How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review
Abstract
:1. Introduction
2. Mechanical Properties of AC in OA
Sample Source | Reference | Healthy/Osteoarthritic | Natural OA/Induced OA | Cartilage Region | Testing Condition | Mechanical Properties | ||
---|---|---|---|---|---|---|---|---|
Young’s Modulus | Aggregate Modulus | Other Findings | ||||||
Bovine | [46] | H | - | Knee joint | Static and dynamic confined compression (microscale) | - | 0.37 ± 0.03 MPa (adult) 0.43 ± 0.02 MPa (calf), and 0.15 ± 0.01 MPa (fetus) | Permeability (kp) expressed as (log10kp(m2/(Pa s)) −14.92 ± 0.93 (adult) −15.19 ± 0.32 (calf), and −15.60 ± 0.46 (fetus) |
[47] | H | - | Knee joint | Unconfined compression (macroscale) | 14.6 ± 6.9 MPa at 0.1 Hz to 28.7 ± 7.8 MPa at 40 Hz | 0.49 ± 0.10 MPa | Peak compressive strain amplitudes 15.8 ± 3.4% at 0.1 Hz to 8.7 ± 1.8% at 40 Hz | |
[48] | H | - | Knee joint | Unconfined compression (microscale) | - | 0.96 ± 0.47 MPa (adult) 0.89 ± 0.39 MPa (calf), and 0.72 ± 0.36 MPa (fetus) | Poisson’s ratio 0.26 ± 0.11 (adult) 0.09 ± 0.02 (calf), and 0.11 ± 0.03 (fetus) | |
[49] | H | - | Knee joint | Indentation (microscale) | 3.9 ± 0.7 MPa (Effective contact modulus) | 0.62 ± 0.10 MPa (equilibrium contact modulus) | Tensile modulus 4.3 ± 0.7 MPa and permeability 2.8 ± 0.9 × 10−3 mm4/Ns | |
[50] | H | - | Knee joint | Indentation (microscale) | - | 0.93 MPa (equilibrium contact modulus) | - | |
[51] | OA | (In vitro) induced with type II bacterial collagenase | Knee joint | Confined compression (macroscale) | - | 0.06 ± 0.03–0.13 ± 0.06 MPa | Permeability 4.73 ± 1.43 × 10−14 m4/N s–8.25 ± 2.24 × 10−14 m4/N s | |
[52] | OA | (In vitro) induced using collagenase, chondroitinase ABC, or elastase | Knee joint | Indentation (microscale) | - | 0.7 MPa (collagenase), 0.3 MPa (chondroitinase ABC), and 0.7 MPa (elastase) | - | |
[53] | OA | (In vitro) induced using collagenase | Knee joint | Unconfined compression (microscale) | - | 0.45 ± 0.21 to 0.23 ± 0.14 MPa with 2 U/mL collagenase treatment and 0.49 ± 0.19 to 0.19 ± 0.08 MPa with 10 U/mL collagenase treatment | Compressive strain 21.7 ± 5.6 to 26.2 ± 7.6% at 0.1 Hz loading frequency and from 9.6 ± 3.3 to 13.5 ± 3.2% at 40 Hz loading frequency with 10 U/mL collagenase treatment | |
Porcine | [54] | H | - | Knee joint | Indentation (microscale) | 2 MPa at 2.5 mN and 7 MPa at 10 mN | - | Contact stiffness 0.5 kNm−1 at 2.5 mN and 4.0 kNm−1 at 10 mN Hardness 0.07 ± 0.01 MPa at 2.5 mN |
[55] | H | - | Knee joint | Indentation (mesoscale) | 2.93 MPa | - | Hardness 0.05 MPa | |
[56] | H | - | Knee joint | Confined compression (micro scale) | - | 0.71 ± 0.50 MPa (creep) and 0.68 ± 0.48 MPa (recovery) | - | |
[57] | OA | (In vitro) induced with papain | Knee joint | Confined compression (microscale) | - | 0.09–0.38 MPa (medial femoral condyle), 0.32–0.42 MPa (lateral patellar groove), and 0.095–0.38 MPa (medial patellar groove) | (1.9–7) × 10−15 m4/N s (medial femoral condyle), (1.2–2.6) × 10−15 m4/N s (lateral patellar groove), and (1.2–1.5) × 10−15 m4/N s (medial patellar groove) | |
Rabbit | [58] | H | - | Knee joint | AFM indentation (nanoscale) | - | 0.52 ± 0.05 MPa (superficial zone) 1.69 ± 0.12 MPa (calcified zone) | Surface roughness 59.0 ± 12.6 nm |
[59] | OA | (In vivo) intramuscular injection of ketamine (100 mg/kg) and xylazine (8 mg/kg) | Knee joint | Surface properties | - | - | Surface roughness values (mean rms values) 95–320% | |
[60] | OA | (In vivo) anterior cruciate ligament transection (ACLT) model | Knee joint | Indentation (nanoscale) | 3.37 ± 1.23 MPa (instantaneous modulus) | 0.85 ± 0.29 MPa (equilibrium modulus) | - | |
Human | [61] | H | - | Knee joint | Confined compression (macroscale) | - | 0.499 ± 0.208 MPa to 1.597 ± 0.455 MPa) | Permeability 0.689 ± 0.304 × 103 (mm4/N-s) to 1.318 ± 0.673 × 103 (mm4/N-s) |
[62] | H | - | Knee joint | Unconfined compression (macroscale) | - | 1.60 ± 0.51 MPa to 2.47 ± 0.49 MPa | - | |
[63] | H | - | Knee joint | Unconfined compression (microscale) | - | 0.53 ± 0.25 MPa | - | |
[64] | OA | Total joint replacement patients | Knee joint | Unconfined compression (macroscale) | - | - | Shear modulus 4.6 ± 1.8 MPa | |
[65] | OA | Total joint replacement patients | Knee joint | Indentation (macroscale) | 2.51 to 10.7 MPa (instantaneous modulus) | 0.07 to 2.86 MPa (equilibrium modulus) | - | |
[66] | OA | Total joint replacement patients | Knee joint | Micropipette aspiration technique | - | Chondrocytes (0.63 ± 0.51 kPa), instantaneous modulus, and 0.33 ± 0.23 kPa) equilibrium modulus | - |
3. Tribological Properties of AC in OA
4. Chronology of Cartilage Lubrication
4.1. How Lubrication Models Fail in the Case of OA
4.1.1. Fluid Film Lubrication
4.1.2. Boundary Lubrication
4.1.3. Mixed-Mode Lubrication
4.2. Concept of Tribological Rehydration
5. Relevance of AC Lubrication Theories to OA
Lubricant-Based Solutions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Conaghan, P.G.; Kloppenburg, M.; Schett, G.; Bijlsma, J.W. Osteoarthritis research priorities: A report from a EULAR ad hoc expert committee. Ann. Rheum. Dis. 2014, 73, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Wang, Z.; Chen, D.; Shi, D. Advances in osteoarthritis research: From diagnosis, treatment to mechanism studies. J. Orthop. Transl. 2024, 44, A4. [Google Scholar] [CrossRef]
- Swain, S.; Sarmanova, A.; Mallen, C.; Kuo, C.F.; Coupland, C.; Doherty, M.; Zhang, W. Trends in incidence and prevalence of osteoarthritis in the United Kingdom: Findings from the Clinical Practice Research Datalink (CPRD). Osteoarthr. Cartil. 2020, 28, 792–801. [Google Scholar] [CrossRef]
- Prime, M.S.; Palmer, J.; Khan, W.S. The national joint registry of England and Wales. Orthopedics 2011, 34, 107–110. [Google Scholar] [CrossRef]
- Lohmander, L.S.; De Verdier, M.G.; Rollof, J.; Nilsson, P.M.; Engström, G. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: A population-based prospective cohort study. Ann. Rheum. Dis. 2009, 68, 490–496. [Google Scholar] [CrossRef]
- Culliford, D.; Maskell, J.; Judge, A.; Cooper, C.; Prieto-Alhambra, D.; Arden, N.; Group, C.S. Future projections of total hip and knee arthroplasty in the UK: Results from the UK Clinical Practice Research Datalink. Osteoarthr. Cartil. 2015, 23, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Krakowski, P.; Karpiński, R.; Maciejewski, R.; Jonak, J.; Jurkiewicz, A. Short-term effects of arthroscopic microfracturation of knee chondral defects in osteoarthritis. Appl. Sci. 2020, 10, 8312. [Google Scholar] [CrossRef]
- Krakowski, P.; Karpiński, R.; Jojczuk, M.; Nogalska, A.; Jonak, J. Knee MRI underestimates the grade of cartilage lesions. Appl. Sci. 2021, 11, 1552. [Google Scholar] [CrossRef]
- Adeeb, S.M.; Sayed Ahmed, E.Y.; Matyas, J.; Hart, D.A.; Frank, C.B.; Shrive, N.G. Congruency effects on load bearing in diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 2004, 7, 147–157. [Google Scholar] [CrossRef]
- Carter, D.R.; Wong, M. The role of mechanical loading histories in the development of diarthrodial joints. J. Orthop. Res. 1988, 6, 804–816. [Google Scholar] [CrossRef]
- Mansour, J.M. Biomechanics of cartilage. Kinesiol. Mech. Pathomechanics Hum. Mov. 2003, 2, 66–79. [Google Scholar]
- Carballo, C.B.; Nakagawa, Y.; Sekiya, I.; Rodeo, S.A. Basic science of articular cartilage. Clin. Sports Med. 2017, 36, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Mow, V.C.; Lai, W.M.; Redler, I. Some surface characteristics of articular cartilage—I. A scanning electron microscopy study and a theoretical model for the dynamic interaction of synovial fluid and articular cartilage. J. Biomech. 1974, 7, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Eschweiler, J.; Horn, N.; Rath, B.; Betsch, M.; Baroncini, A.; Tingart, M.; Migliorini, F. The biomechanics of cartilage—An overview. Life 2021, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Prein, C.; Warmbold, N.; Farkas, Z.; Schieker, M.; Aszodi, A.; Clausen-Schaumann, H. Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol. 2016, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.C. Articular cartilage: A review and scanning electron microscope study: 1. The interterritorial fibrillar architecture. J. Bone Jt. Surg. Br. Vol. 1971, 53, 732–750. [Google Scholar] [CrossRef]
- Korhonen, R.; Wong, M.; Arokoski, J.; Lindgren, R.; Helminen, H.; Hunziker, E.; Jurvelin, J. Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Med. Eng. Phys. 2002, 24, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Parkes, M.; Tallia, F.; Young, G.R.; Cann, P.; Jones, J.R.; Jeffers, J.R. Tribological evaluation of a novel hybrid for repair of articular cartilage defects. Mater. Sci. Eng. C 2021, 119, 111495. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, F.; Adam, C.; Sittek, H.; Becker, C.; Milz, S.; Schulte, E.; Reiser, M.; Putz, R. Non-invasive determination of cartilage thickness throughout joint surfaces using magnetic resonance imaging. J. Biomech. 1997, 30, 285–289. [Google Scholar] [CrossRef]
- Silver, F.H.; Bradica, G.; Tria, A. Elastic energy storage in human articular cartilage: Estimation of the elastic modulus for type II collagen and changes associated with osteoarthritis. Matrix Biol. 2002, 21, 129–137. [Google Scholar] [CrossRef]
- Ulrich-Vinther, M.; Maloney, M.D.; Schwarz, E.M.; Rosier, R.; O’Keefe, R.J. Articular cartilage biology. JAAOS J. Am. Acad. Orthop. Surg. 2003, 11, 421–430. [Google Scholar] [CrossRef]
- Dijkgraaf, L.C.; De Bont, L.G.; Boering, G.; Liem, R.S. The structure, biochemistry, and metabolism of osteoarthritic cartilage: A review of the literature. J. Oral Maxillofac. Surg. 1995, 53, 1182–1192. [Google Scholar] [CrossRef]
- Fam, H.; Bryant, J.; Kontopoulou, M. Rheological properties of synovial fluids. Biorheology 2007, 44, 59–74. [Google Scholar] [PubMed]
- Radin, E.L.; Paul, I.L. Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1970, 13, 139–144. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Ben-Trad, L.; Matei, C.I.; Sava, M.M.; Filali, S.; Duclos, M.-E.; Berthier, Y.; Guichardant, M.; Bernoud-Hubac, N.; Maniti, O.; Landoulsi, A. Synovial extracellular vesicles: Structure and role in synovial fluid tribological performances. Int. J. Mol. Sci. 2022, 23, 11998. [Google Scholar] [CrossRef]
- Hascall, V.C. Interaction of cartilage proteoglycans with hyaluronic acid. J. Supramol. Struct. 1977, 7, 101–120. [Google Scholar] [CrossRef] [PubMed]
- Hascall, V.C.; Heinegård, D. Aggregation of cartilage proteoglycans: I. The role of hyaluronic acid. J. Biol. Chem. 1974, 249, 4232–4241. [Google Scholar] [CrossRef] [PubMed]
- Jay, G.D.; Waller, K.A. The biology of lubricin: Near frictionless joint motion. Matrix Biol. 2014, 39, 17–24. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, J.; Hwang, N.S. Regulation of lubricin for functional cartilage tissue regeneration: A review. Biomater. Res. 2018, 22, 9. [Google Scholar] [CrossRef]
- Yuan, X.; Meng, H.; Wang, Y.; Peng, J.; Guo, Q.; Wang, A.; Lu, S. Bone–cartilage interface crosstalk in osteoarthritis: Potential pathways and future therapeutic strategies. Osteoarthr. Cartil. 2014, 22, 1077–1089. [Google Scholar] [CrossRef] [PubMed]
- Oegema, T.R.; Carpenter, R.J.; Hofmeister, F.; Thompson, R.C. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc. Res. Tech. 1997, 37, 324–332. [Google Scholar] [CrossRef]
- Lane, L.B.; Bullough, P.G. Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. J. Bone Jt. Surg. Br. Vol. 1980, 62, 372–375. [Google Scholar] [CrossRef]
- De Boer, T.; Van Spil, W.; Huisman, A.; Polak, A.; Bijlsma, J.; Lafeber, F.; Mastbergen, S. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr. Cartil. 2012, 20, 846–853. [Google Scholar] [CrossRef]
- Goldring, M.B. The role of cytokines as inflammatory mediators in osteoarthritis: Lessons from animal models. Connect. Tissue Res. 1999, 40, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Martel-Pelletier, J.; Boileau, C.; Pelletier, J.-P.; Roughley, P.J. Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 2008, 22, 351–384. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Mankin, H.J.; Grodzinsky, A.J. Articular cartilage and osteoarthritis. Instr. Course Lect. Am. Acad. Orthop. Surg. 2005, 54, 465. [Google Scholar]
- Karpiński, R. Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Appl. Comput. Sci. 2022, 18, 71–85. [Google Scholar] [CrossRef]
- Ahn, J.; El-Khoury, G. Computed tomography of knee injuries. Imaging Decis. MRI 2006, 10, 14–23. [Google Scholar] [CrossRef]
- Mathiessen, A.; Cimmino, M.A.; Hammer, H.B.; Haugen, I.K.; Iagnocco, A.; Conaghan, P.G. Imaging of osteoarthritis (OA): What is new? Best Pract. Res. Clin. Rheumatol. 2016, 30, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Kohn, M.D.; Sassoon, A.A.; Fernando, N.D. Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin. Orthop. Relat. Res. 2016, 474, 1886–1893. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, M.D.; Kim, Y.-J.; Wong, M.; Frank, E.; Hunziker, E.B.; Grodzinsky, A.J. Stimulation of Aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid Flow1. Arch. Biochem. Biophys. 1999, 366, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Preuschof, H.; Tardieu, C. Biomechanical reasons for the divergent morphology of the knee joint and the distal epiphyseal suture in hominoids. Folia Primatol. 1996, 66, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.S.; Abouljoud, M.M.; Poland, S.G.; Flanigan, D.C. Medial compartment defects progress at a more rapid rate than lateral cartilage defects in older adults with minimal to moderate knee osteoarthritis (OA): Data from the OA initiative. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.K.; Chen, A.C.; Sah, R.L. Compressive properties and function—Composition relationships of developing bovine articular cartilage. J. Orthop. Res. 2001, 19, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hung, C.; Ateshian, G. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthr. Cartil. 2004, 12, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Ponticiello, M.; Kovanen, V.; Jurvelin, J. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 2000, 33, 1049–1054. [Google Scholar] [CrossRef]
- Moore, A.C.; Burris, D.L. Tribological and material properties for cartilage of and throughout the bovine stifle: Support for the altered joint kinematics hypothesis of osteoarthritis. Osteoarthr. Cartil. 2015, 23, 161–169. [Google Scholar] [CrossRef]
- Bonnevie, E.; Baro, V.; Wang, L.; Burris, D. Fluid load support during localized indentation of cartilage with a spherical probe. J. Biomech. 2012, 45, 1036–1041. [Google Scholar] [CrossRef]
- Grenier, S.; Bhargava, M.M.; Torzilli, P.A. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. J. Biomech. 2014, 47, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Rieppo, J.; Töyräs, J.; Nieminen, M.T.; Kovanen, V.; Hyttinen, M.M.; Korhonen, R.K.; Jurvelin, J.S.; Helminen, H.J. Structure-function relationships in enzymatically modified articular cartilage. Cells Tissues Organs 2003, 175, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Nicoll, S.B.; Mauck, R.L.; Ateshian, G.A. Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion. Ann. Biomed. Eng. 2008, 36, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Franke, O.; Durst, K.; Maier, V.; Göken, M.; Birkholz, T.; Schneider, H.; Hennig, F.; Gelse, K. Mechanical properties of hyaline and repair cartilage studied by nanoindentation. Acta Biomater. 2007, 3, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Jeng, Y.-R.; Mao, C.-P.; Wu, K.-T. Instrumented indentation investigation on the viscoelastic properties of porcine cartilage. J. Bionic Eng. 2013, 10, 522–531. [Google Scholar] [CrossRef]
- Cutcliffe, H.C.; DeFrate, L.E. Comparison of cartilage mechanical properties measured during creep and recovery. Sci. Rep. 2020, 10, 1547. [Google Scholar] [CrossRef] [PubMed]
- Hennerbichler, A.; Rosenberger, R.; Arora, R.; Hennerbichler, D. Biochemical, biomechanical and histological properties of osteoarthritic porcine knee cartilage: Implications for osteochondral transplantation. Arch. Orthop. Trauma Surg. 2008, 128, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Tomkoria, S.; Patel, R.V.; Mao, J.J. Heterogeneous nanomechanical properties of superficial and zonal regions of articular cartilage of the rabbit proximal radius condyle by atomic force microscopy. Med. Eng. Phys. 2004, 26, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, M.; Coutts, R.D.; Amiel, D.; Hacker, S.A. Characterization of a model of osteoarthritis in the rabbit knee. Osteoarthr. Cartil. 1996, 4, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Pragnère, S.; Boulocher, C.; Pollet, O.; Bosser, C.; Levillain, A.; Cruel, M.; Hoc, T. Mechanical alterations of the bone-cartilage unit in a rabbit model of early osteoarthrosis. J. Mech. Behav. Biomed. Mater. 2018, 83, 1–8. [Google Scholar] [CrossRef]
- Zimmerman, B.K.; Nims, R.J.; Chen, A.; Hung, C.T.; Ateshian, G.A. Direct osmotic pressure measurements in articular cartilage demonstrate nonideal and concentration-dependent phenomena. J. Biomech. Eng. 2021, 143, 041007. [Google Scholar] [CrossRef]
- Burgin, L.; Edelsten, L.; Aspden, R. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading. Med. Eng. Phys. 2014, 36, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Nissi, M.; Rieppo, J.; Töyräs, J.; Laasanen, M.; Kiviranta, I.; Nieminen, M.; Jurvelin, J. Estimation of mechanical properties of articular cartilage with MRI–dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation. Osteoarthr. Cartil. 2007, 15, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.L.; Kersh, M.E.; Walsh, N.C.; Ackland, D.C.; de Steiger, R.N.; Pandy, M.G. Mechanical properties of normal and osteoarthritic human articular cartilage. J. Mech. Behav. Biomed. Mater. 2016, 61, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Juras, V.; Bittsansky, M.; Majdisova, Z.; Szomolanyi, P.; Sulzbacher, I.; Gäbler, S.; Stampfl, J.; Schüller, G.; Trattnig, S. In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI. J. Magn. Reson. 2009, 197, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Trickey, W.R.; Lee, G.M.; Guilak, F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 2000, 18, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Katta, J.; Jin, Z.; Ingham, E.; Fisher, J. Biotribology of articular cartilage—A review of the recent advances. Med. Eng. Phys. 2008, 30, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Yang, X.; Zhang, D.; Xu, L.; Zhang, X.; Wang, Q. Biotribology behavior and fluid load support of PVA/HA composite hydrogel as artificial cartilage. Wear 2017, 376, 329–336. [Google Scholar] [CrossRef]
- Nickien, M.; Heuijerjans, A.; Ito, K.; van Donkelaar, C.C. Comparison between in vitro and in vivo cartilage overloading studies based on a systematic literature review. J. Orthop. Res. 2018, 36, 2076–2086. [Google Scholar] [CrossRef]
- Kafian-Attari, I.; Nippolainen, E.; Bergmann, F.; Mirhashemi, A.; Paakkari, P.; Foschum, F.; Kienle, A.; Töyräs, J.; Afara, I.O. Impact of experimental setup parameters on the measurement of articular cartilage optical properties in the visible and short near-infrared spectral bands. Biomed. Opt. Express 2023, 14, 3397–3412. [Google Scholar] [CrossRef]
- Madry, H.; Cucchiarini, M. Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat. Med. J. 2011, 52, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Gautam, S.; Dinda, A.K.; Mishra, N.C. Cartilage tissue engineering: Current scenario and challenges. Adv. Mater. Lett. 2011, 2, 90–99. [Google Scholar]
- Guilak, F.; Meyer, B.C.; Ratcliffe, A.; Mow, V.C. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthr. Cartil. 1994, 2, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Caligaris, M.; Ateshian, G.A. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 2008, 16, 1220–1227. [Google Scholar] [CrossRef]
- Forster, H.; Fisher, J. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1999, 213, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.C.; Schrader, J.L.; Ulvila, J.J.; Burris, D.L. A review of methods to study hydration effects on cartilage friction. Tribol. Mater. Surf. Interfaces 2017, 11, 202–214. [Google Scholar] [CrossRef]
- Gleghorn, J.P.; Bonassar, L.J. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J. Biomech. 2008, 41, 1910–1918. [Google Scholar] [CrossRef]
- Moore, A.C.; Burris, D.L. Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr. Cartil. 2017, 25, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Bonnevie, E.; Baro, V.; Wang, L.; Burris, D.L. In situ studies of cartilage microtribology: Roles of speed and contact area. Tribol. Lett. 2011, 41, 83–95. [Google Scholar] [CrossRef]
- Ren, K.; Reina Mahecha, M.A.; Hübner, M.; Cui, Z.; Kaper, H.J.; Van Der Veen, H.C.; Sharma, P.K. Tribology of enzymatically degraded cartilage mimicking early osteoarthritis. Friction 2023, 11, 1724–1740. [Google Scholar] [CrossRef]
- Basalo, I.M.; Chen, F.H.; Hung, C.T.; Ateshian, G.A. Frictional response of bovine articular cartilage under creep loading following proteoglycan digestion with chondroitinase ABC. J. Biomech. Eng. 2006, 128, 131–134. [Google Scholar] [CrossRef] [PubMed]
- McCutchen, C.W. The frictional properties of animal joints. Wear 1962, 5, 1–17. [Google Scholar] [CrossRef]
- Rennie, A.; Sawyer, W. Tribological Investigation of Porcine Articular Cartilage. In Proceedings of the World Tribology Congress, Washington, DC, USA, 12–16 September 2005; pp. 959–960. [Google Scholar]
- Schwarz, M.L.; Reisig, G.; Schneider-Wald, B.; Weiß, C.; Hauk, L.; Schütte, A. Coefficient of friction and height loss: Two criteria used to determine the mechanical property and stability of regenerated versus natural articular cartilage. Biomedicines 2022, 10, 2685. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Oka, M.; Toguchida, J.; Kobayashi, M.; Uchida, E.; Nakamura, T.; Tanaka, K. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. J. Anat. 2001, 199, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Middendorf, J.M.; Griffin, D.J.; Shortkroff, S.; Dugopolski, C.; Kennedy, S.; Siemiatkoski, J.; Cohen, I.; Bonassar, L.J. Mechanical properties and structure-function relationships of human chondrocyte-seeded cartilage constructs after in vitro culture. J. Orthop. Res. 2017, 35, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Caligaris, M.; Canal, C.E.; Ahmad, C.S.; Gardner, T.R.; Ateshian, G.A. Investigation of the frictional response of osteoarthritic human tibiofemoral joints and the potential beneficial tribological effect of healthy synovial fluid. Osteoarthr. Cartil. 2009, 17, 1327–1332. [Google Scholar] [CrossRef]
- Lee, S.-S.; Duong, C.-T.; Park, S.-H.; Cho, Y.; Park, S.; Park, S. Frictional response of normal and osteoarthritic articular cartilage in human femoral head. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zabawski, E. Knee lubricant? Sounds fishy. Tribol. Lubr. Technol. 2014, 70, 6. [Google Scholar]
- Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- MacConaill, M. The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J. Anat. 1932, 66, 210. [Google Scholar] [PubMed]
- Unsworth, A.; Dowson, D.; Wright, V. Some new evidence on human joint lubrication. Ann. Rheum. Dis. 1975, 34, 277–285. [Google Scholar] [CrossRef]
- Lewis, P.; McCutchen, C. Mechanism of animal joints: Experimental evidence for weeping lubrication in mammalian joints. Nature 1959, 184, 1285. [Google Scholar] [CrossRef] [PubMed]
- Dintenfass, L. Lubrication in synovial joints. Nature 1963, 197, 496–497. [Google Scholar] [CrossRef] [PubMed]
- Higginson, G. Elastohydrodynamic lubrication in human joints. Eng. Med. 1978, 7, 35–41. [Google Scholar] [CrossRef]
- Dowson, D.; Jin, Z.-M. Micro-elastohydrodynamic lubrication of synovial joints. Eng. Med. 1986, 15, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.; Lai, W.M.; Mow, V.C. Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 1987, 20, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Mow, V.C.; Lai, W.; Holmes, M. An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 1992, 25, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Fein, R. Research report 3: Are synovial joints squeeze-film lubricated? Proc. Inst. Mech. Eng. Conf. Proc. 1966, 181, 125–128. [Google Scholar] [CrossRef]
- Unsworth, A. Tribology of human and artificial joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1991, 205, 163–172. [Google Scholar] [CrossRef]
- Sayles, R.; Thomas, T.; Anderson, J.; Haslock, I.; Unsworth, A. Measurement of the surface microgeometry of articular cartilage. J. Biomech. 1979, 12, 257–267. [Google Scholar] [CrossRef]
- Walker, P.; Dowson, D.; Longfield, M.; Wright, V. “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 1968, 27, 512. [Google Scholar] [CrossRef]
- Hou, J.; Holmes, M.; Lai, W.; Mow, V. Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Eng. 1989, 111, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Hlaváček, M. The role of synovial fluid filtration by cartilage in lubrication of synovial joints—II. Squeeze-film lubrication: Homogeneous filtration. J. Biomech. 1993, 26, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Higaki, H.; Sawae, Y.; Ohtsuki, N.; Moriyama, S.; Nakanishi, Y. Adaptive multimode lubrication in natural synovial joints and artificial joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1998, 212, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Kopacz, M.; Ateshian, G.A. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 2004, 22, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Ateshian, G.A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 2009, 42, 1163–1176. [Google Scholar] [CrossRef]
- Accardi, M.A.; Dini, D.; Cann, P.M. Experimental and numerical investigation of the behaviour of articular cartilage under shear loading—Interstitial fluid pressurisation and lubrication mechanisms. Tribol. Int. 2011, 44, 565–578. [Google Scholar] [CrossRef]
- Ateshian, G.A.; Chahine, N.O.; Basalo, I.M.; Hung, C.T. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J. Biomech. 2004, 37, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Mow, V.C. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 2008, 40, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Shiromoto, Y.; Niki, Y.; Kikuchi, T.; Yoshihara, Y.; Oguma, T.; Nemoto, K.; Chiba, K.; Kanaji, A.; Matsumoto, M.; Nakamura, M. Increased migratory activity and cartilage regeneration by superficial-zone chondrocytes in enzymatically treated cartilage explants. BMC Musculoskelet. Disord. 2022, 23, 256. [Google Scholar] [CrossRef]
- Farnham, M.S.; Larson, R.E.; Burris, D.L.; Price, C. Effects of mechanical injury on the tribological rehydration and lubrication of articular cartilage. J. Mech. Behav. Biomed. Mater. 2020, 101, 103422. [Google Scholar] [CrossRef]
- Antonacci, J.M.; Schmidt, T.A.; Serventi, L.A.; Cai, M.Z.; Shu, Y.L.; Schumacher, B.L.; McIlwraith, C.W.; Sah, R.L. Effects of equine joint injury on boundary lubrication of articular cartilage by synovial fluid: Role of hyaluronan. Arthritis Rheum. 2012, 64, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, P.; White, A. Joint Friction, Wear and Lubrication. In Biomechanics in the Musculoskeletal System; Zorab, R., Ed.; Churchill Livingstone: Philadelphia, PA, USA, 2001; pp. 151–166. [Google Scholar]
- McCutchen, C. Lubrication of and by articular cartilage. In Cartilage; Elsevier: Amsterdam, The Netherlands, 1983; pp. 87–107. [Google Scholar]
- Jones, E.S. Joint lubrication. Lancet 1936, 227, 1043–1045. [Google Scholar] [CrossRef]
- McCutchen, C. Mechanism of animal joints: Sponge-hydrostatic and weeping bearings. Nature 1959, 184, 1284–1285. [Google Scholar] [CrossRef]
- McCutchen, C.W. Paper 1: Physiological lubrication. Proc. Inst. Mech. Eng. Conf. Proc. 1966, 181, 55–62. [Google Scholar] [CrossRef]
- Medley, J.; Dowson, D.; Wright, V. Transient elastohydrodynamic lubrication models for the human ankle joint. Eng. Med. 1984, 13, 137–151. [Google Scholar] [CrossRef]
- Bennett, A.; Higginson, G. Hydrodynamic lubrication of soft solids. J. Mech. Eng. Sci. 1970, 12, 218–222. [Google Scholar] [CrossRef]
- Medley, J.; Dowson, D. Lubrication of elastic-isoviscous line contacts subject to cyclic time-varying loads and entrainment velocities. ASLE Trans. 1984, 27, 243–251. [Google Scholar] [CrossRef]
- Kupratis, M.E.; Gure, A.E.; Benson, J.M.; Ortved, K.F.; Burris, D.L.; Price, C. Comparative tribology II–Measurable biphasic tissue properties have predictable impacts on cartilage rehydration and lubricity. Acta Biomater. 2022, 138, 375–389. [Google Scholar] [CrossRef]
- Kupratis, M.E.; Gure, A.E.; Ortved, K.F.; Burris, D.L.; Price, C. Comparative tribology: Articulation-induced rehydration of cartilage across species. Biotribology 2021, 25, 100159. [Google Scholar] [CrossRef]
- Charnley, J. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann. Rheum. Dis. 1960, 19, 10. [Google Scholar] [CrossRef]
- Swann, D.; Silver, F.; Slayter, H.; Stafford, W.; Shore, E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 1985, 225, 195–201. [Google Scholar] [CrossRef]
- Swann, D.A.; Radin, E.L. The molecular basis of articular lubrication: I. Purification and properties of a lubricating fraction from bovine synovial fluid. J. Biol. Chem. 1972, 247, 8069–8073. [Google Scholar] [CrossRef] [PubMed]
- Swann, D.A.; Radin, E.L.; Nazimiec, M.; Weisser, P.A.; Curran, N.; Lewinnek, G. Role of hyaluronic acid in joint lubrication. Ann. Rheum. Dis. 1974, 33, 318. [Google Scholar] [CrossRef] [PubMed]
- Jahn, S.; Klein, J. Hydration lubrication: The macromolecular domain. Macromolecules 2015, 48, 5059–5075. [Google Scholar] [CrossRef]
- Mcutchen, C. Boundary lubrication by synovial fluid: Demonstration and possible osmotic explanation. Fed. Proc. 1966, 25, 1061–1068. [Google Scholar] [PubMed]
- Lai, W.M.; Mow, V.C. Ultrafiltration of synovial fluid by cartilage. J. Eng. Mech. Div. 1978, 104, 79–96. [Google Scholar] [CrossRef]
- Forster, H.; Fisher, J. The influence of loading time and lubricant on the friction of articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1996, 210, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Pickard, J.; Ingham, E.; Egan, J.; Fisher, J. Investigation into the effect of proteoglycan molecules on the tribological properties of cartilage joint tissues. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1998, 212, 177–182. [Google Scholar] [CrossRef]
- Soltz, M.A.; Ateshian, G.A. A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J. Biomech. Eng. 2000, 122, 576–586. [Google Scholar] [CrossRef]
- Lai, W.M.; Hou, J.; Mow, V.C. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 1991, 113, 245–258. [Google Scholar] [CrossRef]
- Lu, X.L.; Wan, L.Q.; Guo, X.E.; Mow, V.C. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J. Biomech. 2010, 43, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Tanner, R. An alternative mechanism for the lubrication of synovial joints. Phys. Med. Biol. 1966, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Mirhadizadeh, S.A.; Mba, D. Observations of acoustic emission in a hydrodynamic bearing. J. Qual. Maint. Eng. 2009, 15, 193–201. [Google Scholar] [CrossRef]
- Haemer, J.M.; Carter, D.R.; Giori, N.J. The low permeability of healthy meniscus and labrum limit articular cartilage consolidation and maintain fluid load support in the knee and hip. J. Biomech. 2012, 45, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Bhuanantanondh, P.; Grecov, D.; Kwok, E. Rheological study of viscosupplements and synovial fluid in patients with osteoarthritis. CMBES Proc. 2010, 33. [Google Scholar]
- Sinha, P.; Singh, C.; Prasad, K. Lubrication of human joints—A microcontinuum approach. Wear 1982, 80, 159–181. [Google Scholar] [CrossRef]
- Cooke, A.; Dowson, D.; Wright, V. The rheology of synovial fluid and some potential synthetic lubricants for degenerate synovial joints. Eng. Med. 1978, 7, 66–72. [Google Scholar] [CrossRef]
- McCutchen, C. A note on weeping lubrication. In Perspectives in Biomedical Engineering, Proceedings of the Symposium Organised in Association with the Biological Engineering Society and Held in the University of Strathclyde, Glasgow, UK, June 1972; Palgrave Macmillan: London, UK, 1973; pp. 109–110. [Google Scholar]
- Dowson, D.; Wright, V.; Longfield, M. Human joint lubrication. Biomed. Eng. 1969, 4, 160–165. [Google Scholar]
- Alexopoulos, L.G.; Williams, G.M.; Upton, M.L.; Setton, L.A.; Guilak, F. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage. J. Biomech. 2005, 38, 509–517. [Google Scholar] [CrossRef]
- Dintenfass, L. Lubrication in synovial joints: A theoretical analysis: A rheological approach to the problems of joint movements and joint lubrication. JBJS 1963, 45, 1241–1256. [Google Scholar] [CrossRef]
- Unsworth, A. Recent developments in the tribology of artificial joints. Tribol. Int. 1995, 28, 485–495. [Google Scholar] [CrossRef]
- Dowson, D.; Jin, Z. Paper XII (ii) An analysis of micro-elasto-hydrodynamic lubrication in synovial joints considering cyclic loading and entraining velocities. In Tribology Series; Elsevier: Amsterdam, The Netherlands, 1987; Volume 11, pp. 375–386. [Google Scholar]
- Gardner, D.; O’connor, P.; Oates, K. Low temperature scanning electron microscopy of dog and guinea-pig hyaline articular cartilage. J. Anat. 1981, 132, 267. [Google Scholar] [PubMed]
- Ihnatouski, M.; Pauk, J.; Karev, D.; Karev, B. AFM-Based method for measurement of normal and osteoarthritic human articular cartilage surface roughness. Materials 2020, 13, 2302. [Google Scholar] [CrossRef] [PubMed]
- Charnley, J. How our joints are lubricated. Triangle Sandoz J. Med. Sci. 1960, 4, 175–179. [Google Scholar]
- Swann, D. The lubrication of articular cartilage by synovial fluid glycoproteins. Arthritis Rheum 1979, 22, 665. [Google Scholar]
- Swann, D.A.; Bloch, K.J.; Swindell, D.; Shore, E. The lubricating activity of human synovial fluids. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1984, 27, 552–556. [Google Scholar] [CrossRef]
- Lin, W.; Klein, J. Recent progress in cartilage lubrication. Adv. Mater. 2021, 33, 2005513. [Google Scholar] [CrossRef]
- Gonzales, G.; Zauscher, S.; Varghese, S. Progress in the design and synthesis of viscosupplements for articular joint lubrication. Curr. Opin. Colloid Interface Sci. 2023, 66, 101708. [Google Scholar] [CrossRef]
- Jahn, S.; Seror, J.; Klein, J. Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 2016, 18, 235–258. [Google Scholar] [CrossRef]
- Raviv, U.; Klein, J. Fluidity of bound hydration layers. Science 2002, 297, 1540–1543. [Google Scholar] [CrossRef]
- Klein, J. Hydration lubrication. Friction 2013, 1, 1–23. [Google Scholar] [CrossRef]
- Hills, B.; Butler, B. Surfactants identified in synovial fluid and their ability to act as boundary lubricants. Ann. Rheum. Dis. 1984, 43, 641–648. [Google Scholar] [CrossRef]
- Bonnevie, E.D.; Galesso, D.; Secchieri, C.; Bonassar, L.J. Degradation alters the lubrication of articular cartilage by high viscosity, hyaluronic acid-based lubricants. J. Orthop. Res. 2018, 36, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Hodge, W.; Carlson, K.; Fijan, R.; Burgess, R.; Riley, P.; Harris, W.; Mann, R. Contact pressures from an instrumented hip endoprosthesis. JBJS 1989, 71, 1378–1386. [Google Scholar] [CrossRef]
- Dowson, D. Paper 12: Modes of lubrication in human joints. Proc. Inst. Mech. Eng. Conf. Proc. 1966, 181, 45–54. [Google Scholar] [CrossRef]
- Wright, V.; Dowson, D.; Kerr, J. The structure of joints. Int. Rev. Connect. Tissue Res. 1973, 6, 105–125. [Google Scholar]
- Maroudas, A. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 1968, 8, 575–595. [Google Scholar] [CrossRef] [PubMed]
- Maroudas, A.; Bullough, P.; Swanson, S.; Freeman, M. The permeability of articular cartilage. J. Bone Jt. Surg. Br. Vol. 1968, 50, 166–177. [Google Scholar] [CrossRef]
- Walker, P.; Unsworth, A.; Dowson, D.; Sikorski, J.; Wright, V. Mode of aggregation of hyaluronic acid protein complex on the surface of articular cartilage. Ann. Rheum. Dis. 1970, 29, 591. [Google Scholar] [CrossRef]
- Walker, P.; Ben-Dov, M.; Askew, M.; Pugh, J. The deformation and wear of plastic components in artificial knee joints—An experimental study. Eng. Med. 1981, 10, 33–38. [Google Scholar] [CrossRef]
- Basalo, I.M.; Mauck, R.L.; Kelly, T.-A.N.; Nicoll, S.B.; Chen, F.H.; Hung, C.T.; Ateshian, G.A. Cartilage interstitial fluid load support in unconfined compression following enzymatic digestion. J. Biomech. Eng. 2004, 126, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.G.; Lawson, T.; Snyder, B.D.; Grinstaff, M.W. Reinforcement of articular cartilage with a tissue-interpenetrating polymer network reduces friction and modulates interstitial fluid load support. Osteoarthr. Cartil. 2017, 25, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Ateshian, G.; Hung, C. The natural synovial joint: Properties of cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2006, 220, 657–670. [Google Scholar] [CrossRef]
- Malcom, L.L. An Experimental Investigation of the Frictional and Deformational Responses of Articular Cartilage Interfaces to Static and Dynamic Loading; University of California: San Diego, CA, USA, 1976. [Google Scholar]
- Wright, V.; Dowson, D. Lubrication and cartilage. J. Anat. 1976, 121, 107. [Google Scholar] [PubMed]
- Gu, W.Y.; Lai, W.M.; Mow, V.C. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J. Biomech. 1993, 26, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Mow, V.C.; Holmes, M.H.; Lai, W.M. Fluid transport and mechanical properties of articular cartilage: A review. J. Biomech. 1984, 17, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.; Lai, W.; Mow, V. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage. J. Biomech. Eng. 1985, 107, 206–218. [Google Scholar] [CrossRef]
- Mow, V.C.; Kuei, S.; Lai, W.M.; Armstrong, C.G. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 1980, 102, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Frank, E.; Grodzinsky, A.; Roylance, D. Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties. J. Biomech. Eng. 1981, 103, 280–292. [Google Scholar] [CrossRef]
- Oloyede, A.; Broom, N. Is classical consolidation theory applicable to articular cartilage deformation? Clin. Biomech. 1991, 6, 206–212. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Mow, V.C.; Lai, W.M. Recent developments in synovial joint biomechanics. Siam Rev. 1980, 22, 275–317. [Google Scholar] [CrossRef]
- Mow, V.; Mak, A.; Lai, W.; Rosenberg, L.; Tang, L.-H. Viscoelastic properties of proteoglycan subunits and aggregates in varying solution concentrations. J. Biomech. 1984, 17, 325–338. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, P.; Lee, N.H.; Goldring, M.B.; Konstantopoulos, K. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. PLoS ONE 2010, 5, e15174. [Google Scholar] [CrossRef]
- Burris, D.L.; Moore, A.C. Cartilage and joint lubrication: New insights into the role of hydrodynamics. Biotribology 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Williams, P.T. Effects of running and walking on osteoarthritis and hip replacement risk. Med. Sci. Sports Exerc. 2013, 45, 1292. [Google Scholar] [CrossRef]
- Asanbaeva, A.; Masuda, K.; Thonar, E.-M.; Klisch, S.M.; Sah, R.L. Cartilage growth and remodeling: Modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile. Osteoarthr. Cartil. 2008, 16, 1–11. [Google Scholar] [CrossRef]
- Cooper, C.; Snow, S.; McAlindon, T.E.; Kellingray, S.; Stuart, B.; Coggon, D.; Dieppe, P.A. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2000, 43, 995–1000. [Google Scholar] [CrossRef]
- Putignano, C.; Burris, D.; Moore, A.; Dini, D. Cartilage rehydration: The sliding-induced hydrodynamic triggering mechanism. Acta Biomater. 2021, 125, 90–99. [Google Scholar] [CrossRef]
- Burris, D.; Ramsey, L.; Graham, B.; Price, C.; Moore, A. How sliding and hydrodynamics contribute to articular cartilage fluid and lubrication recovery. Tribol. Lett. 2019, 67, 46. [Google Scholar] [CrossRef]
- Torzilli, P.; Mow, V.C. On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function—II. The analysis, solution and conclusions. J. Biomech. 1976, 9, 587–606. [Google Scholar] [CrossRef]
- Harrison, M.; Schajowicz, F.; Trueta, J. Osteoarthritis of the hip: A study of the nature and evolution of the disease. J. Bone Jt. Surg. Br. Vol. 1953, 35, 598–626. [Google Scholar] [CrossRef]
- Bollet, A.J. An essay on the biology of osteoarthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1969, 12, 152–163. [Google Scholar] [CrossRef] [PubMed]
- King, L.K.; March, L.; Anandacoomarasamy, A. Obesity & osteoarthritis. Indian J. Med. Res. 2013, 138, 185. [Google Scholar]
- Wang, Y.; Wluka, A.E.; Berry, P.A.; Siew, T.; Teichtahl, A.J.; Urquhart, D.M.; Lloyd, D.G.; Jones, G.; Cicuttini, F.M. Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis. Arthritis Rheum. 2012, 64, 3917–3925. [Google Scholar] [CrossRef]
- Gomoll, A.; Filardo, G.; De Girolamo, L.; Esprequeira-Mendes, J.; Marcacci, M.; Rodkey, W.; Steadman, R.; Zaffagnini, S.; Kon, E. Surgical treatment for early osteoarthritis. Part I: Cartilage repair procedures. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 450–466. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Hu, X.; Yuan, L.; Cheng, J.; Jiang, Y.; Ao, Y. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis. Mol. Ther. Nucleic Acids 2017, 7, 223–230. [Google Scholar] [CrossRef]
- Gabay, O.; Hall, D.J.; Berenbaum, F.; Henrotin, Y.; Sanchez, C. Osteoarthritis and obesity: Experimental models. Jt. Bone Spine 2008, 75, 675–679. [Google Scholar] [CrossRef]
- Ostalowska, A.; Birkner, E.; Wiecha, M.; Kasperczyk, S.; Kasperczyk, A.; Kapolka, D.; Zon-Giebel, A. Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthr. Cartil. 2006, 14, 139–145. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Lark, M.W.; Dahlberg, L.; Walakovits, L.A.; Roos, H. Cartilage matrix metabolism in osteoarthritis: Markers in synovial fluid, serum, and urine. Clin. Biochem. 1992, 25, 167–174. [Google Scholar] [CrossRef]
- Park, S.; Costa, K.D.; Ateshian, G.A. Microscale frictional response of bovine articular cartilage from atomic force microscopy. J. Biomech. 2004, 37, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.A.; Gastelum, N.S.; Nguyen, Q.T.; Schumacher, B.L.; Sah, R.L. Boundary lubrication of articular cartilage: Role of synovial fluid constituents. Arthritis Rheum. 2007, 56, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Link, T.M.; Stahl, R.; Woertler, K. Cartilage imaging: Motivation, techniques, current and future significance. Eur. Radiol. 2007, 17, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Choi, J.; Kim, K. Mesenchymal Stem Cell-Derived Exosomes for Effective Cartilage tissue repair and treatment of osteoarthritis. Biotechnol. J. 2020, 15, 2000082. [Google Scholar] [CrossRef] [PubMed]
- Smith, G. A clinical review of cartilage repair techniques. J. Bone Jt. Surg. Br. Vol. 2005, 87, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Clouet, J.; Vinatier, C.; Merceron, C.; Pot-vaucel, M.; Maugars, Y.; Weiss, P.; Grimandi, G.; Guicheux, J. From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov. Today 2009, 14, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Bonnevie, E.D.; Bonassar, L.J. A century of cartilage tribology research is informing lubrication therapies. J. Biomech. Eng. 2020, 142, 031004. [Google Scholar] [CrossRef] [PubMed]
- Morgese, G.; Benetti, E.M.; Zenobi-Wong, M. Molecularly engineered biolubricants for articular cartilage. Adv. Healthc. Mater. 2018, 7, 1701463. [Google Scholar] [CrossRef]
- Klein, J. Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2006, 220, 691–710. [Google Scholar] [CrossRef]
- Yuan, H.; Mears, L.L.; Wang, Y.; Su, R.; Qi, W.; He, Z.; Valtiner, M. Lubricants for osteoarthritis treatment: From natural to bioinspired and alternative strategies. Adv. Colloid Interface Sci. 2023, 311, 102814. [Google Scholar] [CrossRef]
- Migliore, A.; Giovannangeli, F.; Bizzi, E.; Massafra, U.; Alimonti, A.; Laganà, B.; Diamanti Picchianti, A.; Germano, V.; Granata, M.; Piscitelli, P. Viscosupplementation in the management of ankle osteoarthritis: A review. Arch. Orthop. Trauma Surg. 2011, 131, 139–147. [Google Scholar] [CrossRef]
- Lázaro, B.; Alonso, P.; Rodriguez, A.; La Nuez, M.; Marzo, F.; Prieto, J.G. Characterization of the visco-elastic properties of hyaluronic acid. Biorheology 2018, 55, 41–50. [Google Scholar] [CrossRef]
- Zeng, Z.-L.; Xie, H. Mesenchymal stem cell-derived extracellular vesicles: A possible therapeutic strategy for orthopaedic diseases: A narrative review. Biomater. Transl. 2022, 3, 175. [Google Scholar]
- Tamaddon, M.; Gilja, H.; Wang, L.; Oliveira, J.M.; Sun, X.; Tan, R.; Liu, C. Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: From bench to clinic. Biomater. Transl. 2020, 1, 3. [Google Scholar]
- Chu, M.; Wu, P.; Hong, M.; Zeng, H.; Wong, C.K.; Feng, Y.; Cai, Z.; Lu, W.W. Lingzhi and San-Miao-San with hyaluronic acid gel mitigate cartilage degeneration in anterior cruciate ligament transection induced osteoarthritis. J. Orthop. Transl. 2021, 26, 132–140. [Google Scholar] [CrossRef]
- Rebenda, D.; Vrbka, M.; Nečas, D.; Toropitsyn, E.; Yarimitsu, S.; Čípek, P.; Pravda, M.; Hartl, M. Rheological and frictional analysis of viscosupplements towards improved lubrication of human joints. Tribol. Int. 2021, 160, 107030. [Google Scholar] [CrossRef]
- Webner, D.; Huang, Y.; Hummer III, C.D. Intraarticular hyaluronic acid preparations for knee osteoarthritis: Are some better than others? Cartilage 2021, 13, 1619S–1636S. [Google Scholar] [CrossRef]
- Bonnevie, E.D.; Galesso, D.; Secchieri, C.; Bonassar, L.J. Frictional characterization of injectable hyaluronic acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS ONE 2019, 14, e0216702. [Google Scholar] [CrossRef]
- Lawrence, A.; Xu, X.; Bible, M.D.; Calve, S.; Neu, C.P.; Panitch, A. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface. Biomaterials 2015, 73, 42–50. [Google Scholar] [CrossRef]
- Drewniak, E.I.; Jay, G.D.; Fleming, B.C.; Zhang, L.; Warman, M.L.; Crisco, J.J. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees. Arthritis Rheum. 2012, 64, 465–473. [Google Scholar] [CrossRef]
- Waller, K.A.; Zhang, L.X.; Elsaid, K.A.; Fleming, B.C.; Warman, M.L.; Jay, G.D. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc. Natl. Acad. Sci. USA 2013, 110, 5852–5857. [Google Scholar] [CrossRef] [PubMed]
- Basalo, I.M.; Chahine, N.O.; Kaplun, M.; Chen, F.H.; Hung, C.T.; Ateshian, G.A. Chondroitin sulfate reduces the friction coefficient of articular cartilage. J. Biomech. 2007, 40, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Zappone, B.; Ruths, M.; Greene, G.W.; Jay, G.D.; Israelachvili, J.N. Adsorption, lubrication, and wear of lubricin on model surfaces: Polymer brush-like behavior of a glycoprotein. Biophys. J. 2007, 92, 1693–1708. [Google Scholar] [CrossRef] [PubMed]
Articular Cartilage | Reference | Healthy/Osteoarthritic | Natural OA/Induced OA | Cartilage Region | Type of Contact | Tribological Properties | |||
---|---|---|---|---|---|---|---|---|---|
COF | Lubricant | Lubrication Mechanism | Other Findings | ||||||
Bovine | [49] | H | - | Knee joint | MCA (stainless steel ball on cartilage) | 0.024 ± 0.004 | PBS | Not discussed | Fluid load fraction 0.81 ± 0.03 |
[77] | H | - | Knee joint | SCA (cartilage on glass) | PBS (0.218 ± 0.015), equine SF (0.071 ± 0.012), bovine SF (0.068 ± 0.013) | PBS, bovine SF, and equine SF | Biphasic lubrication was observed along with the mixed mode and boundary lubrications; however, full-film lubrication was not observed even at high speeds. | - | |
[74] | H | - | Knee joint | MCA (spherical glass lens on cartilage) | PBS (0.022 ± 0.010), SF (0.015 ± 0.004) | PBS and SF | Boundary lubrication is prominent when the thickness between the interface is lower. Fluid film lubrication is prominent when thickness is higher. | - | |
[78] | H | - | Knee joint | cSCA (cartilage plug on glass slide) | 0.011 ± 0.007 | PBS | Tribological rehydration due to the formation of wedges, which supports full-film lubrication. | - | |
[79] | H | - | Knee joint | MCA (stainless steel probe on cartilage) | 0.0272 ± 0.0006–0.1168 ± 0.0014 (3.2 mm radius probe) 0.0251 ± 0.0006–0.1337 ± 0.0016 (0.8 mm radius probe) | PBS | Lubrication due to fluid pressurization | - | |
[80] | OA | Induced with chondroitinase ABC and collagenase III | Knee joint | SCA (cartilage on glass) | Collagenase III (0.17 ± 0.04) and chondroitinase ABC (0.28 ± 0.02) | PBS | Biphasic behavior | - | |
[81] | OA | Induced with chondroitinase ABC | Knee joint | MCA (glass on cartilage) | Chondroitinase ABC (0.19 ± 0.02) | PBS | Time dependent interstitial pressurization | - | |
Porcine | [82] | H | - | Knee | SCA (cartilage on glass) | 0.001–0.11 | SF | Weeping lubrication | - |
[83] | H | - | Knee joint | MCA (glass on cartilage) | 0.04–0.14 | PBS | Not discussed | - | |
[84] | H | - | Knee joint | SCA (cartilage on glass) | 0.039 ± 0.017–0.069 ± 0.045 | PBS | Not discussed | - | |
[85] | OA | Induced with hyaluronidase, Chondroitinase ABC, alkaline protease | Knee joint | SCA (cartilage on glass) | 0.0025 ± 0.0012 (hyaluronidase), 0.0043 ± 0.0013 (chondroitinase ABC), 0.0070 ± 0.0003 (alkaline protease) | Normal saline | Boundary lubrication is possible due to the presence of various molecules on the surface of the cartilage. | - | |
Human | [86] | H | - | Knee joint | SCA (cartilage on glass) | 0.22 | PBS | Not discussed | - |
[87] | OA | Total joint replacement | Knee joint | MCA (cartilage on cartilage) and SCA (cartilage on glass) | MCA SF (0.019–0.02) MCA PBS (0.025–0.027) SCA SF (0.04) SCA PBS (0.09–0.12) | PBS and SF | SF lubricates better than PBS in both lesser and worse OA conditions due to its boundary lubrication properties. | - | |
[80] | OA | Total joint replacement | Knee joint | SCA (cartilage on glass) | 0.22 ± 0.01 (patient 1) and 0.23 ± 0.01 (patient 2) | PBS | Biphasic behavior | - | |
[88] | OA | Total joint replacement | Knee joint | AFM (polysterene spherical tip on cartilage) | 0.119 ± 0.036 for stage 0 (normal cartilage),0.151 ± 0.039 for stage 1, 0.158 ± 0.041 for stage 2, and 0.409 ± 0.119 for stage 3 | PBS | Not discussed | Surface roughness 137 ± 25 nm for stage 0 to 533 ± 196 nm for stage 3 |
Conventional Lubrication Model | Cartilage Lubrication Model | Physical Considerations | Samples | Experimental Condition | Physiological Relevance |
---|---|---|---|---|---|
Fluid film lubrication model | Hydrodynamic lubrication | Occurs at high articulating speeds or low load | Horse stifle joint [115] Proximal interphalangeal joint of human finger [116] | Cartilage-on-cartilage experiment [115] Modified Stanton Pendulum [116] | Swinging phase of walking and running in human gait cycle |
Hydrostatic/weeping lubrication | Occurs at constant load over time | Closed-cell rubber foam soaked with soapy water [117] Ovine AC [118] Bovine AC [24] | Pin on plate (rubber on flat surface) [117] Cartilage on glass [118] Cartilage on cartilage [24] | Stance phase of walking and running in human gait cycle | |
Elastohydrodynamic lubrication | Occurs at high contact pressures and elastic deformation of AC | Human ankle joint [119] Soft material rubber [120] | Joint simulators [119] Roller bearing and soft surface [120] | Weight transfer phase due to walking, running, or jumping in human gait cycle | |
Micro-elastohydrodynamic lubrication | Occurs at the microscale interaction of AC and SF. Influenced due to change in surface topography, contact deformation, and load-bearing capacity. | Human ankle joint [121] | Joint simulator [121] | During heel strike, midstance, and toe-off of the human gait cycle. | |
Tribological rehydration | Modified version of hydrodynamic lubrication explaining the movements of SF into AC matrix during pressure distribution. | Bovine AC [78] Bovine, equine, porcine, ovine, and caprine [122,123] | Cartilage on flat surface [78,122,123] | Different phases of human gait cycle such as heel strike to toe-off, loading, unloading, and variable loading phases. | |
Boundary lubrication model | Boundary lubrication | This model considers the synovial constituents such as hyaluronic acid, lubricin, and glycoproteins. | Human knee joint [124] Human and bovine SF [125,126,127] | Modified flat-on-plate setup [124] Rheological properties of lubricin in SF [125] Pendulum oscillation in different SF concentrations [126] Hyaluronic acid rheology and concentration in SF [127] | It occurs mainly in the toe-off of the stance phase and other intermediate phases in the human gait cycle. |
Hydration lubrication | This model is an extension of boundary lubrication where it focuses mainly on the water molecules trapped inside the phospholipid layers of the synovial constituents. | Mica layers [128] | Surface force balance measurements [128] | It occurs in mainly in the toe-off of the stance phase and other intermediate phases in the human gait cycle. | |
Mixed lubrication model | Osmotic lubrication | Osmotic pressure gradients within cartilage matrix and interstitial fluid contributes to lubrication | Theory [129] | Theory [129] | It occurs in all the phases of human gait cycles, like the stance phase (heel strike to toe-off), the swing phase, transition phases, and dynamic movements. |
Squeeze film lubrication | Occurs when the joints are compressed, leading to interstitial fluid expulsion and redistribution and causing hydrodynamic pressure. | Glass lens with polymethylmethacrylate flats [99] | Cylinder on flat surface [99] | It occurs in the weight-bearing and relaxing phases of human gait cycles, such as heel strike and intermittent contact phases. | |
Boosted lubrication | This occurs with the combination of both squeeze film and boundary lubrication. | Mathematical model [130] | Mathematical model [130] | It occurs in prolonged stances of the human gait. | |
Biphasic lubrication | This considers cartilage with solid and fluid matrix and explains the load support in both strain and compressive forces. | Bovine AC [75,131,132,133] | Cartilage on metal (pin on plate) [75,131] Cartilage indentation with flat surface [132] Confined and unconfined compression [133] | It occurs in all the gait cycles of human movements. | |
Triphasic lubrication | This considers the electrostatic interactions introducing an ion phase to biphasic lubrication. | Models [134,135] | Models [134,135] | It occurs in all the gait cycles of human movements. |
Natural Synovial Constituent | Reference | Products/Molecular Composition | Type of Contact and Testing Apparatus | Lubricant Properties | Frictional Properties—Dynamic COF | Dose | Comments |
---|---|---|---|---|---|---|---|
Hyaluronic Acid | [213,214] | Synvisc One | Universal mechanical tester—Bruker (reciprocating test) | Dynamic viscosity—325.8 ± 3.4 Pa s Molecular weight 6000 kDa | 0.008–0.009 | Injections every 3 weeks (8 mg/mL) (2 mL) | Boundary lubrication is observed |
[214,215] | Eurflexxa | Custom tribometer (cartilage against glass sliding) | Dynamic viscosity—100.09 Pa s Molecular weight 2400–3600 kDa | 0.22–0.23 | Injections every 3 weeks (10 mg/mL) (2 mL) | Adsorption of molecules on the surface increased the viscosities and hence improved frictional properties | |
[214,215] | Supartz | Custom tribometer (cartilage against glass sliding) | Dynamic viscosity—2.11 Pa s Molecular weight 620–1170 kDa | 0.25 | Injections every 5 weeks (10 mg/mL) (2.5 mL) | - | |
[214] | Durolane | Molecular weight—100,000 kDa | - | 1 injection (20 mg/mL) (3 mL) | - | ||
Lubricin | [216] | mLub | Cartilage on glass surface sliding | Molecular weight ~107 kDa | 0.15 | - | Reduces friction and adhesion resulting in decreased cartilage degradation |
[217,218] | Proteoglycan 4 (Prg4) | Pendulum system | - | 0.01 | 1 injection every month (250 µg/mL–10 mg/mL) (1–2 mL) | Improves chondrocytes health and prevents stick-slip at the superficial zone reducing mechanical strain and avoiding cartilage degeneration | |
Chondroitin Sulphate | [219] | PBS + 100 mg/mL Chondroitin sulphate | Custom designed sliding test (glass on cartilage) | - | 0.05 | - | Higher concentration chondroitin sulphate can improve frictional behavior at the cartilage interface |
Phospholipids | [220] | Mica coated with aminothiol or poly-lysine | Surface force apparatus | - | 0.08–0.3 | - | The type of adsorption of the phospholipids on the surface determines how effective the frictional behavior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajankunte Mahadeshwara, M.; Al-Jawad, M.; Hall, R.M.; Pandit, H.; El-Gendy, R.; Bryant, M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering 2024, 11, 541. https://doi.org/10.3390/bioengineering11060541
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering. 2024; 11(6):541. https://doi.org/10.3390/bioengineering11060541
Chicago/Turabian StyleRajankunte Mahadeshwara, Manoj, Maisoon Al-Jawad, Richard M. Hall, Hemant Pandit, Reem El-Gendy, and Michael Bryant. 2024. "How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review" Bioengineering 11, no. 6: 541. https://doi.org/10.3390/bioengineering11060541
APA StyleRajankunte Mahadeshwara, M., Al-Jawad, M., Hall, R. M., Pandit, H., El-Gendy, R., & Bryant, M. (2024). How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering, 11(6), 541. https://doi.org/10.3390/bioengineering11060541