 11.35 | 38.48 ± 11.45 | 0.227 ‡ |
Range of motion of the lumbar spine (°) | |||
Preoperative | 24.50 ± 15.50 | 22.69 ± 13.26 | 0.482 ‡ |
3 years | 27.85 ± 15.37 | 24.20 ± 10.66 | 0.124 ‡ |
Beginner (n = 75) | Experienced (n = 75) | p-Value | |
---|---|---|---|
Bone work during surgery: Yes/No | 14/61 | 22/53 | 0.126 † |
Operation time | 57.5 (IQR, 50.0–70.0) | 50.0 (IQR, 45.0–55.0) | 0.001 ‡ |
Hemoglobin level (g/dL) | |||
Preoperative hemoglobin | 14.49 ± 1.57 | 14.15 ± 1.52 | 0.223 ⸹ |
Postoperative hemoglobin | 14.20 ± 1.57 | 13.47 ± 1.56 | 0.015 ⸹ |
Decrease in hemoglobin | 0.30 (IQR, −0.15–1.05) | 0.80 (IQR, 0.50–1.00) | 0.024 ‡ |
Hospital stays (days) | 3.0 (IQR, 3.0–6.8) | 4.0 (IQR, 3.0–5.0) | 0.064 ‡ |
Beginner (n = 75) | Experienced (n = 75) | p-Value | |
---|---|---|---|
Perioperative complication | |||
Surgery-related | 7 (9.33%) | 1 (1.33%) | 0.063 † |
Non-surgery-related | 1 (1.33%) | 0 | 1.000 † |
Number of patients who underwent any complication | 8 (10.67%) | 1 (1.33%) | 0.034 † |
Adverse events | |||
Conversion to open surgery | 1 (1.33%) | 0 | 1.000 † |
Remnant lesion | 3 (4.00%) | 0 | 0.245 † |
Recurrence | 6 (8.00%) | 8 (10.67%) | 0.593 ‡ |
Additional admission and conservative treatment | 1 (1.33%) | 1 (1.33%) | 1.000 † |
Additional nerve block | 7 (9.33%) | 1 (1.33%) | 0.063 † |
Revision surgery of previous lesion | 9 (12.00%) | 8 (10.67%) | 0.797 ‡ |
Revision surgery of another lesion | 1 (1.33%) | 0 | 1.000 † |
Number of patients who underwent any adverse event | 19 (25.33%) | 10 (13.33%) | 0.063 ‡ |
Sum of patients with any complication or adverse event | 24 (32.00%) | 10 (13.33%) | 0.006 ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.; Oh, M.Y.; Park, H.B.; Lopez, A.M. Outcome of Percutaneous Endoscopic Lumbar Discectomy in Relation to the Surgeon’s Experience: Propensity Score Matching. Bioengineering 2024, 11, 312. https://doi.org/10.3390/bioengineering11040312
Son S, Oh MY, Park HB, Lopez AM. Outcome of Percutaneous Endoscopic Lumbar Discectomy in Relation to the Surgeon’s Experience: Propensity Score Matching. Bioengineering. 2024; 11(4):312. https://doi.org/10.3390/bioengineering11040312
Chicago/Turabian StyleSon, Seong, Michael Y. Oh, Han Byeol Park, and Alexander M. Lopez. 2024. "Outcome of Percutaneous Endoscopic Lumbar Discectomy in Relation to the Surgeon’s Experience: Propensity Score Matching" Bioengineering 11, no. 4: 312. https://doi.org/10.3390/bioengineering11040312
APA StyleSon, S., Oh, M. Y., Park, H. B., & Lopez, A. M. (2024). Outcome of Percutaneous Endoscopic Lumbar Discectomy in Relation to the Surgeon’s Experience: Propensity Score Matching. Bioengineering, 11(4), 312. https://doi.org/10.3390/bioengineering11040312