Orthobiologic Management Options for Degenerative Disc Disease
Abstract
:1. Introduction
2. Etiopathogenesis
2.1. Age
2.2. Genetics
2.3. Nutrition
2.4. Mechanobiology
3. Orthobiologic Solutions
3.1. Platelet-Rich Plasma
3.2. Mesenchymal Stem Cells
3.3. Adjunct Materials—Hyaluronic Acid
4. Clinical Evidence
5. Discussion & Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alshami, A.M. Prevalence of Spinal Disorders and Their Relationships with Age and Gender. Saudi Med. J. 2015, 36, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Coenen, P.; Smith, A.; Paananen, M.; O’Sullivan, P.; Beales, D.; Straker, L. Trajectories of Low Back Pain From Adolescence to Young Adulthood: LBP Trajectories in Early Life. Arthritis Care Res. 2017, 69, 403–412. [Google Scholar] [CrossRef]
- Van Boxem, K.; Van Zundert, J.; Patijn, J.; van Kleef, M. Pseudoradicular and Radicular Low-Back Pain: How to Diagnose Clinically? Pain 2008, 135, 311–312. [Google Scholar] [CrossRef]
- Raciborski, F.; Gasik, R.; Kłak, A. Disorders of the Spine. A Major Health and Social Problem. Reumatologia 2016, 54, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, V.M.; Senglaub, S.S.; Rattani, A.; Dewan, M.C.; Härtl, R.; Bisson, E.; Park, K.B.; Shrime, M.G. Degenerative Lumbar Spine Disease: Estimating Global Incidence and Worldwide Volume. Glob. Spine J. 2018, 8, 784–794. [Google Scholar] [CrossRef]
- Madigan, L.; Vaccaro, A.R.; Spector, L.R.; Milam, R.A. Management of Symptomatic Lumbar Degenerative Disk Disease. J. Am. Acad. Orthop. Surg. 2009, 17, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Marcum, Z.A.; Hanlon, J.T. Recognizing the Risks of Chronic Nonsteroidal Anti-Inflammatory Drug Use in Older Adults. Ann. Longterm Care 2010, 18, 24–27. [Google Scholar]
- Setti, T.; Arab, M.G.L.; Santos, G.S.; Alkass, N.; Andrade, M.A.P.; Lana, J.F.S.D. The Protective Role of Glutathione in Osteoarthritis. J. Clin. Orthop. Trauma 2020, 15, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Lana, J.F.; da Fonseca, L.F.; Azzini, G.; Santos, G.; Braga, M.; Cardoso Junior, A.M.; Murrell, W.D.; Gobbi, A.; Purita, J.; de Andrade, M.A.P. Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine. Int. J. Mol. Sci. 2021, 22, 2762. [Google Scholar] [CrossRef]
- Ramires, L.C.; Jeyaraman, M.; Muthu, S.; Shankar, A.N.; Santos, G.S.; da Fonseca, L.F.; Lana, J.F.; Rajendran, R.L.; Gangadaran, P.; Jogalekar, M.P.; et al. Application of Orthobiologics in Achilles Tendinopathy: A Review. Life 2022, 12, 399. [Google Scholar] [CrossRef]
- Caplan, A.I.; Dennis, J.E. Mesenchymal Stem Cells as Trophic Mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Squillaro, T.; Peluso, G.; Galderisi, U. Clinical Trials with Mesenchymal Stem Cells: An Update. Cell Transpl. 2016, 25, 829–848. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, M.; Limbucci, N.; Paonessa, A.; Splendiani, A. Degenerative Disease of the Spine. Neuroimaging Clin. N. Am. 2007, 17, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Hadjipavlou, A.G.; Tzermiadianos, M.N.; Bogduk, N.; Zindrick, M.R. The Pathophysiology of Disc Degeneration. J. Bone Jt. Surg. Br. Vol. 2008, 90-B, 1261–1270. [Google Scholar] [CrossRef]
- Gallucci, M.; Puglielli, E.; Splendiani, A.; Pistoia, F.; Spacca, G. Degenerative Disorders of the Spine. Eur. Radiol. 2005, 15, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.R.; Matsui, Y.; Wu, J.-J. Collagen Polymorphisms of the Intervertebral Disc. Biochem. Soc. Trans. 2002, 30, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Seki, S.; Kawaguchi, Y.; Chiba, K.; Mikami, Y.; Kizawa, H.; Oya, T.; Mio, F.; Mori, M.; Miyamoto, Y.; Masuda, I.; et al. A Functional SNP in CILP, Encoding Cartilage Intermediate Layer Protein, Is Associated with Susceptibility to Lumbar Disc Disease. Nat. Genet. 2005, 37, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Lana, J.F.; Macedo, A.; Ingrao, I.L.G.; Huber, S.C.; Santos, G.S.; Santana, M.H.A. Leukocyte-Rich PRP for Knee Osteoarthritis: Current Concepts. J. Clin. Orthop. Trauma 2019, 10, S179–S182. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.J.; Ferreira, J.R.; Cunha, C.; Corte-Real, J.V.; Bessa-Gonçalves, M.; Barbosa, M.A.; Santos, S.G.; Gonçalves, R.M. Macrophages Down-Regulate Gene Expression of Intervertebral Disc Degenerative Markers Under a Pro-Inflammatory Microenvironment. Front. Immunol. 2019, 10, 1508. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Li, J.; Fujino, M.; Zhuang, J.; Li, X.-K. Development and Treatments of Inflammatory Cells and Cytokines in Spinal Cord Ischemia-Reperfusion Injury. Mediat. Inflamm. 2013, 2013, 701970. [Google Scholar] [CrossRef]
- Hellenbrand, D.J.; Quinn, C.M.; Piper, Z.J.; Morehouse, C.N.; Fixel, J.A.; Hanna, A.S. Inflammation after Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration. J. Neuroinflamm. 2021, 18, 284. [Google Scholar] [CrossRef]
- Tokuhara, C.K.; Santesso, M.R.; de Oliveira, G.S.N.; Ventura, T.M.d.S.; Doyama, J.T.; Zambuzzi, W.F.; Oliveira, R.C.d. Updating the Role of Matrix Metalloproteinases in Mineralized Tissue and Related Diseases. J. Appl. Oral Sci. 2019, 27, e20180596. [Google Scholar] [CrossRef]
- Haefeli, M.; Kalberer, F.; Saegesser, D.; Nerlich, A.G.; Boos, N.; Paesold, G. The Course of Macroscopic Degeneration in the Human Lumbar Intervertebral Disc. Spine 2006, 31, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Iozzo, R.V.; Schaefer, L. Proteoglycan Form and Function: A Comprehensive Nomenclature of Proteoglycans. Matrix Biol. 2015, 42, 11–55. [Google Scholar] [CrossRef]
- Roberts, S.; Evans, E.H.; Kletsas, D.; Jaffray, D.C.; Eisenstein, S.M. Senescence in Human Intervertebral Discs. Eur. Spine J. 2006, 15, 312–316. [Google Scholar] [CrossRef]
- Gruber, H.E.; Ingram, J.A.; Norton, H.J.; Hanley, E.N.J. Senescence in Cells of the Aging and Degenerating Intervertebral Disc: Immunolocalization of Senescence-Associated β-Galactosidase in Human and Sand Rat Discs. Spine 2007, 32, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Haro, H.; Wakabayashi, Y.; Kawa-uchi, T.; Komori, H.; Shinomiya, K. The Association of Degeneration of the Intervertebral Disc with 5a/6a Polymorphism in the Promoter of the Human Matrix Metalloproteinase-3 Gene. J. Bone Jt. Surg. Br. Vol. 2001, 83-B, 491–495. [Google Scholar] [CrossRef]
- Persikov, A.V.; Ramshaw, J.A.M.; Brodsky, B. Collagen Model Peptides: Sequence Dependence of Triple-Helix Stability. Biopolymers 2000, 55, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Solovieva, S.; Kouhia, S.; Leino-Arjas, P.; Ala-Kokko, L.; Luoma, K.; Raininko, R.; Saarela, J.; Riihimäki, H. Interleukin 1 Polymorphisms and Intervertebral Disc Degeneration. Epidemiology 2004, 15, 626–633. [Google Scholar] [CrossRef]
- De Geer, C.M. Intervertebral Disk Nutrients and Transport Mechanisms in Relation to Disk Degeneration: A Narrative Literature Review. J. Chiropr. Med. 2018, 17, 97–105. [Google Scholar] [CrossRef]
- Grunhagen, T.; Wilde, G.; Soukane, D.M.; Shirazi-Adl, S.A.; Urban, J.P.G. Nutrient Supply and Intervertebral Disc Metabolism. J. Bone Jt. Surg. Am. 2006, 88 (Suppl. 2), 30–35. [Google Scholar] [CrossRef]
- Azzini, G.O.M.; Santos, G.S.; Visoni, S.B.C.; Azzini, V.O.M.; dos Santos, R.G.; Huber, S.C.; Lana, J.F. Metabolic Syndrome and Subchondral Bone Alterations: The Rise of Osteoarthritis—A Review. J. Clin. Orthop. Trauma 2020, 11, S849–S855. [Google Scholar] [CrossRef] [PubMed]
- Stokes, I.A.F.; Iatridis, J.C. Mechanical Conditions That Accelerate Intervertebral Disc Degeneration: Overload Versus Immobilization. Spine 2004, 29, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.W.; Ferguson, S.J.; Gantenbein-Ritter, B. The Effects of Dynamic Loading on the Intervertebral Disc. Eur. Spine J. 2011, 20, 1796–1812. [Google Scholar] [CrossRef] [PubMed]
- Neidlinger-Wilke, C.; Würtz, K.; Urban, J.P.G.; Börm, W.; Arand, M.; Ignatius, A.; Wilke, H.-J.; Claes, L.E. Regulation of Gene Expression in Intervertebral Disc Cells by Low and High Hydrostatic Pressure. Eur. Spine J. 2006, 15, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Benneker, L.M.; Heini, P.F.; Alini, M.; Anderson, S.E.; Ito, K. 2004 Young Investigator Award Winner: Vertebral Endplate Marrow Contact Channel Occlusions and Intervertebral Disc Degeneration. Spine 2005, 30, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Rade, M.; Määttä, J.H.; Freidin, M.B.; Airaksinen, O.; Karppinen, J.; Williams, F.M. Vertebral Endplate Defect as Initiating Factor in Intervertebral Disc Degeneration; Strong Association between Endplate Defect and Disc Degeneration in the General Population. Spine 2018, 43, 412–419. [Google Scholar] [CrossRef]
- Lotz, J.C.; Fields, A.J.; Liebenberg, E.C. The Role of the Vertebral End Plate in Low Back Pain. Glob. Spine J. 2013, 3, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Zhu, R.; Ji, W.-P.; Wang, J.-Y.; Chen, S.; Fan, S.-W.; Hu, Z.-J. The NLRP3/Caspase-1/Interleukin-1β Axis Is Active in Human Lumbar Cartilaginous Endplate Degeneration. Clin. Orthop. Relat. Res. 2016, 474, 1818–1826. [Google Scholar] [CrossRef]
- Marjoram, T. The Endplate and Trabecular Bone in Lumbar Degenerative Disc Disease: A Narrative Review. SN Compr. Clin. Med. 2020, 2, 332–337. [Google Scholar] [CrossRef]
- Fields, A.J.; Ballatori, A.; Liebenberg, E.C.; Lotz, J.C. Contribution of the Endplates to Disc Degeneration. Curr. Mol. Biol. Rep. 2018, 4, 151–160. [Google Scholar] [CrossRef]
- Ferrari, M.; Zia, S.; Valbonesi, M.; Henriquet, F.; Venere, G.; Spagnolo, S.; Grasso, M.A.; Panzani, I. A New Technique for Hemodilution, Preparation of Autologous Platelet-Rich Plasma and Intraoperative Blood Salvage in Cardiac Surgery. Int. J. Artif. Organs 1987, 10, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, V.; Ciric, M.; Jovanovic, V.; Stojanovic, P. Platelet Rich Plasma: A Short Overview of Certain Bioactive Components. Open Med. 2016, 11, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.G.; Santos, G.S.; Alkass, N.; Chiesa, T.L.; Azzini, G.O.; da Fonseca, L.F.; Dos Santos, A.F.; Rodrigues, B.L.; Mosaner, T.; Lana, J.F. The Regenerative Mechanisms of Platelet-Rich Plasma: A Review. Cytokine 2021, 144, 155560. [Google Scholar] [CrossRef] [PubMed]
- Akeda, K.; An, H.S.; Okuma, M.; Attawia, M.; Miyamoto, K.; Thonar, E.J.-M.A.; Lenz, M.E.; Sah, R.L.; Masuda, K. Platelet-Rich Plasma Stimulates Porcine Articular Chondrocyte Proliferation and Matrix Biosynthesis. Osteoarthr. Cartil. 2006, 14, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yuan, C.; Wu, C.; Qian, J.; Shi, Q.; Li, X.; Zhu, X.; Zou, J. The Role of TGF-Β1/Smad2/3 Pathway in Platelet-Rich Plasma in Retarding Intervertebral Disc Degeneration. J. Cell. Mol. Med. 2016, 20, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-C.; Chen, W.-H.; Wu, L.-C.; Hsu, W.-C.; Lo, W.-C.; Yeh, S.-D.; Wang, M.-F.; Zeng, R.; Deng, W.-P. Establishment of a Promising Human Nucleus Pulposus Cell Line for Intervertebral Disc Tissue Engineering. Tissue Eng. Part C Methods 2014, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Lo, W.-C.; Lee, J.-J.; Su, C.-H.; Lin, C.-T.; Liu, H.-Y.; Lin, T.-W.; Lin, W.-C.; Huang, T.-Y.; Deng, W.-P. Tissue-Engineered Intervertebral Disc and Chondrogenesis Using Human Nucleus Pulposus Regulated through TGF-Β1 in Platelet-Rich Plasma. J. Cell. Physiol. 2006, 209, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Mietsch, A.; Neidlinger-Wilke, C.; Schrezenmeier, H.; Mauer, U.M.; Friemert, B.; Wilke, H.-J.; Ignatius, A. Evaluation of Platelet-Rich Plasma and Hydrostatic Pressure Regarding Cell Differentiation in Nucleus Pulposus Tissue Engineering. J. Tissue Eng. Regen. Med. 2013, 7, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Drengk, A.; Zapf, A.; Stürmer, E.K.; Stürmer, K.M.; Frosch, K.-H. Influence of Platelet-Rich Plasma on Chondrogenic Differentiation and Proliferation of Chondrocytes and Mesenchymal Stem Cells. Cells Tissues Organs 2009, 189, 317–326. [Google Scholar] [CrossRef]
- Pirvu, T.N.; Schroeder, J.E.; Peroglio, M.; Verrier, S.; Kaplan, L.; Richards, R.G.; Alini, M.; Grad, S. Platelet-Rich Plasma Induces Annulus Fibrosus Cell Proliferation and Matrix Production. Eur. Spine J. 2014, 23, 745–753. [Google Scholar] [CrossRef]
- Hondke, S.; Cabraja, M.; Krüger, J.P.; Stich, S.; Hartwig, T.; Sittinger, M.; Endres, M. Proliferation, Migration, and ECM Formation Potential of Human Annulus Fibrosus Cells Is Independent of Degeneration Status. Cartilage 2020, 11, 192–202. [Google Scholar] [CrossRef]
- Nagae, M.; Ikeda, T.; Mikami, Y.; Hase, H.; Ozawa, H.; Matsuda, K.-I.; Sakamoto, H.; Tabata, Y.; Kawata, M.; Kubo, T. Intervertebral Disc Regeneration Using Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres. Tissue Eng. 2007, 13, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, K.; Ikeda, T.; Nagae, M.; Okamoto, S.; Mikami, Y.; Hase, H.; Ikoma, K.; Yamada, T.; Sakamoto, H.; Matsuda, K.; et al. Characterization of in Vivo Effects of Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres on Degenerated Intervertebral Discs. Tissue Eng. Part A 2009, 15, 3719–3727. [Google Scholar] [CrossRef]
- Gullung, G.B.; Woodall, J.W.; Tucci, M.A.; James, J.; Black, D.A.; McGuire, R.A. Platelet-Rich Plasma Effects on Degenerative Disc Disease: Analysis of Histology and Imaging in an Animal Model. Evid. Based Spine Care J. 2011, 2, 13–18. [Google Scholar] [CrossRef]
- Wang, S.-Z.; Jin, J.-Y.; Guo, Y.-D.; Ma, L.-Y.; Chang, Q.; Peng, X.-G.; Guo, F.-F.; Zhang, H.-X.; Hu, X.-F.; Wang, C. Intervertebral Disc Regeneration Using Platelet-Rich Plasma-Containing Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Investigation. Mol. Med. Rep. 2016, 13, 3475–3481. [Google Scholar] [CrossRef] [PubMed]
- Noriega, D.C.; Ardura, F.; Hernández-Ramajo, R.; Martín-Ferrero, M.Á.; Sánchez-Lite, I.; Toribio, B.; Alberca, M.; García, V.; Moraleda, J.M.; Sánchez, A.; et al. Intervertebral Disc Repair by Allogeneic Mesenchymal Bone Marrow Cells: A Randomized Controlled Trial. Transplantation 2017, 101, 1945–1951. [Google Scholar] [CrossRef]
- Pettine, K.A.; Suzuki, R.K.; Sand, T.T.; Murphy, M.B. Autologous Bone Marrow Concentrate Intradiscal Injection for the Treatment of Degenerative Disc Disease with Three-Year Follow-Up. Int. Orthop. 2017, 41, 2097–2103. [Google Scholar] [CrossRef]
- Pettine, K.; Suzuki, R.; Sand, T.; Murphy, M. Treatment of Discogenic Back Pain with Autologous Bone Marrow Concentrate Injection with Minimum Two Year Follow-Up. Int. Orthop. 2016, 40, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Pettine, K.A.; Murphy, M.B.; Suzuki, R.K.; Sand, T.T. Percutaneous Injection of Autologous Bone Marrow Concentrate Cells Significantly Reduces Lumbar Discogenic Pain through 12 Months. Stem Cells 2015, 33, 146–156. [Google Scholar] [CrossRef]
- Orozco, L.; Soler, R.; Morera, C.; Alberca, M.; Sánchez, A.; García-Sancho, J. Intervertebral Disc Repair by Autologous Mesenchymal Bone Marrow Cells: A Pilot Study. Transplantation 2011, 92, 822–828. [Google Scholar] [CrossRef]
- Haufe, S.M.W.; Mork, A.R. Intradiscal Injection of Hematopoietic Stem Cells in an Attempt to Rejuvenate the Intervertebral Discs. Stem Cells Dev. 2006, 15, 136–137. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Ueda, Y.; Miyazaki, K.; Koizumi, M.; Takakura, Y. Disc Regeneration Therapy Using Marrow Mesenchymal Cell Transplantation: A Report of Two Case Studies. Spine 2010, 35, E475. [Google Scholar] [CrossRef] [PubMed]
- Elabd, C.; Centeno, C.J.; Schultz, J.R.; Lutz, G.; Ichim, T.; Silva, F.J. Intra-Discal Injection of Autologous, Hypoxic Cultured Bone Marrow-Derived Mesenchymal Stem Cells in Five Patients with Chronic Lower Back Pain: A Long-Term Safety and Feasibility Study. J. Transl. Med. 2016, 14, 253. [Google Scholar] [CrossRef] [PubMed]
- Centeno, C.; Markle, J.; Dodson, E.; Stemper, I.; Williams, C.J.; Hyzy, M.; Ichim, T.; Freeman, M. Treatment of Lumbar Degenerative Disc Disease-Associated Radicular Pain with Culture-Expanded Autologous Mesenchymal Stem Cells: A Pilot Study on Safety and Efficacy. J. Transl. Med. 2017, 15, 197. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.F.; Villarón, E.M.; Pescador, D.; da Casa, C.; Gómez, V.; Redondo, A.M.; López-Villar, O.; López-Parra, M.; Muntión, S.; Sánchez-Guijo, F. Autologous Mesenchymal Stromal Cells Embedded in Tricalcium Phosphate for Posterolateral Spinal Fusion: Results of a Prospective Phase I/II Clinical Trial with Long-Term Follow-Up. Stem Cell Res. Ther. 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ruiz, V.; Blanco, J.F.; Villarón, E.M.; Fidalgo, H.; López-Parra, M.; Sánchez-Guijo, F. Autologous Mesenchymal Stem Cell Transplantation for Spinal Fusion: 10 Years Follow-up of a Phase I/II Clinical Trial. Stem Cell Res. Ther. 2023, 14, 78. [Google Scholar] [CrossRef]
- Navani, A.; Ambach, M.; Calodney, A.; Rosenthal, R.; Li, G.; Mahoney, C.B.; Everts, P.A. The Safety and Effectiveness of Orthobiologic Injections for Discogenic Chronic Low Back Pain: A Multicenter Prospective, Crossover, Randomized Controlled Trial with 12 Months Follow-Up. Pain Physician 2024, 27, E65–E77. [Google Scholar] [PubMed]
- Pang, X.; Yang, H.; Peng, B. Human Umbilical Cord Mesenchymal Stem Cell Transplantation for the Treatment of Chronic Discogenic Low Back Pain. Pain Physician 2014, 17, 525–530. [Google Scholar] [CrossRef]
- Comella, K.; Silbert, R.; Parlo, M. Effects of the Intradiscal Implantation of Stromal Vascular Fraction plus Platelet Rich Plasma in Patients with Degenerative Disc Disease. J. Transl. Med. 2017, 15, 12. [Google Scholar] [CrossRef]
- Kumar, H.; Ha, D.-H.; Lee, E.-J.; Park, J.H.; Shim, J.H.; Ahn, T.-K.; Kim, K.-T.; Ropper, A.E.; Sohn, S.; Kim, C.-H.; et al. Safety and Tolerability of Intradiscal Implantation of Combined Autologous Adipose-Derived Mesenchymal Stem Cells and Hyaluronic Acid in Patients with Chronic Discogenic Low Back Pain: 1-Year Follow-up of a Phase I Study. Stem Cell Res. Ther. 2017, 8, 262. [Google Scholar] [CrossRef]
- Tuakli-Wosornu, Y.A.; Terry, A.; Boachie-Adjei, K.; Harrison, J.R.; Gribbin, C.K.; LaSalle, E.E.; Nguyen, J.T.; Solomon, J.L.; Lutz, G.E. Lumbar Intradiskal Platelet-Rich Plasma (PRP) Injections: A Prospective, Double-Blind, Randomized Controlled Study. PM&R 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Levi, D.; Horn, S.; Tyszko, S.; Levin, J.; Hecht-Leavitt, C.; Walko, E. Intradiscal Platelet-Rich Plasma Injection for Chronic Discogenic Low Back Pain: Preliminary Results from a Prospective Trial. Pain Med. 2016, 17, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.A.; Evans, N.E.; Bae, H.; Kamrava, E.; Calodney, A.; Remley, K.; Benyamin, R.; Franc, D.; Peterson, M.R.; Lovine, J.; et al. Safety and Efficacy of Platelet Rich Plasma for Treatment of Lumbar Discogenic Pain: A Prospective, Multicenter, Randomized, Double-Blind Study. Pain Physician 2022, 25, 29–34. [Google Scholar]
- Goyal, T.; Paswan, A.K.; Jain, D.; Verma, N.; Dubey, R.K. Comparative Evaluation of Efficacy of Percutaneous Intradiscal Radiofrequency Ablation and Platelet Rich Plasma Injection for Discogenic Low Back Pain: A Prospective Randomized Trial. J. Musculoskelet. Res. 2022, 25, 2250009. [Google Scholar] [CrossRef]
- Akeda, K.; Ohishi, K.; Takegami, N.; Sudo, T.; Yamada, J.; Fujiwara, T.; Niimi, R.; Matsumoto, T.; Nishimura, Y.; Ogura, T.; et al. Platelet-Rich Plasma Releasate versus Corticosteroid for the Treatment of Discogenic Low Back Pain: A Double-Blind Randomized Controlled Trial. J. Clin. Med. 2022, 11, 304. [Google Scholar] [CrossRef]
- Akeda, K.; Fujiwara, T.; Takegami, N.; Yamada, J.; Sudo, A. Retrospective Analysis of Factors Associated with the Treatment Outcomes of Intradiscal Platelet-Rich Plasma-Releasate Injection Therapy for Patients with Discogenic Low Back Pain. Medicina 2023, 59, 640. [Google Scholar] [CrossRef] [PubMed]
- Bodor, M.; Toy, A.; Aufiero, D. Disc Regeneration with Platelets and Growth Factors. In Platelet-Rich Plasma: Regenerative Medicine: Sports Medicine, Orthopedic, and Recovery of Musculoskeletal Injuries; Lana, J.F.S.D., Andrade Santana, M.H., Dias Belangero, W., Malheiros Luzo, A.C., Eds.; Lecture Notes in Bioengineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 265–279. ISBN 978-3-642-40117-6. [Google Scholar]
- Navani, A.; Hames, A. Platelet-Rich Plasma Injections for Lumbar Discogenic Pain: A Preliminary Assessment of Structural and Functional Changes. Tech. Reg. Anesth. Pain Manag. 2015, 19, 38–44. [Google Scholar] [CrossRef]
- Akeda, K.; Ohishi, K.; Masuda, K.; Bae, W.C.; Takegami, N.; Yamada, J.; Nakamura, T.; Sakakibara, T.; Kasai, Y.; Sudo, A. Intradiscal Injection of Autologous Platelet-Rich Plasma Releasate to Treat Discogenic Low Back Pain: A Preliminary Clinical Trial. Asian Spine J. 2017, 11, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Strassburg, S.; Richardson, S.M.; Freemont, A.J.; Hoyland, J.A. Co-Culture Induces Mesenchymal Stem Cell Differentiation and Modulation of the Degenerate Human Nucleus Pulposus Cell Phenotype. Regen. Med. 2010, 5, 701–711. [Google Scholar] [CrossRef]
- Svanvik, T.; Barreto Henriksson, H.; Karlsson, C.; Hagman, M.; Lindahl, A.; Brisby, H. Human Disk Cells from Degenerated Disks and Mesenchymal Stem Cells in Co-Culture Result in Increased Matrix Production. Cells Tissues Organs 2009, 191, 2–11. [Google Scholar] [CrossRef]
- Esquijarosa Hechavarria, M.; Richard, S.A. Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res. Manag. 2022, 2022, e6235400. [Google Scholar] [CrossRef] [PubMed]
- Mochida, J.; Sakai, D.; Nakamura, Y.; Watanabe, T.; Yamamoto, Y.; Kato, S. Intervertebral Disc Repair with Activated Nucleus Pulposus Cell Transplantation: A Three-Year, Prospective Clinical Study of Its Safety. Eur. Cell Mater. 2015, 29, 202–212; discussion 212. [Google Scholar] [CrossRef] [PubMed]
- Ekram, S.; Khalid, S.; Bashir, I.; Salim, A.; Khan, I. Human Umbilical Cord-Derived Mesenchymal Stem Cells and Their Chondroprogenitor Derivatives Reduced Pain and Inflammation Signaling and Promote Regeneration in a Rat Intervertebral Disc Degeneration Model. Mol. Cell. Biochem. 2021, 476, 3191–3205. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, X.; Wang, J.; Suo, M.; Zhang, J.; Sun, T.; Zhang, W.; Li, Z. Umbilical Cord Mesenchymal Stem Cells for Regenerative Treatment of Intervertebral Disc Degeneration. Front. Cell Dev. Biol. 2023, 11, 1215698. [Google Scholar] [CrossRef] [PubMed]
- See, E.Y.-S.; Toh, S.L.; Goh, J.C.H. Simulated Intervertebral Disc-like Assembly Using Bone Marrow-Derived Mesenchymal Stem Cell Sheets and Silk Scaffolds for Annulus Fibrosus Regeneration. J. Tissue Eng. Regen. Med. 2012, 6, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Risbud, M.V.; Albert, T.J.; Guttapalli, A.; Vresilovic, E.J.; Hillibrand, A.S.; Vaccaro, A.R.; Shapiro, I.M. Differentiation of Mesenchymal Stem Cells Towards a Nucleus Pulposus-like Phenotype In Vitro: Implications for Cell-Based Transplantation Therapy. Spine 2004, 29, 2627. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.-K.; Lee, J.-S.; Kim, D.-E.; Kim, S.K.; Jung, B.-J.; Choi, E.-Y.; Kim, C.-S. Autogenous Mesenchymal Stem Cells from the Vertebral Body Enhance Intervertebral Disc Regeneration via Paracrine Interaction: An in Vitro Pilot Study. Cell Transpl. 2016, 25, 1819–1832. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.Q.; Pereira, C.L.; Ferreira, J.R.; Maia, A.F.; Gomez-Lazaro, M.; Barbosa, M.A.; Neidlinger-Wilke, C.; Goncalves, R.M. Immunomodulation of Human Mesenchymal Stem/Stromal Cells in Intervertebral Disc Degeneration: Insights From a Proinflammatory/Degenerative: Ex Vivo: Model. Spine 2018, 43, E673. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Li, H.; Tao, Y.; Zhou, X.; Li, F.; Chen, G.; Chen, Q. Responses of Human Adipose-Derived Mesenchymal Stem Cells to Chemical Microenvironment of the Intervertebral Disc. J. Transl. Med. 2012, 10, 49. [Google Scholar] [CrossRef]
- Merceron, C.; Mangiavini, L.; Robling, A.; Wilson, T.L.; Giaccia, A.J.; Shapiro, I.M.; Schipani, E.; Risbud, M.V. Loss of HIF-1α in the Notochord Results in Cell Death and Complete Disappearance of the Nucleus Pulposus. PLoS ONE 2014, 9, e110768. [Google Scholar] [CrossRef]
- Stoyanov, J.V.; Gantenbein-Ritter, B.; Bertolo, A.; Aebli, N.; Baur, M.; Alini, M.; Grad, S. Role of Hypoxia and Growth and Differentiation Factor-5 on Differentiation of Human Mesenchymal Stem Cells towards Intervertebral Nucleus Pulposus-like Cells. Eur. Cells Mater. 2011, 21, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ning, L.; Qiu, P.; Mo, J.; Mei, S.; Xia, C.; Zhang, J.; Lin, X.; Fan, S. Photo-Crosslinked Gelatin-Hyaluronic Acid Methacrylate Hydrogel-Committed Nucleus Pulposus-like Differentiation of Adipose Stromal Cells for Intervertebral Disc Repair. J. Tissue Eng. Regen. Med. 2019, 13, 682–693. [Google Scholar] [CrossRef]
- Vadalà, G.; Russo, F.; Musumeci, M.; D’Este, M.; Cattani, C.; Catanzaro, G.; Tirindelli, M.C.; Lazzari, L.; Alini, M.; Giordano, R.; et al. Clinically Relevant Hydrogel-Based on Hyaluronic Acid and Platelet Rich Plasma as a Carrier for Mesenchymal Stem Cells: Rheological and Biological Characterization. J. Orthop. Res. 2017, 35, 2109–2116. [Google Scholar] [CrossRef]
- Ohnishi, T.; Homan, K.; Fukushima, A.; Ukeba, D.; Iwasaki, N.; Sudo, H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023, 12, 2161. [Google Scholar] [CrossRef]
- Toole, B.P. Hyaluronan: From Extracellular Glue to Pericellular Cue. Nat. Rev. Cancer 2004, 4, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Bedi, A.; Manjoo, A.; Niazi, F.; Shaw, P.; Mease, P. Anti-Inflammatory Effects of Intra-Articular Hyaluronic Acid: A Systematic Review. Cartilage 2019, 10, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Stergar, J.; Gradisnik, L.; Velnar, T.; Maver, U. Intervertebral Disc Tissue Engineering: A Brief Review. Bosn. J. Basic. Med. Sci. 2019, 19, 130–137. [Google Scholar] [CrossRef]
- Alini, M.; Li, W.; Markovic, P.; Aebi, M.; Spiro, R.C.; Roughley, P.J. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2003, 28, 446–454. [Google Scholar]
- Zhang, F.; Wang, S.; Gao, M.; Li, B.; He, Z.; Tang, T.; Zhu, Z.; Liu, S.; Zhou, Z. Hyaluronic Acid Ameliorates Intervertebral Disc Degeneration via Promoting Mitophagy Activation. Front. Bioeng. Biotechnol. 2022, 10, 1057429. [Google Scholar] [CrossRef]
- Häckel, S.; Zolfaghar, M.; Du, J.; Hoppe, S.; Benneker, L.M.; Garstka, N.; Peroglio, M.; Alini, M.; Grad, S.; Yayon, A.; et al. Fibrin-Hyaluronic Acid Hydrogel (RegenoGel) with Fibroblast Growth Factor-18 for In Vitro 3D Culture of Human and Bovine Nucleus Pulposus Cells. Int. J. Mol. Sci. 2019, 20, 5036. [Google Scholar] [CrossRef]
- Gansau, J.; Buckley, C.T. Incorporation of Collagen and Hyaluronic Acid to Enhance the Bioactivity of Fibrin-Based Hydrogels for Nucleus Pulposus Regeneration. J. Funct. Biomater. 2018, 9, 43. [Google Scholar] [CrossRef]
- Isa, I.L.M.; Srivastava, A.; Tiernan, D.; Owens, P.; Rooney, P.; Dockery, P.; Pandit, A. Hyaluronic Acid Based Hydrogels Attenuate Inflammatory Receptors and Neurotrophins in Interleukin-1β Induced Inflammation Model of Nucleus Pulposus Cells. Biomacromolecules 2015, 16, 1714–1725. [Google Scholar] [CrossRef] [PubMed]
- Mohd Isa, I.L.; Abbah, S.A.; Kilcoyne, M.; Sakai, D.; Dockery, P.; Finn, D.P.; Pandit, A. Implantation of Hyaluronic Acid Hydrogel Prevents the Pain Phenotype in a Rat Model of Intervertebral Disc Injury. Sci. Adv. 2018, 4, eaaq0597. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Mainil-Varlet, P.; Decambron, A.; Aschinger, C.; Schiavinato, A. Efficacy of HYADD®4-G Single Intra-Discal Injections in a Rabbit Model of Intervertebral Disc Degeneration. Biomed. Mater. Eng. 2019, 30, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Detiger, S.E.L.; Karfeld-Sulzer, L.S.; Smit, T.H.; Yayon, A.; Weber, F.E.; Helder, M.N. BMP-2 and BMP-2/7 Heterodimers Conjugated to a Fibrin/Hyaluronic Acid Hydrogel in a Large Animal Model of Mild Intervertebral Disc Degeneration. Biores. Open Access 2015, 4, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Kazezian, Z.; Sakai, D.; Pandit, A. Hyaluronic Acid Microgels Modulate Inflammation and Key Matrix Molecules toward a Regenerative Signature in the Injured Annulus Fibrosus. Adv. Biosyst. 2017, 1, 1700077. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration Intent to Consider the Appropriate Classification of Hyaluronic Acid Intra-Articular Products Intended for the Treatment of Pain in Osteoarthritis of the Knee Based on Scientific Evidence. Available online: https://www.federalregister.gov/documents/2018/12/18/2018-27351/intent-to-consider-the-appropriate-classification-of-hyaluronic-acid-intra-articular-products (accessed on 14 February 2024).
- Binch, A.L.A.; Fitzgerald, J.C.; Growney, E.A.; Barry, F. Cell-Based Strategies for IVD Repair: Clinical Progress and Translational Obstacles. Nat. Rev. Rheumatol. 2021, 17, 158–175. [Google Scholar] [CrossRef] [PubMed]
- Maloney, J.; Strand, N.; Wie, C.; Pew, S.; Dawodu, A.; Dunn, T.; Johnson, B.; Eells, A.; Viswanath, O.; Freeman, J.; et al. Current Review of Regenerative Medicine Therapies for Spine-Related Pain. Curr. Pain Headache Rep. 2023. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, H.; Xia, Q.; Wang, Y.; Zhu, L.; Hu, Z.; Xia, J.; Mao, Q.; Weng, Z.; Yi, J.; et al. A New Strategy for Intervertebral Disc Regeneration: The Synergistic Potential of Mesenchymal Stem Cells and Their Extracellular Vesicles with Hydrogel Scaffolds. Biomed. Pharmacother. 2024, 172, 116238. [Google Scholar] [CrossRef] [PubMed]
- Sakai, D.; Andersson, G.B.J. Stem Cell Therapy for Intervertebral Disc Regeneration: Obstacles and Solutions. Nat. Rev. Rheumatol. 2015, 11, 243–256. [Google Scholar] [CrossRef]
- Thorpe, A.A.; Bach, F.C.; Tryfonidou, M.A.; Le Maitre, C.L.; Mwale, F.; Diwan, A.D.; Ito, K. Leaping the Hurdles in Developing Regenerative Treatments for the Intervertebral Disc from Preclinical to Clinical. JOR Spine 2018, 1, e1027. [Google Scholar] [CrossRef]
- Deane, J.A.; McGregor, A.H. Current and Future Perspectives on Lumbar Degenerative Disc Disease: A UK Survey Exploring Specialist Multidisciplinary Clinical Opinion. BMJ Open 2016, 6, e011075. [Google Scholar] [CrossRef] [PubMed]
Treatment | Reference | Total Participant Number | Trial Design | Outcome |
---|---|---|---|---|
BMMSC | [57] | 24 | Randomized controlled trial—single intradiscal injection of BMMSCs or sham injection (unspecified anesthetic). | Reduced pain and degeneration at 12 months follow-up. Feasibility and safety confirmed. |
BMMSC | [58,59,60] | 26 | Prospective, open-label nonrandomized trial—intradiscal injection of BMMSCs at one IVD (n = 13) or two adjacent IVDs (n = 13). | Reduced pain at 1,2, and 3 years follow up |
BMMSC | [61] | 10 | Single treatment group—single intradiscal injection of BMMSCs. | Feasibility and safety confirmed. Reduced pain and disability at 3 months. IVD water content increased at 12 months. |
BMMSC | [62] | 10 | Single treatment group—single intradiscal injections of BMMSCs followed by 2 weeks of hyperbaric oxygen therapy. | No pain reduction at 12 months follow up. |
BMMSC | [63] | 2 | Single treatment group—single intradiscal injection of collagen scaffold soaked in BMMSCs. | Reduced pain and vacuum phenomenon (gas in IVD) at 24 months follow-up. |
BMMSC | [64] | 5 | Single treatment group—single intradiscal injection of hypoxic-cultured BMMSCs. | No adverse outcomes. Improved mobility and strength reported for 4 patients at 4–6 year follow-up. |
BMMSC | [65] | 33 | Single treatment group—single intradiscal injection of BMMSCs. | Safety confirmed. Pain reduction at 3–6 years follow-up. Of the 20 patients who underwent post-treatment MRI, 85% also had reduced disc bulge size. |
BMMSC | [66,67] | 11 | Single treatment group—single lumbar intradiscal injection of BMMSCs embedded in tricalcium pohosphate. | Reduced pain and disability at 5 and 10 years follow-up. All imaged patients demonstrated lumbar fusion. |
BMMSC & PRP | [68] | 40 | Multicenter randomized controlled trial—single intradiscal injection of BMMSCs, PRP, or saline (placebo control). | PRP reduced pain and improved function at 1 year follow-up when compared to placebo. BMAC reduced pain and improved function at 1 year follow-up when compared to placebo. No significant differences between PRP and BMMSC treatments were detected. |
UCMSC | [69] | 2 | Single treatment group—single injection of UCMSCs. | No severe adverse events following treatment. Reduced pain at 24 months follow-up. |
AMSC | [70] | 15 | Single treatment group—single injection of AMSCs. | No severe adverse events following treatment. Reduced pain and disability at 12 months follow-up |
AMSC & HA | [71] | 10 | Single treatment group—single injection of AMSCs combined with a HA derivative. | No severe adverse events following treatment. Reduced pain at 1 year follow-up. Three patients demonstrated increased IVD water content in 1 year follow-up MRI. |
PRP | [72] | 47 | Double-blind, randomized controlled trial. Single intradiscal injection of PRP (n = 29) or contrast agent (placebo control; n = 18). | Statistically significant pain reduction at 8 weeks follow-up for PRP treatment group when compared with placebo group. |
PRP | [73] | 22 | Single treatment group—intradiscal injection of PRP in two IVDs (n = 10), three IVDs (n = 2) or five IVDs (n = 1). | Reduced pain and disability at 6 months follow-up. |
PRP | [74] | 26 | Double-blind, randomized controlled trial. Single intradiscal injection of PRP (n = 18) or saline (placebo control; n = 8). | No significant differences in pain or disability reduction seen between PRP and placebo groups. |
PRP | [75] | 48 | Double-blind, randomized controlled trial. Single intradiscal injection of PRP. Percutaneous intradiscal radiofrequency ablation. | Statistically significant reduction in pain and disability at 3 and 6 months follow-up; however, no statistically significant difference in pain/disability reduction between PRP and radiofrequency ablation groups. |
PRP | [76,77] | 16 | Double-blind, randomized controlled trial. Single intradiscal injection of PRP releasate (n = 9) or betamethasone sodium phosphate (a corticosteroid; n = 7). Fifteen patients also received an additional, optional PRP injection 8 weeks after treatment. | Significant improvement in disability and walking ability in PRP releasate group when compared to corticosteroid group at 26 weeks follow-up. Both treatment groups had significant reduction in pain; however, no significant differences in pain reduction between groups were detected. |
PRP | [78] | 5 | Single treatment group—single intradiscal injection of PRP. | Gradual pain and disability reduction up to and including at 1 year follow-up. |
PRP | [79] | 6 | Single treatment group—single intradiscal injection of PRP. | Pain reduction at approximately monthly follow-ups for 6 months for all patients. Six months post MRI demonstrated structural improvements in disc anatomy for some patients. |
PRP | [80] | 14 | Single treatment group—single intradiscal injection of PRP releasate. | No adverse effects observed following treatment. Statistically significant pain reduction at 1- and 6-month follow-ups. No significant differences detected in follow-up MRI T2 quantification. |
Treatment | ClinicalTrials.gov ID | Total Participant Number | Protocol | Trial Status at March, 2024 |
---|---|---|---|---|
PRP | NCT05287867 | 42 (28 treatment, 14 sham control) | Single-blind, randomized, placebo-controlled study. Two treatments, four weeks apart of intradiscal PRP (or sham injection). | Actively recruiting |
PRP | NCT04816747 | 50 (estimated) | Single group assignment, single intradiscal PRP injection. | Not yet recruiting |
PRP | NCT02983747 | 112 (estimated) | Randomised controlled trial (PRP intradiscal injection compared to thrice weekly oral NSAID (loxoprofen)). | Recruiting |
UCMSC | NCT04414592 | 20 (estimated) | Single group assignment, single intradiscal UCMSCs injection. | Status unknown |
AMSC | NCT05011474 | 4 (estimated) | Single group assignment (AMSC intradiscal injection enriched with the ECM protein matrilin-3). | Status unknown |
BMMSC | NCT05066334 | 52 (estimated) | Randomized controlled trial (intradiscal injection of BMMSCs vs. sham control of local anesthesia). | Status unknown |
BMMSC | NCT04759105 | 48 | Randomized control trial (intradiscal injection of BMMSCs vs. sham control of local anesthesia). | Active, not recruiting |
BMMSC | NCT04042844 | 99 (estimated) | Double-blind, randomized controlled trial (intradiscal injection of BMMSC vs. saline). | Actively recruiting |
BMMSC | NCT04735185 | 106 (estimated) | Randomized controlled trial of single intradiscal injection (intradiscal injection of BMMSCs, methylprednisolone, or local anesthethic (bupivacaine) control). | Suspended (awaiting sponsor and FDA feedback) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, C.A.A.; Oliveira, B.S.; Theodoro, R.; Wang, J.; Santos, G.S.; Rodrigues, B.L.; Rodrigues, I.J.; Jorge, D.d.M.F.; Jeyaraman, M.; Everts, P.A.; et al. Orthobiologic Management Options for Degenerative Disc Disease. Bioengineering 2024, 11, 591. https://doi.org/10.3390/bioengineering11060591
de Oliveira CAA, Oliveira BS, Theodoro R, Wang J, Santos GS, Rodrigues BL, Rodrigues IJ, Jorge DdMF, Jeyaraman M, Everts PA, et al. Orthobiologic Management Options for Degenerative Disc Disease. Bioengineering. 2024; 11(6):591. https://doi.org/10.3390/bioengineering11060591
Chicago/Turabian Stylede Oliveira, Cezar Augusto Alves, Bernardo Scaldini Oliveira, Rafael Theodoro, Joshua Wang, Gabriel Silva Santos, Bruno Lima Rodrigues, Izair Jefthé Rodrigues, Daniel de Moraes Ferreira Jorge, Madhan Jeyaraman, Peter Albert Everts, and et al. 2024. "Orthobiologic Management Options for Degenerative Disc Disease" Bioengineering 11, no. 6: 591. https://doi.org/10.3390/bioengineering11060591
APA Stylede Oliveira, C. A. A., Oliveira, B. S., Theodoro, R., Wang, J., Santos, G. S., Rodrigues, B. L., Rodrigues, I. J., Jorge, D. d. M. F., Jeyaraman, M., Everts, P. A., Navani, A., & Lana, J. F. (2024). Orthobiologic Management Options for Degenerative Disc Disease. Bioengineering, 11(6), 591. https://doi.org/10.3390/bioengineering11060591