Fabrication of Artificial Nerve Conduits Used in a Long Nerve Gap: Current Reviews and Future Studies
Abstract
:1. Introduction
2. Promotion of Fibrin Matrix Formation
2.1. Transplantation of an Intratubular Scaffold
2.2. Use of a Hydrophilic Tube
3. Facilitation of Intratubular Vascularity
3.1. Transplantation of an Intratubular Vascular Pedicle
3.2. Capillary Permeable Nerve Conduits
3.3. Prefabricated Vascularized Nerve Conduits
3.4. Chemical Factor Application
4. Intratubular Cell Transplantation
5. Chemical Factor Administration
6. Scaffold Transplantation
7. Structure of Nerve Conduits
8. Our Nerve Conduit
9. Summary and Discussion
Author Contributions
Funding
Conflicts of Interest
Correction Statement
References
- Lundborg, G.; Dahlin, L.B.; Danielsen, N.; Gelberman, R.H.; Longo, F.M.; Powell, H.C.; Varon, S. Nerve regeneration in silicone chambers: Influence of gap and of distal stump components. Exp. Neurol. 1982, 76, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Lundborg, G.; Gelberman, R.H.; Longo, F.M.; Powell, H.C.; Varon, S. In vivo regeneration of cut nerves encased in silicone tubes: Growth across a six-millimeter gap. J. Neuropathol. Exp. Neurol. 1982, 41, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, L.B.; Lundborg, G. Use of tubes in peripheral nerve repair. Neurosurg. Clin. N. Am. 2001, 12, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.R.; Longo, F.M.; Powell, H.C.; Lundborg, G.; Varon, S. Spatial–temporal progress of peripheral nerve regeneration within a silicone chamber: Parameters for a bioassay. J. Comp. Neurol. 1983, 218, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Best, T.; Mackinnon, S.E. Peripheral nerve revascularization: A current literature review. J. Reconstr. Microsurg. 1994, 3, 193–204. [Google Scholar] [CrossRef]
- Kaizawa, Y.; Kakinoki, R.; Ikeguchi, R.; Ohta, S.; Noguchi, T.; Takeuchi, H.; Oda, H.; Yurie, H.; Matsuda, S. A nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix. Cell Transplant. 2017, 26, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Kaizawa, Y.; Kakinoki, R.; Manabe, K. A vessel-containing nerve conduit implanted with bone marrow stromal cells and decellularized allogenic nerve matrix: Comparison with autologous nerve graft. Peripher. Nerve 2016, 27, 88–97. [Google Scholar]
- Tanaka, H.; Kakinoki, R.; Kaizawa, Y.; Yurie, H.; Ikeguchi, R.; Akagi, M. Bone marrow-derived mesenchymal stem cells transplanted into a vascularized biodegradable tube containing decellularized allogenic nerve basal laminae promoted peripheral nerve regeneration; can it be an alternative of autologous nerve graft? PLoS ONE 2021, 16, e0254. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Ishikawa, M.; Ikeguchi, R.; Kakinoki, R.; Sato, H.; Gotoh, Y.; Ishikawa, J. Improvement of polydimethylsiloxane guide tube for nerve regeneration treatment by carbon negative-ion implantation. Nucl. Instrum. Methods Phys. Res. B 2003, 206, 507–511. [Google Scholar] [CrossRef]
- Ikeguchi, R.; Kakinoki, R.; Matsumoto, T.; Nakamura, T. Rat nerve regeneration through a tube with negative carbon ion implantation. Dev. Brain Res. 2003, 140, 127–131. [Google Scholar] [CrossRef]
- Yurie, H.; Ikeguchi, R.; Aoyama, T.; Tanaka, M.; Oda, H.; Takeuchi, H.; Mitsuzawa, S.; Ando, M.; Yoshimoto, K.; Noguchi, T.; et al. Bio 3D Conduits Derived from Bone Marrow Stromal Cells Promote Peripheral Nerve Regeneration. Cell Transplant. 2020, 29, 963689720951551. [Google Scholar] [CrossRef] [PubMed]
- Mitsuzawa, S.; Ikeguchi, R.; Aoyama, T.; Takeuchi, H.; Yurie, H.; Oda, H.; Ohta, S.; Ushimaru, M.; Ito, T.; Tanaka, M.; et al. The Efficacy of a Scaffold-free Bio 3D Conduit Developed from Autologous Dermal Fibroblasts on Peripheral Nerve Regeneration in a Canine Ulnar Nerve Injury Model: A Preclinical Proof-of-Concept Study. Cell Transplant. 2019, 28, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Cattin, A.L.; Burden, J.J.; Van Emmenis, L.; Mackenzie, F.E.; Hoving, J.J.; Garcia Calavia, N.; Guo, Y.; McLaughlin, M.; Rosenberg, L.H.; Quereda, V.; et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell 2015, 162, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Larivee, B.; Feitus, C.; Suching, S.; Brunet, I.; Eichmann, A. Guidance of vascular development: Lessons from the nervous system. Circ. Res. 2009, 104, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Kakinoki, R.; Nishijima, N.; Ueba, Y.; Oka, M.; Yamamuro, T. Relationship between axonal regeneration and vascularity in tubulation—An experimental study in rats. Neurosci. Res. 1995, 23, 35–45. [Google Scholar] [PubMed]
- Kakinoki, R.; Nishijima, N.; Ueba, Y.; Oka, M.; Yamamuro, T.; Nakamura, T. Nerve regeneration over a 20-mm gap through a nerve conduit containing blood vessels in rats: The influence of interstump distance on nerve regeneration. J. Neurosurg. Sci. 1998, 42, 11–21. [Google Scholar]
- Kakinoki, R.; Nishijima, N.; Ueba, Y.; Oka, M.; Yamamuro, T.; Nakamura, T. Nerve regeneration over a 25 mm gap in rat sciatic nerves using tubes containing blood vessels: The possibility of clinical application. Int. Orthop. 1997, 21, 332–336. [Google Scholar] [CrossRef]
- Yamakawa, T.; Kakinoki, R.; Ikeguchi, R.; Nakayama, K.; Morimoto, Y.; Nakamura, T. Nerve regeneration promoted in a tube with vascularity containing bone marrow-derived cells. Cell Transplant. 2007, 16, 811–822. [Google Scholar] [CrossRef]
- Kaizawa, Y.; Kakinoki, R.; Ikeguchi, R.; Ikeguchi, R.; Ohta, S.; Noguchi, T.; Oda, H.; Matsuda, S. Bridging a 30 mm defect in the canine ulnar nerve using vessel-containing conduits with implantation of bone marrow stromal cells. Microsurgery 2016, 36, 316–324. [Google Scholar] [CrossRef]
- Dai, L.G.; Huang, G.S.; Hsu, S.H. Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant. 2013, 22, 2029–2039. [Google Scholar] [CrossRef]
- Aebischer, P.; Guénard, V.; Brace, S. Peripheral nerve regeneration through blind-ended semipermeable guidance channels: Effect of the molecular weight cutoff. J. Neurosci. 1989, 9, 3590–3595. [Google Scholar] [CrossRef]
- Takeuchi, H.; Ikeguchi, R.; Noguchi, T.; Ando, M.; Yoshimoto, K.; Sakamoto, D.; Matsuda, S. The efficacy of combining a vascularized biogenic conduit and a decellularized nerve graft in the treatment of peripheral nerve defects: An experimental study using the rat sciatic nerve defect model. Microsurgery 2022, 42, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Yapici, A.K.; Bayram, Y.; Akgun, H.; Gumus, R.; Zor, F. The effect of in vivo created vascularized neurotube on peripheric nerve regeneration. Injury 2017, 7, 1486–1491. [Google Scholar] [CrossRef]
- Zor, F.; Deveci, M.; Kilic, A.; Ozdag, M.F.; Kurt, B.; Sengezer, M.; Sönmez, T.T. Effect of VEGF gene therapy and hyaluronic acid film sheath on peripheral nerve regeneration. Microsurgery 2014, 34, 209–216. [Google Scholar] [CrossRef]
- Kingham, P.J.; Kolar, M.K.; Novikova, L.N.; Novikov, L.N.; Wiberg, M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2014, 23, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Mammoto, T.; Torisawa, Y.-S.; Muyleart, M.; Hendee, K.; Anugwom, C.; Gutterman, D.; Mammoto, A. Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging 2019, 17, 7051–7069. [Google Scholar] [CrossRef]
- Adamson, R.H. Microvascular Endothelial Cell Shape and Size in Situ. Microvasc. Res. 1993, 46, 77–88. [Google Scholar] [CrossRef] [PubMed]
- James, R.; William, W. Cell size and growth characteristics of cultured fibroblasts isolated from normal and keloid tissue. Plast. Reconstr. Surg. 1976, 57, 207–212. [Google Scholar]
- Li, Q.; Ping, P.; Jiang, H.; Liu, K. Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve. Microsurgery 2006, 26, 116–121. [Google Scholar] [CrossRef]
- Allodi, I.; Mecollari, V.; González-Pérez, F.; Eggers, R.; Hoyng, S.; Verhaagen, J.; Navarro, X.; Udina, E. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 2014, 62, 1736–1746. [Google Scholar] [CrossRef]
- Lee, S.H.; Jin, W.P.; Seo, N.R.; Pang, K.M.; Kim, B.; Kim, S.M.; Lee, J.H. Recombinant human fibroblast growth factor-2 promotes nerve regenerationand functional recovery after mental nerve crush injury. Neural Regen. Res. 2017, 12, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Cámara-Lemarroy, C.R.; Guzmán-de la Garza, F.J.; Fernández-Garza, N.E. Molecular Inflammatory Mediators in Peripheral Nerve Degeneration and Regeneration. Neuroimmunomodulation 2010, 17, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, T.C.; Flake, A.W. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol. Dis. 2001, 27, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Nolta, J.A.; Jin, Y.S.; Barr, M.L.; Yu, H.; Starnes, V.A.; Cramer, D.V. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 2003, 75, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Bittira, B.; Shum-Tim, D.; Al-Khaldi, A.; Chiu, R.C. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur. J. Cardiothorac. Surg. 2003, 24, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, F.; Gu, Y.; Liu, J.; Gu, X. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res. 2009, 1262, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Crigler, L.; Robey, C.R.; Asawachaicharn, A.; Gaupp, D.; Phinney, D.G. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol. 2006, 198, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Ou, Y.C.; Liao, S.L.; Chen, W.Y.; Chen, S.Y.; Wu, C.W.; Wang, C.C.; Wang, W.Y.; Huang, Y.S.; Hsu, S.H. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp. Neurol. 2007, 204, 443–453. [Google Scholar] [CrossRef]
- Hsu, M.N.; Huang, K.L.; Yu, F.J.; Lai, P.L.; Truong, A.V.; Lin, M.W.; Nguyen, N.T.K.; Shen, C.C.; Hwang, S.M.; Chang, Y.H.; et al. Coactivation of endogenous Wnt10b and Foxc2 by CRISPR activation enhances BMSC osteogenesis and promotes calvarial bone regeneration. Mol. Ther. 2020, 28, 441–451. [Google Scholar] [CrossRef]
- Lin, Z.; He, H.; Wang, M.; Liang, J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif. 2019, 52, e12688. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, L.; Li, L.; Huang, C.; Shi, K.; Meng, X.; Wang, P.; Wu, M.; Li, L.; Cao, H.; et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 2021, 279, 121216. [Google Scholar] [CrossRef] [PubMed]
- Tohill, M.; Mantovani, C.; Wiberg, M.; Terenghi, G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci. Lett. 2004, 362, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Spees, J.L.; Olson, S.D.; Ylostalo, J.; Lynch, P.J.; Smith, J.; Perry, A.; Peister, A.; Wang, M.Y.; Prockop, D.J. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc. Natl. Acad. Sci. USA 2003, 100, 2397–2402. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Wrobel, S.; Raimondo, S.; Rochkind, S.; Heimann, C.; Shahar, A.; Ziv-Polat, O.; Geuna, S.; Grothe, C.; Haastert-Talini, K. Peripheral Nerve Regeneration Through Hydrogel-Enriched Chitosan Conduits Containing Engineered Schwann Cells for Drug Delivery. Cell Transplant. 2016, 25, 159–182. [Google Scholar] [CrossRef]
- Uemura, T.; Takamatsu, K.; Ikeda, M.; Okada, M.; Kazuki, K.; Ikada, Y.; Nakamura, H. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem. Biophys. Res. Commun. 2012, 419, 130–135. [Google Scholar] [CrossRef]
- Xu, W.; Cox, C.S.; Li, Y.J. Induced pluripotent stem cells for peripheral nerve regeneration. Stem Cells 2011, 6, 39–49. [Google Scholar]
- Yamamoto, D.; Tada, K.; Suganuma, S.; Hayashi, K.; Nakajima, T.; Nakada, M.; Matsuta, M.; Tsuchiya, H. Differentiated adipose-derived stem cells promote peripheral nerve regeneration. Muscle Nerve 2020, 62, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Ishikawa, N.; Tanihara, M.; Saito, S. Nontubulation Repair of Peripheral Nerve Gap Using Heparin/Alginate Gel Combined with b-FGF. Plast. Reconstr. Surg. Glob. Open 2016, 4, e600. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Ohta, S.; Kakinoki, R.; Ikeguchi, R.; Kaizawa, Y.; Oda, H.; Matsuda, S. The neuroprotective effect of erythropoietin on spinal motor neurons after nerve root avulsion injury in rats. Restor Neurol. Neurosci. 2015, 33, 461–470. [Google Scholar] [CrossRef]
- Bischoff, J.P.; Schulz, A.; Morrison, H. The role of exosomes in intercellular and inter-organ communication of the peripheral nervous system. FEBS Lett. 2022, 596, 655–664. [Google Scholar] [CrossRef]
- Bucan, V.; Vaslaitis, D.; Peck, C.T.; Strauß, S.; Vogt, P.M.; Radtke, C. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol. Neurobiol. 2019, 56, 1812–1824. [Google Scholar] [CrossRef] [PubMed]
- Szynkaruk, M.; Kemp, S.W.; Wood, M.D.; Gordon, T.; Borschel, G.H. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng. Part B Rev. 2013, 19, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Ide, C.; Tohyama, K.; Yokota, R.; Nitatori, T.; Onodera, S. Schwann cell basal lamina and nerve regeneration. Brain Res. 1983, 288, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, S.E.; Hudson, A.R.; Falk, R.E.; Kline, D.; Hunter, D. Peripheral nerve allograft: An assessment of regeneration across pretreated nerve allografts. Neurosurgery 1984, 15, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.W.; Zawko, S.; Deister, C.; Lundy, S.; Hu, C.Y.; Lee, K.; Schmidt, C.E. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 2004, 10, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Haase, S.C.; Rovak, J.M.; Dennis, R.G.; Kuzon, W.M., Jr.; Cederna, P.S. Recovery of muscle contractile function following nerve gap repair with chemically acellularized peripheral nerve grafts. J. Reconstr. Microsurg. 2003, 19, 241–248. [Google Scholar] [PubMed]
- Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, A.; Sturgeon, C.; Siatskas, M.; Ferrer, K.; McIntosh, K.; Patil, S.; Hardy, W.; Devine, S.; Ucker, D.; Deans, R.; et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002, 30, 42–48. [Google Scholar] [CrossRef]
- Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P.D.; Matteucci, P.; Grisanti, S.; Gianni, A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99, 3838–3843. [Google Scholar] [CrossRef]
- Glasby, M.A.; Gschmeissner, S.; Hitchcock, R.J.; Huang, C.L. Regeneration of the sciatic nerve in rats. The effect of muscle basement membrane. J. Bone Jt. Surg. Br. 1986, 68, 829–833. [Google Scholar] [CrossRef]
- Keynes, R.J.; Hopkins, W.G.; Huang, C.L.H. Regeneration of mouse peripheral nerves in degenerating skeletal muscle: Guidance by residual muscle fiber basement membrane. Brain Res. 1984, 295, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Neubrech, F.; Heider, S.; Harhaus, L.; Bickert, B.; Kneser, U.; Kremer, T. Chitosan nerve tube for primary repair of traumatic sensory nerve lesions of the hand without a gap: Study protocol for a randomized controlled trial. Trials 2016, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.N.; Padilla, J.A.; Nguyen, K.D.; Rosen, J.M. Comparison of nerve repair techniques: Suture vs. avitene-polyglycolic acid tube. J. Reconstr. Microsurg. 1991, 7, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Ochi, M.; Uchio, Y.; Ryoke, K.; Yamamoto, S. Prevention and treatment of amputation neuroma by an atelocollagen tube in rat sciatic nerves. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Zukawa, M.; Osada, R.; Kimura, T. Clinical outcome and ultrasonographic evaluation of treatment using polyglycolic acid-collagen tube for chronic neuropathic pain after peripheral nerve injury. J. Orthop. Sci. 2019, 24, 1064–1067. [Google Scholar] [CrossRef]
- Shintani, K.; Uemura, T.; Takamatsu, K.; Yokoi, T.; Onode, E.; Okada, M.; Nakamura, H. Protective effect of biodegradable nerve conduit against peripheral nerve adhesion after neurolysis. J. Neurosurg. 2018, 129, 815–824. [Google Scholar] [CrossRef]
- Hammerschlag, R.; Stone, G.L. Axoplasmic Transport in Physiology and Pathology; Weiss, D.G., Ed.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 406–413. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakinoki, R.; Hara, Y.; Yoshimoto, K.; Kaizawa, Y.; Hashimoto, K.; Tanaka, H.; Kobayashi, T.; Ohtani, K.; Noguchi, T.; Ikeguchi, R.; et al. Fabrication of Artificial Nerve Conduits Used in a Long Nerve Gap: Current Reviews and Future Studies. Bioengineering 2024, 11, 409. https://doi.org/10.3390/bioengineering11040409
Kakinoki R, Hara Y, Yoshimoto K, Kaizawa Y, Hashimoto K, Tanaka H, Kobayashi T, Ohtani K, Noguchi T, Ikeguchi R, et al. Fabrication of Artificial Nerve Conduits Used in a Long Nerve Gap: Current Reviews and Future Studies. Bioengineering. 2024; 11(4):409. https://doi.org/10.3390/bioengineering11040409
Chicago/Turabian StyleKakinoki, Ryosuke, Yukiko Hara, Koichi Yoshimoto, Yukitoshi Kaizawa, Kazuhiko Hashimoto, Hiroki Tanaka, Takaya Kobayashi, Kazuhiro Ohtani, Takashi Noguchi, Ryosuke Ikeguchi, and et al. 2024. "Fabrication of Artificial Nerve Conduits Used in a Long Nerve Gap: Current Reviews and Future Studies" Bioengineering 11, no. 4: 409. https://doi.org/10.3390/bioengineering11040409
APA StyleKakinoki, R., Hara, Y., Yoshimoto, K., Kaizawa, Y., Hashimoto, K., Tanaka, H., Kobayashi, T., Ohtani, K., Noguchi, T., Ikeguchi, R., Akagi, M., & Goto, K. (2024). Fabrication of Artificial Nerve Conduits Used in a Long Nerve Gap: Current Reviews and Future Studies. Bioengineering, 11(4), 409. https://doi.org/10.3390/bioengineering11040409