A Systematic Review of the Effects of Interactive Telerehabilitation with Remote Monitoring and Guidance on Balance and Gait Performance in Older Adults and Individuals with Neurological Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction and Tabulation
2.4. Methodological Quality
3. Results
3.1. Literature Search
3.2. Study Analysis
3.2.1. Participant Characteristics
3.2.2. Study Characteristics
3.2.3. Quality Assessment
4. Discussion
4.1. Interactive Telerehabilitation Technologies
4.2. Data Tracking and Analysis
4.3. Remote Monitoring and Guidance Methods
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winter, D.A.; Patla, A.E.; Frank, J.S. Assessment of balance control in humans. Med. Prog. Technol. 1990, 16, 31–51. [Google Scholar] [PubMed]
- NIDCD. Balance Disorders. Available online: https://www.nidcd.nih.gov/health/balance-disorders (accessed on 26 January 2024).
- WHO. Falls. Available online: http://www.who.int/news-room/fact-sheets/detail/falls (accessed on 1 April 2024).
- Hansson, E.E. Vestibular rehabilitation—For whom and how? A systematic review. Adv. Physiother. 2007, 9, 106–116. [Google Scholar] [CrossRef]
- Regauer, V.; Seckler, E.; Müller, M.; Bauer, P. Physical therapy interventions for older people with vertigo, dizziness and balance disorders addressing mobility and participation: A systematic review. BMC Geriatr. 2020, 20, 494. [Google Scholar] [CrossRef]
- Arienti, C.; Lazzarini, S.G.; Pollock, A.; Negrini, S. Rehabilitation interventions for improving balance following stroke: An overview of systematic reviews. PLoS ONE 2019, 14, e0219781. [Google Scholar] [CrossRef]
- Yitayeh, A.; Teshome, A. The effectiveness of physiotherapy treatment on balance dysfunction and postural instability in persons with Parkinson’s disease: A systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2016, 8, 17. [Google Scholar] [CrossRef]
- Alashram, A.R.; Annino, G.; Raju, M.; Padua, E. Effects of physical therapy interventions on balance ability in people with traumatic brain injury: A systematic review. NeuroRehabilitation 2020, 46, 455–466. [Google Scholar] [CrossRef]
- Corrini, C.; Gervasoni, E.; Perini, G.; Cosentino, C.; Putzolu, M.; Montesano, A.; Pelosin, E.; Prosperini, L.; Cattaneo, D. Mobility and balance rehabilitation in multiple sclerosis: A systematic review and dose-response meta-analysis. Mult. Scler. Relat. Disord. 2023, 69, 104424. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.D.; Hack, L.M.; Coulson, E.; Freburger, J.; Johnson, M.P.; Katz, R.; Kerwin, J.; Smith, M.H.; Wessman, H.C.; Venskus, D.G.; et al. Workforce projections 2010-2020: Annual supply and demand forecasting models for physical therapists across the United States. Phys. Ther. 2016, 96, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Tseng, M.H.; Lin, C.C. Assessment on Distributional Fairness of Physical Rehabilitation Resource Allocation: Geographic Accessibility Analysis Integrating Google Rating Mechanism. Int. J. Environ. Res. Public Health 2020, 17, 7576. [Google Scholar] [CrossRef]
- McAuley, E.; Mihalko, S.L.; Rosengren, K. Self-efficacy and balance correlates of fear of falling in the elderly. J. Aging Phys. Act. 1997, 5, 329–340. [Google Scholar] [CrossRef]
- Clemson, L.; Cumming, R.G.; Kendig, H.; Swann, M.; Heard, R.; Taylor, K. The effectiveness of a community-based program for reducing the incidence of falls in the elderly: A randomized trial. J. Am. Geriatr. Soc. 2004, 52, 1487–1494. [Google Scholar] [CrossRef]
- Howe, T.E.; Rochester, L.; Neil, F.; Skelton, D.A.; Ballinger, C. Exercise for improving balance in older people. Cochrane Database Syst. Rev. 2011, Cd004963. [Google Scholar] [CrossRef]
- Choi, S.D.; Guo, L.; Kang, D.; Xiong, S. Exergame technology and interactive interventions for elderly fall prevention: A systematic literature review. Appl. Ergon. 2017, 65, 570–581. [Google Scholar] [CrossRef]
- Dalmazane, M.; Gallou-Guyot, M.; Compagnat, M.; Magy, L.; Montcuquet, A.; Billot, M.; Daviet, J.C.; Perrochon, A. Effects on gait and balance of home-based active video game interventions in persons with multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2021, 51, 102928. [Google Scholar] [CrossRef]
- Truijen, S.; Abdullahi, A.; Bijsterbosch, D.; van Zoest, E.; Conijn, M.; Wang, Y.; Struyf, N.; Saeys, W. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurol. Sci. 2022, 43, 2995–3006. [Google Scholar] [CrossRef]
- Jirasakulsuk, N.; Saengpromma, P.; Khruakhorn, S. Real-time telerehabilitation in older adults with musculoskeletal conditions: Systematic review and meta-analysis. JMIR Rehabil. Assist. Technol. 2022, 9, e36028. [Google Scholar] [CrossRef]
- Tarihoran, D.; Daryanti Saragih, I.; Saragih, I.S.; Tzeng, H.M. Effects of videoconferencing intervention on stroke survivors: A systematic review and meta-analysis of randomised controlled studies. J. Clin. Nurs. 2023, 32, 5938–5947. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- National Institute of Health, Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies; National Heart, Lung, and Blood Institute: Maryland. 2017. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 15 March 2024).
- Abou, L.; Alluri, A.; Fliflet, A.; Du, Y.; Rice, L.A. Effectiveness of physical therapy interventions in reducing fear of falling among individuals with neurologic diseases: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2021, 102, 132–154. [Google Scholar] [CrossRef]
- Bao, T.; Carender, W.J.; Kinnaird, C.; Barone, V.J.; Peethambaran, G.; Whitney, S.L.; Kabeto, M.; Seidler, R.D.; Sienko, K.H. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: A randomized preliminary study. J. Neuroeng. Rehabil. 2018, 15, 5. [Google Scholar] [CrossRef]
- Bao, T.; Noohi, F.; Kinnaird, C.; Carender, W.J.; Barone, V.J.; Peethambaran, G.; Whitney, S.L.; Seidler, R.D.; Sienko, K.H. Retention effects of long-term balance training with vibrotactile sensory augmentation in healthy older adults. Sensors 2022, 22, 3014. [Google Scholar] [CrossRef]
- Park, C.; Mishra, R.K.; York, M.K.; Enriquez, A.; Lindsay, A.; Barchard, G.; Vaziri, A.; Najafi, B. Tele-medicine based and self-administered interactive exercise program (Tele-exergame) to improve cognition in older adults with mild cognitive impairment or dementia: A feasibility, acceptability, and proof-of-concept study. Int. J. Environ. Res. Public Health 2022, 19, 6361. [Google Scholar] [CrossRef]
- Lloréns, R.; Noé, E.; Colomer, C.; Alcañiz, M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2015, 96, 418–425.e2. [Google Scholar] [CrossRef]
- van den Berg, M.; Crotty, M.P.; Liu, E.; Killington, M.; Kwakkel, G.P.; van Wegen, E. Early supported discharge by caregiver-mediated exercises and e-health support after stroke: A proof-of-concept Trial. Stroke 2016, 47, 1885–1892. [Google Scholar] [CrossRef]
- Chen, J.; Jin, W.; Dong, W.S.; Jin, Y.; Qiao, F.L.; Zhou, Y.F.; Ren, C.C. Effects of home-based telesupervising rehabilitation on physical function for stroke survivors with hemiplegia: A randomized controlled trial. Am. J. Phys. Med. Rehabil. 2017, 96, 152–160. [Google Scholar] [CrossRef]
- Bellomo, R.G.; Paolucci, T.; Saggino, A.; Pezzi, L.; Bramanti, A.; Cimino, V.; Tommasi, M.; Saggini, R. The WeReha project for an innovative home-based exercise training in chronic stroke patients: A clinical study. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520979866. [Google Scholar] [CrossRef]
- Salgueiro, C.; Urrútia, G.; Cabanas-Valdés, R. Influence of core-stability exercises guided by a telerehabilitation app on trunk performance, balance and gait performance in chronic stroke survivors: A preliminary randomized controlled trial. Int. J. Environ. Res. Public Health 2022, 19, 5689. [Google Scholar] [CrossRef]
- Federico, S.; Cacciante, L.; De Icco, R.; Gatti, R.; Jonsdottir, J.; Pagliari, C.; Franceschini, M.; Goffredo, M.; Cioeta, M.; Calabrò, R.S.; et al. Telerehabilitation for stroke: A personalized multi-domain approach in a pilot study. J. Pers. Med. 2023, 13, 1692. [Google Scholar] [CrossRef]
- Seidler, K.J.; Duncan, R.P.; McNeely, M.E.; Hackney, M.E.; Earhart, G.M. Feasibility and preliminary efficacy of a telerehabilitation approach to group adapted tango instruction for people with Parkinson disease. J. Telemed. Telecare 2017, 23, 740–746. [Google Scholar] [CrossRef]
- Gandolfi, M.; Geroin, C.; Dimitrova, E.; Boldrini, P.; Waldner, A.; Bonadiman, S.; Picelli, A.; Regazzo, S.; Stirbu, E.; Primon, D.; et al. Virtual reality telerehabilitation for postural instability in Parkinson’s disease: A multicenter, single-blind, randomized, controlled trial. Biomed. Res. Int. 2017, 2017, 7962826. [Google Scholar] [CrossRef]
- Park, S.; Tang, A.; Barclay, R.; Bayley, M.; Eng, J.J.; Mackay-Lyons, M.; Pollock, C.; Pooyania, S.; Teasell, R.; Yao, J.; et al. Investigating the telerehabilitation with aims to improve lower extremity recovery post-stroke (TRAIL) program: A feasibility study. Phys. Ther. 2023, 104, pzad165. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, J.; Yue, C.; Li, Y.; Liang, Y. Collaborative care model based telerehabilitation exercise training program for acute stroke patients in China: A randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2020, 29, 105328. [Google Scholar] [CrossRef]
- Isernia, S.; Di Tella, S.; Pagliari, C.; Jonsdottir, J.; Castiglioni, C.; Gindri, P.; Salza, M.; Gramigna, C.; Palumbo, G.; Molteni, F.; et al. Effects of an innovative telerehabilitation intervention for people with Parkinson’s disease on quality of life, motor, and non-motor abilities. Front. Neurol. 2020, 11, 846. [Google Scholar] [CrossRef]
- Pinto, C.; Figueiredo, C.; Mabilia, V.; Cruz, T.; Jeffrey, E.R.; Pagnussat, A.S. A safe and feasible online dance intervention for older adults with and without Parkinson’s disease. J. Dance Med. Sci. 2023, 27, 253–267. [Google Scholar] [CrossRef]
- Goffredo, M.; Pagliari, C.; Turolla, A.; Tassorelli, C.; Di Tella, S.; Federico, S.; Pournajaf, S.; Jonsdottir, J.; De Icco, R.; Pellicciari, L.; et al. Non-immersive virtual reality telerehabilitation system improves postural balance in people with chronic neurological diseases. J. Clin. Med. 2023, 12, 3178. [Google Scholar] [CrossRef]
- Chanpimol, S.; Benson, K.; Maloni, H.; Conroy, S.; Wallin, M. Acceptability and outcomes of an individualized exergaming telePT program for veterans with multiple sclerosis: A pilot study. Arch. Physiother. 2020, 10, 18. [Google Scholar] [CrossRef]
- Kairy, D.; Lehoux, P.; Vincent, C.; Visintin, M. A systematic review of clinical outcomes, clinical process, healthcare utilization and costs associated with telerehabilitation. Disabil. Rehabil. 2009, 31, 427–447. [Google Scholar] [CrossRef]
- Delgoshaei, B.; Mobinizadeh, M.; Mojdekar, R.; Afzal, E.; Arabloo, J.; Mohamadi, E. Telemedicine: A systematic review of economic evaluations. Med. J. Islam. Repub. Iran 2017, 31, 113. [Google Scholar] [CrossRef]
- Lee, C.; Ahn, J.; Lee, B.C. A systematic review of the long-term effects of using smartphone- and tablet-based rehabilitation technology for balance and gait training and exercise programs. Bioengineering 2023, 10, 1142. [Google Scholar] [CrossRef]
- Perrochon, A.; Borel, B.; Istrate, D.; Compagnat, M.; Daviet, J.C. Exercise-based games interventions at home in individuals with a neurological disease: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 366–378. [Google Scholar] [CrossRef]
- Giggins, O.M.; Persson, U.M.; Caulfield, B. Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 60. [Google Scholar] [CrossRef]
- Sigrist, R.; Rauter, G.; Riener, R.; Wolf, P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychon. Bull. Rev. 2013, 20, 21–53. [Google Scholar] [CrossRef]
- Fernando, C.K.; Basmajian, J.V. Biofeedback in physical medicine and rehabilitation. Biofeedback Self Regul. 1978, 3, 435–455. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
Study | Participant Characteristic (Sample Size) | Intervention | Remote Monitoring/Guidance Method | Balance and Gait-Related Outcome Measures | Assessment Periods | Summary of Statistically Significant Results Associated with Balance and Gait Performance (p-Value) |
---|---|---|---|---|---|---|
Bao et al., 2018 [23] |
| TRG:
| Mini-BESTest28, Mini-BESTest32, SOT, 5xSST | Pre- and post-intervention |
| |
Bao et al., 2022 [24] |
| TRG:
| Mini-BESTest28, SOT | Pre- and post-intervention, retention (1 month and 6 months) |
| |
Park et al., 2022 [25] |
| TRG:
| Integrated video call via a tablet | Balance and mobility-related questionnaire | Pre- and post-intervention |
|
Lloréns et al., 2015 [26] |
| TRG:
| Face-to-face or interview | BBA, BBS, POMA-B, POMA-G | Pre- and post-intervention, retention (12 weeks) |
|
van den Berg et al., 2016 [27] |
| TRG:
| Videoconferencing via Vidyo | Extended activities of daily living, TUG | Pre- and post-intervention, retention (4 weeks) |
|
Chen et al., 2016 [28] |
| TRG:
| Videoconferencing | BI, BBS | Pre- and post-intervention, retention (12 weeks) |
|
Bellomo et al., 2020 [29] |
| TRG:
| Audio and video tutorials, phone call | BI, BBS, FMA, mRS | Pre- and post-intervention |
|
Salgueiro et al., 2022 [30] |
| TRG:
| Face-to-face, phone or video call follow-up | BBS, S-PASS, S-TIS | Pre- and post-intervention |
|
Federico et al., 2023 [31] |
| TRG1-3:
| Tablet built-in supervision with videoconferencing | BI, FMA-Balance, NHPT | Pre- and post-intervention |
|
Seidler et al., 2017 [32] |
| TRG:
| Videoconferencing | MDS-UPDRS III, Mini-BESTest32 | Pre- and post-intervention |
|
Gandolfi et al., 2017 [33] |
| TRG:
| Videoconferencing via Skype | ABC, BBS, DGI | Pre- and post-intervention, retention (1 month) |
|
Park et al., 2020 [34] |
| TRG:
| Videoconferencing | 30s S2S, FMA-LE, TUG | Pre- and Post-intervention, Retention (4 and 8 weeks) |
|
Wu et al., 2020 [35] |
| TRG:
| Videoconferencing via Internet-based TCMeeting v6.0 and phone call | BBS, FMA-LE | Pre-, Mid (4 and 8 weeks)-, and post-intervention |
|
Isernia et al., 2020 [36] |
| TRG:
| Phone call | 2MWT, BBS | Pre- and post-intervention, retention (3 months) |
|
Pinto et al., 2023 [37] |
| TRG:
| Videoconferencing via Zoom | 5xSST | Pre- and post-intervention |
|
Goffredo et al., 2023 [38] |
| TRG:
| Therapist’s pre-determined exercise guidance corresponded to participants’ characteristics and needs | Mini-BESTest28, TUG, TUG-D | Pre- and post-intervention |
|
Chanpimol et al., 2020 [39] |
| TRG:
| Teleconferencing via a secure web-based portal | 2MWT, 25FW, SPPB |
|
Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Overall |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bao et al., 2018 [23] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Bao et al., 2022 [24] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Park et al., 2022 [25] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Lloréns et al., 2015 [26] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
van den Berg et al., 2016 [27] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Chen et al., 2016 [28] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Bellomo et al., 2020 [29] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Salgueiro et al., 2022 [30] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Federico et al., 2023 [31] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Seidler et al., 2017 [32] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Gandolfi et al., 2017 [33] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Park et al., 2020 [34] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Wu et al., 2020 [35] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Isernia et al., 2020 [36] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Pinto et al., 2023 [37] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Goffredo et al., 2023 [38] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Chanpimol et al., 2020 [39] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | N/A | Yes | Yes | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Lee, B.-C. A Systematic Review of the Effects of Interactive Telerehabilitation with Remote Monitoring and Guidance on Balance and Gait Performance in Older Adults and Individuals with Neurological Conditions. Bioengineering 2024, 11, 460. https://doi.org/10.3390/bioengineering11050460
Park C, Lee B-C. A Systematic Review of the Effects of Interactive Telerehabilitation with Remote Monitoring and Guidance on Balance and Gait Performance in Older Adults and Individuals with Neurological Conditions. Bioengineering. 2024; 11(5):460. https://doi.org/10.3390/bioengineering11050460
Chicago/Turabian StylePark, Catherine, and Beom-Chan Lee. 2024. "A Systematic Review of the Effects of Interactive Telerehabilitation with Remote Monitoring and Guidance on Balance and Gait Performance in Older Adults and Individuals with Neurological Conditions" Bioengineering 11, no. 5: 460. https://doi.org/10.3390/bioengineering11050460
APA StylePark, C., & Lee, B. -C. (2024). A Systematic Review of the Effects of Interactive Telerehabilitation with Remote Monitoring and Guidance on Balance and Gait Performance in Older Adults and Individuals with Neurological Conditions. Bioengineering, 11(5), 460. https://doi.org/10.3390/bioengineering11050460