Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today?
Abstract
:1. Introduction
2. Studies Included in Our Review
3. Summary of Segmentation Strategies
3.1. Input Sequence
3.2. Regional and Voxel-Based Approaches
3.3. Network Architecture
3.4. Pre- and Postprocessing
3.5. Training and Testing Procedures
4. Summary of Data Utilization
5. Summary of Segmentation Performance
6. Discussion
6.1. Needs and Challenges
6.2. Addressing the Challenges
6.2.1. Train a Separate Model for Small BM
6.2.2. Multi-Modality May Help but T1c Is More Practical and May Be Sufficient
6.2.3. Limit the Amount of Preprocessing
6.2.4. Network Tricks: Loss Function, Deep Supervision, Patch-Wise Training to Increase Training Data, Weighted Sampling, and Ensemble
6.2.5. Benchmarking: Evaluation Metrics, Public Data, and Competition/Challenges
6.3. Prospective Ongoing Strategy
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Arvold, N.D.; Lee, E.Q.; Mehta, M.P.; Margolin, K.; Alexander, B.M.; Lin, N.U.; Anders, C.K.; Soffietti, R.; Camidge, D.R.; Vogelbaum, M.A.; et al. Updates in the management of brain metastases. Neuro-Oncol. 2016, 18, 1043–1065. [Google Scholar] [CrossRef]
- Graber, J.J.; Cobbs, C.S.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Use of Stereotactic Radiosurgery in the Treatment of Adults with Metastatic Brain Tumors. Neurosurgery 2019, 84, E168–E170. [Google Scholar] [CrossRef]
- Lam, T.C.; Sahgal, A.; Chang, E.L.; Lo, S.S. Stereotactic radiosurgery for multiple brain metastases. Expert Rev. Anticancer Ther. 2014, 14, 1153–1172. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Chiang, V.L.; Knisely, J.P.; Raldow, A.C.; Yu, J.B. Stereotactic radiosurgery with or without whole-brain radiotherapy for brain metastases: An update. Expert Rev. Anticancer Ther. 2011, 11, 1731–1738. [Google Scholar] [CrossRef]
- Quigley, M.R.; Fuhrer, R.; Karlovits, S.; Karlovits, B.; Johnson, M. Single session stereotactic radiosurgery boost to the post-operative site in lieu of whole brain radiation in metastatic brain disease. J. Neuro-Oncol. 2008, 87, 327–332. [Google Scholar] [CrossRef]
- Lippitz, B.; Lindquist, C.; Paddick, I.; Peterson, D.; O’Neill, K.; Beaney, R. Stereotactic radiosurgery in the treatment of brain metastases: The current evidence. Cancer Treat. Rev. 2014, 40, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Soliman, H.; Das, S.; Larson, D.A.; Sahgal, A. Stereotactic radiosurgery (SRS) in the modern management of patients with brain metastases. Oncotarget 2016, 7, 12318–12330. [Google Scholar] [CrossRef]
- Nieder, C.; Grosu, A.L.; Gaspar, L.E. Stereotactic radiosurgery (SRS) for brain metastases: A systematic review. Radiat. Oncol. 2014, 9, 155. [Google Scholar] [CrossRef]
- Chang, A.T.Y.; Tan, L.T.; Duke, S.; Ng, W.T. Challenges for Quality Assurance of Target Volume Delineation in Clinical Trials. Front. Oncol. 2017, 7, 221. [Google Scholar] [CrossRef]
- Growcott, S.; Dembrey, T.; Patel, R.; Eaton, D.; Cameron, A. Inter-Observer Variability in Target Volume Delineations of Benign and Metastatic Brain Tumours for Stereotactic Radiosurgery: Results of a National Quality Assurance Programme. Clin. Oncol. 2020, 32, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, R.D.; Wang, P.; O’Dell, W.G. Computer-aided detection of metastatic brain tumors using automated three-dimensional template matching. J. Magn. Reson. Imaging 2010, 31, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, L.; Kim, Y.J.; Choi, S.H.; Kim, K.G.; Kang, J.H.; Kang, Y.; Bae, Y.J.; Yoo, R.E.; Kim, J.; Lee, K.J.; et al. Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study. PLoS ONE 2017, 12, e0178265. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Nolte, L.P.; Reyes, M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011: 14th International Conference, Toronto, ON, Canada, September 18–22, 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 14, pp. 354–361. [Google Scholar] [CrossRef]
- Farjam, R.; Parmar, H.A.; Noll, D.C.; Tsien, C.I.; Cao, Y. An approach for computer-aided detection of brain metastases in post-Gd T1-W MRI. Magn. Reson. Imaging 2012, 30, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Stojadinovic, S.; Hrycushko, B.; Wardak, Z.; Lu, W.; Yan, Y.; Jiang, S.B.; Timmerman, R.; Abdulrahman, R.; Nedzi, L.; et al. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications. Phys. Med. Biol. 2016, 61, 8440–8461. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Sunwoo, L.; Baik, S.H.; Bae, Y.J.; Choi, B.S.; Kim, J.H. Brain metastasis detection using machine learning: A systematic review and meta-analysis. Neuro-Oncol. 2021, 23, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Havaei, M.; Guizard, N.; Larochelle, H.; Jodoin, P.M. Deep Learning Trends for Focal Brain Pathology Segmentation in MRI. In Machine Learning for Health Informatics: State-of-the-Art and Future Challenges; Springer: Cham, Switzerland, 2016; Volume 9605, pp. 125–148. [Google Scholar] [CrossRef]
- Ozkara, B.B.; Chen, M.M.; Federau, C.; Karabacak, M.; Briere, T.M.; Li, J.; Wintermark, M. Deep Learning for Detecting Brain Metastases on MRI: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 334. [Google Scholar] [CrossRef]
- Moawad, A.W.; Janas, A.; Baid, U.; Ramakrishnan, D.; Jekel, L.; Krantchev, K.; Moy, H.; Saluja, R.; Osenberg, K.; Wilms, K.; et al. The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. arXiv 2023, arXiv:2306.00838. [Google Scholar] [CrossRef]
- Grishchuk, D.; Dimitriadis, A.; Sahgal, A.; De Salles, A.; Fariselli, L.; Kotecha, R.; Levivier, M.; Ma, L.; Pollock, B.E.; Regis, J.; et al. ISRS Technical Guidelines for Stereotactic Radiosurgery: Treatment of Small Brain Metastases (</=1 cm in Diameter). Pract. Radiat. Oncol. 2023, 13, 183–194. [Google Scholar] [CrossRef]
- NICE. Brain Tumours (Primary) and Brain Metastases in Adults; NICE Guidline; National Institute for Health and Care Excellence: London, UK, 2021. [Google Scholar]
- Liu, Y.; Stojadinovic, S.; Hrycushko, B.; Wardak, Z.; Lau, S.; Lu, W.; Yan, Y.; Jiang, S.B.; Zhen, X.; Timmerman, R.; et al. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE 2017, 12, e0185844. [Google Scholar] [CrossRef]
- Charron, O.; Lallement, A.; Jarnet, D.; Noblet, V.; Clavier, J.B.; Meyer, P. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput. Biol. Med. 2018, 95, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-Y.; Weng, W.-H.; Lu, S.-L.; Cheng, Y.-H.; Xiao, F.; Hsu, F.-M.; Lu, J.-T. Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery. arXiv 2019, arXiv:1908.05418. [Google Scholar] [CrossRef]
- Dikici, E.; Ryu, J.L.; Demirer, M.; Bigelow, M.; White, R.D.; Slone, W.; Erdal, B.S.; Prevedello, L.M. Automated Brain Metastases Detection Framework for T1-Weighted Contrast-Enhanced 3D MRI. IEEE J. Biomed. Health Inform. 2020, 24, 2883–2893. [Google Scholar] [CrossRef]
- Grovik, E.; Yi, D.; Iv, M.; Tong, E.; Rubin, D.; Zaharchuk, G. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. J. Magn. Reson. Imaging 2020, 51, 175–182. [Google Scholar] [CrossRef]
- Xue, J.; Wang, B.; Ming, Y.; Liu, X.; Jiang, Z.; Wang, C.; Liu, X.; Chen, L.; Qu, J.; Xu, S.; et al. Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro-Oncol. 2020, 22, 505–514. [Google Scholar] [CrossRef]
- Bousabarah, K.; Ruge, M.; Brand, J.S.; Hoevels, M.; Ruess, D.; Borggrefe, J.; Grosse Hokamp, N.; Visser-Vandewalle, V.; Maintz, D.; Treuer, H.; et al. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Radiat. Oncol. 2020, 15, 87. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sanders, J.W.; Johnson, J.M.; Gule-Monroe, M.K.; Chen, M.M.; Briere, T.M.; Wang, Y.; Son, J.B.; Pagel, M.D.; Li, J.; et al. Computer-aided Detection of Brain Metastases in T1-weighted MRI for Stereotactic Radiosurgery Using Deep Learning Single-Shot Detectors. Radiology 2020, 295, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sanders, J.W.; Johnson, J.M.; Gule-Monroe, M.; Chen, M.; Briere, T.M.; Wang, Y.; Son, J.B.; Pagel, M.D.; Ma, J.; et al. MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging. Radiother. Oncol. 2020, 153, 189–196. [Google Scholar] [CrossRef]
- Zhang, M.; Young, G.S.; Chen, H.; Li, J.; Qin, L.; McFaline-Figueroa, J.R.; Reardon, D.A.; Cao, X.; Wu, X.; Xu, X. Deep-Learning Detection of Cancer Metastases to the Brain on MRI. J. Magn. Reson. Imaging 2020, 52, 1227–1236. [Google Scholar] [CrossRef]
- Junger, S.T.; Hoyer, U.C.I.; Schaufler, D.; Laukamp, K.R.; Goertz, L.; Thiele, F.; Grunz, J.P.; Schlamann, M.; Perkuhn, M.; Kabbasch, C.; et al. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning. J. Magn. Reson. Imaging 2021, 54, 1608–1622. [Google Scholar] [CrossRef] [PubMed]
- Rudie, J.D.; Weiss, D.A.; Colby, J.B.; Rauschecker, A.M.; Laguna, B.; Braunstein, S.; Sugrue, L.P.; Hess, C.P.; Villanueva-Meyer, J.E. Three-dimensional U-Net Convolutional Neural Network for Detection and Segmentation of Intracranial Metastases. Radiol. Artif. Intell. 2021, 3, e200204. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Vassantachart, A.; Ye, J.C.; Yu, C.; Ruan, D.; Sheng, K.; Lao, Y.; Shen, Z.L.; Balik, S.; Bian, S.; et al. Automatic detection and segmentation of multiple brain metastases on magnetic resonance image using asymmetric UNet architecture. Phys. Med. Biol. 2021, 66, 015003. [Google Scholar] [CrossRef] [PubMed]
- Hsu, D.G.; Ballangrud, A.; Shamseddine, A.; Deasy, J.O.; Veeraraghavan, H.; Cervino, L.; Beal, K.; Aristophanous, M. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images. Phys. Med. Biol. 2021, 66, 175014. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Lee, K.; Bovi, J.A.; Palmer, J.D.; Brown, P.D.; Gondi, V.; Tome, W.A.; Benzinger, T.L.S.; Mehta, M.P.; Li, X.A. Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, J.A.; Yi, D.; Tong, E.; Iv, M.; Latysheva, A.; Saxhaug, C.; Jacobsen, K.D.; Helland, A.; Emblem, K.E.; Rubin, D.L.; et al. 2.5D and 3D segmentation of brain metastases with deep learning on multinational MRI data. Front. Neuroinform 2022, 16, 1056068. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, A.T.; Salama, J.K.; Wiggins, W.F.; Ackerson, B.G.; Fecci, P.E.; Kirkpatrick, J.P.; Floyd, S.R.; Godfrey, D.J. A Deep Learning-Based Computer Aided Detection (CAD) System for Difficult-to-Detect Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 779–793. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Xia, W.; Liu, Y.; Liu, L.; Luo, W.; Zhou, J.; Zhang, Y. DeSeg: Auto detector-based segmentation for brain metastases. Phys. Med. Biol. 2023, 68, 025002. [Google Scholar] [CrossRef] [PubMed]
- Buchner, J.A.; Kofler, F.; Etzel, L.; Mayinger, M.; Christ, S.M.; Brunner, T.B.; Wittig, A.; Menze, B.; Zimmer, C.; Meyer, B.; et al. Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study. Radiother. Oncol. 2023, 178, 109425. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Kofler, F.; Berger, C.; Waldmannstetter, D.; Lipkova, J.; Ezhov, I.; Tetteh, G.; Kirschke, J.; Zimmer, C.; Wiestler, B.; Menze, B.H. BraTS Toolkit: Translating BraTS Brain Tumor Segmentation Algorithms into Clinical and Scientific Practice. Front. Neurosci. 2020, 14, 125. [Google Scholar] [CrossRef]
- Pope, W.B. Brain metastases: Neuroimaging. Handb. Clin. Neurol. 2018, 149, 89–112. [Google Scholar] [CrossRef] [PubMed]
- Soffietti, R.; Cornu, P.; Delattre, J.Y.; Grant, R.; Graus, F.; Grisold, W.; Heimans, J.; Hildebrand, J.; Hoskin, P.; Kalljo, M.; et al. EFNS Guidelines on diagnosis and treatment of brain metastases: Report of an EFNS Task Force. Eur. J. Neurol. 2006, 13, 674–681. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9905, pp. 21–37. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, H.; Liu, Y.; Stojadinovic, S.; Timmerman, R.; Nedzi, L.; Dan, T.; Wardak, Z.; Lu, W.; Gu, X. A web-based brain metastases segmentation and labeling platform for stereotactic radiosurgery. Med. Phys. 2020, 47, 3263–3276. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, M.; Kazemimoghadam, M.; Ma, L.; Stojadinovic, S.; Timmerman, R.; Dan, T.; Wardak, Z.; Lu, W.; Gu, X. Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation. Phys. Med. Biol. 2022, 67, 025004. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients with Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Rudie, J.D.; Saluja, R.; Weiss, D.A.; Nedelec, P.; Calabrese, E.; Colby, J.B.; Laguna, B.; Mongan, J.; Braunstein, S.; Hess, C.P.; et al. The University of California San Francisco, Brain Metastases Stereotactic Radiosurgery (UCSF-BMSR) MRI Dataset. arXiv 2023, arXiv:2304.07248. [Google Scholar] [CrossRef]
- BrainMetShare. Available online: https://aimi.stanford.edu/brainmetshare(accessed on 25 April 2024).
- Fairchild, A.; Salama, J.K.; Godfrey, D.J.; Wiggins, W.; Ackerson, B.; Niedzwiecki, D.; Fecci, P.; Kirkpatrick, J.P.; Floyd, S.R. Early Imaging Characteristics Associated with Development of Future Brain Metastases in Patients Undergoing Stereotactic Radiosurgery. Int. J. Radiat. Oncol. 2022, 114, e51. [Google Scholar] [CrossRef]
- Togao, O.; Hiwatashi, A.; Yamashita, K.; Kikuchi, K.; Yoshiura, T.; Honda, H. Additional MR contrast dosage for radiologists’ diagnostic performance in detecting brain metastases: A systematic observer study at 3 T. Jpn. J. Radiol. 2014, 32, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Erdur, A.C.; Scholz, D.; Buchner, J.A.; Combs, S.E.; Rueckert, D.; Peeken, J.C. All Sizes Matter: Improving Volumetric Brain Segmentation on Small Lesions. arXiv 2023, arXiv:2310.02829. [Google Scholar] [CrossRef]
- Buchner, J.A.; Peeken, J.C.; Etzel, L.; Ezhov, I.; Mayinger, M.; Christ, S.M.; Brunner, T.B.; Wittig, A.; Menze, B.H.; Zimmer, C.; et al. Identifying core MRI sequences for reliable automatic brain metastasis segmentation. Radiother. Oncol. 2023, 188, 109901. [Google Scholar] [CrossRef] [PubMed]
- Isensee, F.; Schell, M.; Pflueger, I.; Brugnara, G.; Bonekamp, D.; Neuberger, U.; Wick, A.; Schlemmer, H.P.; Heiland, S.; Wick, W.; et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 2019, 40, 4952–4964. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.M.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef]
- Futrega, M.; Milesi, A.; Marcinkiewicz, M.; Ribalta, P. Optimized U-Net for Brain Tumor Segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Brainles 2021; Springer: Cham, Switzerland, 2022; Volume 12963, pp. 15–29. [Google Scholar] [CrossRef]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Fink, K.R.; Fink, J.R. Imaging of brain metastases. Surg. Neurol. Int. 2013, 4 (Suppl. 4), S209–S219. [Google Scholar] [CrossRef]
- Suh, C.H.; Jung, S.C.; Kim, K.W.; Pyo, J. The detectability of brain metastases using contrast-enhanced spin-echo or gradient-echo images: A systematic review and meta-analysis. J. Neuro-Oncol. 2016, 129, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Komada, T.; Naganawa, S.; Ogawa, H.; Matsushima, M.; Kubota, S.; Kawai, H.; Fukatsu, H.; Ikeda, M.; Kawamura, M.; Sakurai, Y.; et al. Contrast-enhanced MR imaging of metastatic brain tumor at 3 tesla: Utility of T(1)-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence. Magn. Reson. Med. Sci. 2008, 7, 13–21. [Google Scholar] [CrossRef]
- Kottlors, J.; Geissen, S.; Jendreizik, H.; Hokamp, N.G.; Fervers, P.; Pennig, L.; Laukamp, K.; Kabbasch, C.; Maintz, D.; Schlamann, M.; et al. Contrast-Enhanced Black Blood MRI Sequence Is Superior to Conventional T1 Sequence in Automated Detection of Brain Metastases by Convolutional Neural Networks. Diagnostics 2021, 11, 1016. [Google Scholar] [CrossRef]
- Kaufmann, T.J.; Smits, M.; Boxerman, J.; Huang, R.; Barboriak, D.P.; Weller, M.; Chung, C.; Tsien, C.; Brown, P.D.; Shankar, L.; et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro-Oncol. 2020, 22, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, F.; Lokhande, D.; Jha, P. VASARI MRI Feature Set. 2016. Available online: https://radiopaedia.org/articles/45816 (accessed on 25 April 2024).
No | Study | Year | Task | Sequence | Field Strength | CNN Model | Network Dimension | Input | Optimization Loss | Train/Val/Test | BM Size | Performance |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Liu et al. [23] | 2017 | Seg | T1c | 3T | En-DeepMedic | 3D | Patch 25 × 25 × 25 | CE | 5-fold | mean 670 mm3 | DSC 0.67 |
2 | Charron et al. [24] | 2018 | Seg | T1, T1c, FLAIR | 1.5T | DeepMedic | 3D | Patch 24 × 24 × 24 | DICE | 146/18/18 | median 70 mm | DSC 0.78, Sen 0.97, FPR 5.9 per patient |
3 | Hu et al. [25] | 2019 | Seg | T1c, CT | Unspecified | UNet+DeepMedic | 3D | 512 × 512 × 8 × 2 for U-Net | Focal DICE | 245/30/76 patients | median 760 mm3 | <1500 mm3: DSC 0.47, Sen 0.61; >1500 mm3: DSC 0.82, Sen 0.98 |
4 | Dikici et al. [26] | 2020 | Det | T1c | 1.5T, 3T | CropNet | 3D | Patch 16 × 16 × 16 | CE | 5-fold (217 scans, 158 patients) | mean: 5.4 mm; 160 mm3 | Sen 0.9; FPR 9.12 per patient |
5 | Grøvik et al. [27] | 2020 | Seg | T1-BRAVO, T1, T1c, and FLAIR | 1.5T, 3T | GoogLeNet | 2.5D | 256 × 256 × 28 | CE | 100/5/51 | mode ~10 mm | DSC 0.79, Sen 0.53, PPV 0.79 |
6 | Xue et al. [28] | 2020 | Det+Seg | T1c | 3T | BMDS (cascaded FCN) | 3D | 256 × 256 × 120 | DICE | 4-fold | median 16 mm | DSC 0.85, Sen 0.96, Spe 0.99 |
7 | Bousabarah et al. [29] | 2020 | Seg | T1c, T2, and FLAIR | 3T | U-Net, moU-Net, sU-Net | 3D | Patch 128 × 128 × 128 | DICE | 469/0/40 | median 470 mm3 | DSC 0.74, Sen 0.82, FPR 0.35 |
8 | Zhou et al. [30] | 2020 | Det | T1c | 1.5T, 3T | Single Shot Dector | 2D | 256 × 256 × 1 | Detector | 212/0/54(234) patients (BM) | mean 10 mm | Sen 0.81, PPV 0.36 |
9 | Zhou et al. [31] | 2020 | Det+Seg | T1c | 1.5T, 3T | MetNet | 2D | Patch 64 × 64 × 3 | Focal DICE | 748/0/186 | mode 3–6 mm | DSC 0.81, Sen 0.85, PPV 0.58 |
10 | Zhang et al. [32] | 2020 | Det | T1c | 1.5T, 3T | Faster R-CNN + RUSBoost | 2D | 256 × 256 × 1 | CE + L1 | 270/0/91 scans | unspecified | Sen 0.87, FPR 0.24 per slice |
11 | Junger et al. [33] | 2021 | Seg | T1, T1c, T2, and FLAIR | 1T, 1.5T, 3T | DeepMedic | 3D | Patch 25 × 25 × 25 | DICE | 66(248)/0/17(67) patients (BM) | mean 990 mm3 | DSC 0.72, Sen 0.85, FPR 1.5 per scan |
12 | Rudie et al. [34] | 2021 | Seg | T1c or T1c-T1 | 1.5T, 3T | 3D U-Net | 3D | Patch 96 × 96 × 96 | DICE + focal CE | 413/50/100 scans | median 50 mm3 | DSC 0.75, Sen 0.7, FPR 0.46 per scan |
13 | Cao et al. [35] | 2021 | Seg | T1c | 1.5T | asym-UNet | 3D | 256 × 256 × 80 | CE | 160(809)/20(136)/15(89) patients (BM) | mode 3.5 mm | <10 mm: DSC 0.65, Sen 0.76, PPV 0.72; >11 mm: DSC 0.84, Sen 0.94, PPV 0.82 |
14 | Hsu et al. [36] | 2021 | Seg | T1c and CECT | 1.5T, 3T | V-net | 3D | Patch 48 × 48 × 48 | boundary loss + DICE | (402, 5-fold)/102 | mode 7.5 mm | DSC 0.76, Sen 0.9, FPR 2.4 |
15 | Liang et al. [37] | 2022 | Seg | T1c and FLAIR | Unspecified | U-Net (variant) | 3D | Patch 64 × 64 × 64 × 2 | DICE | 326 (78)/0/81 (20) patients (centers) | median 17.6 mm | DSC 0.73, Sen 0.91, FPR 1.9 per patient |
16 | Ottesen et al. [38] | 2022 | Seg | T1, T1c, FLAIR, BRAVO (Set II) | Unspecified | HRNetV2 | 2.5D/3D | Unspecified | Focal +CE | 160/10/51 | unspecified | Sen 0.79, FPR 6.2 per patient/Sen 0.71, FPR 3.2 |
17 | Fairchild et al. [39] | 2023 | Seg | T1c | 1.5T, 3T | DeepMedic+ | 3D | Patch 25 × 25 × 25 | DICE | 4-fold | median 5.6 mm | DSC 0.79, Sen 0.89, PPV 0.59 |
18 | Yu et al. [40] | 2023 | Det+Seg | T1c | 1.5T, 3T | DeSeg (U-net) | 2+2.5D | 256 × 256 × 1 | Focal + CE | 192/24/24 patients | median < 50 mm3 | DSC 0.86, Sen 0.91, PPV 0.77 |
19 | Buchner et al. [41] | 2023 | Seg | T1, T1c, T2, and FLAIR | Unspecified | U-Net | 3D | 192 × 192 × 32 | DICE + CE | 260/0/88 patients | median 13,000 mm3 | DSC 0.92, F1 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Wang, J.-Y.; Lu, W.; Jiang, H.; Stojadinovic, S.; Wardak, Z.; Dan, T.; Timmerman, R.; Wang, L.; Chuang, C.; et al. Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today? Bioengineering 2024, 11, 454. https://doi.org/10.3390/bioengineering11050454
Kim M, Wang J-Y, Lu W, Jiang H, Stojadinovic S, Wardak Z, Dan T, Timmerman R, Wang L, Chuang C, et al. Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today? Bioengineering. 2024; 11(5):454. https://doi.org/10.3390/bioengineering11050454
Chicago/Turabian StyleKim, Matthew, Jen-Yeu Wang, Weiguo Lu, Hao Jiang, Strahinja Stojadinovic, Zabi Wardak, Tu Dan, Robert Timmerman, Lei Wang, Cynthia Chuang, and et al. 2024. "Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today?" Bioengineering 11, no. 5: 454. https://doi.org/10.3390/bioengineering11050454
APA StyleKim, M., Wang, J. -Y., Lu, W., Jiang, H., Stojadinovic, S., Wardak, Z., Dan, T., Timmerman, R., Wang, L., Chuang, C., Szalkowski, G., Liu, L., Pollom, E., Rahimy, E., Soltys, S., Chen, M., & Gu, X. (2024). Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today? Bioengineering, 11(5), 454. https://doi.org/10.3390/bioengineering11050454