Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. MRI Examinations
2.3. Data Preprocessing
2.4. Model Training
2.5. Experimental Settings
2.6. Image Quality Assessment
2.7. ADC Measurement Assessment
2.8. Statistical Analyses
2.9. Ethical Statement
3. Results
3.1. Demographic Characteristics
3.2. Image Quality Assessments Results and Analyses
3.3. Ablation Studies for ADCVCGAN
3.4. ADC Measurement Assessment Results and Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeoh, K.G.; Tan, P. Mapping the genomic diaspora of gastric cancer. Nat. Rev. Cancer 2022, 22, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, H.; Wang, Y.; Zhang, H.; Ma, F.; Li, H.; Qu, J. Multiparametric MRI-based radiomics nomogram for early prediction of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer. Eur. Radiol. 2023, 33, 2746–2756. [Google Scholar] [CrossRef] [PubMed]
- Altmayer, S.; Armelin, L.M.; Pereira, J.S.; Carvalho, L.V.; Tse, J.; Balthazar, P.; Francisco, M.Z.; Watte, G.; Hochhegger, B. MRI with DWI improves detection of liver metastasis and selection of surgical candidates with pancreatic cancer: A systematic review and meta-analysis. Eur. Radiol. 2024, 34, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Daimiel Naranjo, I.; Lo Gullo, R.; Saccarelli, C.; Thakur, S.B.; Bitencourt, A.; Morris, E.A.; Jochelson, M.S.; Sevilimedu, V.; Martinez, D.F.; Pinker-Domenig, K. Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: Comparison with dynamic contrast-enhanced and multiparametric MRI. Eur. Radiol. 2021, 31, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.S.; Chen, H.Y.; Chen, J.Y.; Lu, Y.F.; Sun, J.Z.; Zhou, Y.; Yu, R.S. Reduced field-of-view diffusion-weighted imaging (DWI) in patients with gastric cancer: Comparison with conventional DWI techniques at 3.0 T: A preliminary study. Medicine 2020, 99, e18616. [Google Scholar] [CrossRef] [PubMed]
- Soydan, L.; Demir, A.A.; Torun, M.; Cikrikcioglu, M.A. Use of diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient in gastric cancer staging. Curr. Med. Imaging 2020, 16, 1278–1289. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhou, G.; Wang, S.; Wang, L.; Wang, W. Association between the apparent diffusion coefficient and the preoperative chemotherapy response of patients with locally advanced gastric cancer. J. Gastrointest. Oncol. 2023, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, J. The role of MRI in the diagnosis and treatment of gastric cancer. Diagn. Interv. Radiol. 2020, 26, 176. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, J.; Zhang, H.; Yuwen, Q. Apparent diffusion coefficient is a good marker in predicting the prognosis in colorectal cancer liver metastases: A diagnostic study. J. Gastrointest. Oncol. 2022, 13, 2375. [Google Scholar] [CrossRef]
- Babourina-Brooks, B.; Cowin, G.J.; Wang, D. Diffusion-weighted imaging in the prostate: An apparent diffusion coefficient comparison of half-Fourier acquisition single-shot turbo spin-echo and echo planar imaging. Magn. Reson. Imaging 2012, 30, 189–194. [Google Scholar] [CrossRef]
- Nketiah, G.; Selnæs, K.M.; Sandsmark, E.; Teruel, J.R.; Krüger-Stokke, B.; Bertilsson, H.; Bathen, T.F.; Elschot, M. Geometric distortion correction in prostate diffusion-weighted MRI and its effect on quantitative apparent diffusion coefficient analysis. Magn. Reson. Med. 2018, 79, 2524–2532. [Google Scholar] [CrossRef]
- Liney, G.P.; Holloway, L.; Al Harthi, T.; Sidhom, M.; Moses, D.; Juresic, E.; Rai, R.; Manton, D.J. Quantitative evaluation of diffusion-weighted imaging techniques for the purposes of radiotherapy planning in the prostate. Br. J. Radiol. 2015, 88, 20150034. [Google Scholar] [CrossRef]
- Li, S.; He, K.; Yuan, G.; Yong, X.; Meng, X.; Feng, C.; Zhang, Y.; Kamel, I.R.; Li, Z. WHO/ISUP grade and pathological T stage of clear cell renal cell carcinoma: Value of ZOOMit diffusion kurtosis imaging and chemical exchange saturation transfer imaging. Eur. Radiol. 2023, 33, 4429–4439. [Google Scholar] [CrossRef]
- Almahairi, A.; Rajeshwar, S.; Sordoni, A.; Bachman, P.; Courville, A. Augmented cyclegan: Learning many-to-many mappings from unpaired data. In Proceedings of the International Conference on Machine Learning; PMLR: New York, NY, USA, 2018; pp. 195–204. [Google Scholar]
- Gu, J.; Ye, J.C. AdaIN-based tunable CycleGAN for efficient unsupervised low-dose CT denoising. IEEE Trans. Comput. Imaging 2021, 7, 73–85. [Google Scholar] [CrossRef]
- Zhou, L.; Schaefferkoetter, J.D.; Tham, I.W.; Huang, G.; Yan, J. Supervised learning with cyclegan for low-dose FDG PET image denoising. Med. Image Anal. 2020, 65, 101770. [Google Scholar] [CrossRef]
- Kwon, T.; Ye, J.C. Cycle-free cyclegan using invertible generator for unsupervised low-dose ct denoising. IEEE Trans. Comput. Imaging 2021, 7, 1354–1368. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, A.; Shi, H.; Huang, S.; Zheng, W.; Liu, Z.; Zhang, Q.; Yang, X. CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy. Comput. Med Imaging Graph. 2021, 91, 101953. [Google Scholar] [CrossRef]
- Liang, X.; Chen, L.; Nguyen, D.; Zhou, Z.; Gu, X.; Yang, M.; Wang, J.; Jiang, S. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys. Med. Biol. 2019, 64, 125002. [Google Scholar] [CrossRef]
- Lee, J.; Gu, J.; Ye, J.C. Unsupervised CT metal artifact learning using attention-guided β-CycleGAN. IEEE Trans. Med Imaging 2021, 40, 3932–3944. [Google Scholar] [CrossRef]
- Yoo, T.K.; Choi, J.Y.; Kim, H.K. CycleGAN-based deep learning technique for artifact reduction in fundus photography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1631–1637. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, J.; Lei, L.; Ni, Z.; Zhao, B.; Hu, Y. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data. Ultrasonics 2022, 122, 106706. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhang, Z.; Cui, L.; Zheng, Y.; Yang, L. Towards cross-modal organ translation and segmentation: A cycle-and shape-consistent generative adversarial network. Med. Image Anal. 2019, 52, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Wu, J.; Luo, W.; Wang, H.; Jin, Z.; Qu, L. Review of Generative Adversarial Networks in mono-and cross-modal biomedical image registration. Front. Neuroinform. 2022, 16, 933230. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhou, D.W.; Fu, C.X.; Benkert, T.; Xiao, Y.F.; Wei, L.M.; Zhao, J.G. Calculation of apparent diffusion coefficients in prostate cancer using deep learning algorithms: A pilot study. Front. Oncol. 2021, 11, 697721. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhou, D.W.; Zha, Y.F.; Li, L.; He, H.; Xu, W.H.; Qian, L.; Zhang, Y.K.; Fu, C.X.; Hu, H.; et al. Synthesizing High-b-Value Diffusion–weighted Imaging of the Prostate Using Generative Adversarial Networks. Radiol. Artif. Intell. 2021, 3, e200237. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Torbunov, D.; Huang, Y.; Yu, H.; Huang, J.; Yoo, S.; Lin, M.; Viren, B.; Ren, Y. Uvcgan: Unet vision transformer cycle-consistent gan for unpaired image-to-image translation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 702–712. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, J.; Wu, Q.J.; Pourpanah, F. Dc-cyclegan: Bidirectional ct-to-mr synthesis from unpaired data. Comput. Med. Imaging Graph. 2023, 108, 102249. [Google Scholar] [CrossRef] [PubMed]
- Harms, J.; Lei, Y.; Wang, T.; Zhang, R.; Zhou, J.; Tang, X.; Curran, W.J.; Liu, T.; Yang, X. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Med Phys. 2019, 46, 3998–4009. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lei, Y.; Wang, T.; Fu, Y.; Tang, X.; Curran, W.J.; Liu, T.; Patel, P.; Yang, X. CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy. Med. Phys. 2020, 47, 2472–2483. [Google Scholar] [CrossRef]
- Kong, L.; Lian, C.; Huang, D.; Hu, Y.; Zhou, Q. Breaking the dilemma of medical image-to-image translation. Adv. Neural Inf. Process. Syst. 2021, 34, 1964–1978. [Google Scholar]
- Wang, J.; Wu, Q.J.; Pourpanah, F. An attentive-based generative model for medical image synthesis. Int. J. Mach. Learn. Cybern. 2023, 14, 3897–3910. [Google Scholar] [CrossRef]
- Yan, C.; Lin, J.; Li, H.; Xu, J.; Zhang, T.; Chen, H.; Woodruff, H.C.; Wu, G.; Zhang, S.; Xu, Y.; et al. Cycle-consistent generative adversarial network: Effect on radiation dose reduction and image quality improvement in ultralow-dose CT for evaluation of pulmonary tuberculosis. Korean J. Radiol. 2021, 22, 983. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Zhang, C.; Liang, X.; Deng, L.; Zhu, Y.; Zhu, X.; Zhou, X.; Song, L.; Zhao, X.; Xie, Y. A deep unsupervised learning model for artifact correction of pelvis cone-beam CT. Front. Oncol. 2021, 11, 686875. [Google Scholar] [CrossRef]
- Sun, H.; Xi, Q.; Fan, R.; Sun, J.; Xie, K.; Ni, X.; Yang, J. Synthesis of pseudo-CT images from pelvic MRI images based on an MD-CycleGAN model for radiotherapy. Phys. Med. Biol. 2022, 67, 035006. [Google Scholar] [CrossRef] [PubMed]
Parameter | T2-FBLADE | T1WI-VIBE-FS | low-DWI | a-DWI | b-DWI |
---|---|---|---|---|---|
Field-of-view FOV () | |||||
Imaging matrix | |||||
Thickness (mm) | 3 | 3 | 4 | 4 | 4 |
Distance fact | 0.6 | 0 | 0 | 0 | 0 |
B-value () | n.a. | n.a. | 50 | 800 | 1200 |
Number of averages | 1 | 1 | 2 | 4 | 6 |
Echo time (ms) | 98 | 1.3 | 80 | 80 | 80 |
Repetition time (ms) | 4100 | 3.31 | 3500 | 3500 | 3500 |
Flip angle | 99 | 9 | 90 | 90 | 90 |
Bandwidth (Hz/pixel) | 780 | 445 | 1490 | 1490 | 1490 |
Scan time (min) | 1 min 48 s | 13s |
Methods | PSNR ↑ | MSE ↓ | WPSNR ↑ | WMSE ↓ | SSIM ↑ | FSIM ↑ |
---|---|---|---|---|---|---|
CycleGAN [31] | 27.0158 | 0.001347 | 27.0164 | 0.001338 | 0.9012 | 0.8302 |
AttentionGAN [32] | 27.2902 | 0.001133 | 27.2956 | 0.001129 | 0.9123 | 0.8352 |
RegGAN [33] | 28.2411 | 0.001004 | 28.2488 | 0.000988 | 0.9249 | 0.8587 |
ADCycleGAN [34] | 29.4879 | 0.000962 | 29.5231 | 0.000951 | 0.9355 | 0.8620 |
Ours | 30.4467 | 0.000882 | 30.4502 | 0.000861 | 0.9366 | 0.8653 |
Reader | Evaluation Metrics | DWI Image Quality Score | p-Value | ||||
---|---|---|---|---|---|---|---|
a-DWI | b-DWI | s-DWI | a-DWI vs. b-DWI | a-DWI vs. s-DWI | b-DWI vs. s-DWI | ||
Reader1 | lesion visibility | 2.06 ± 0.745 | 4.18 ± 0.735 | 4.15 ± 0.842 | <0.001 | <0.001 | 0.554 |
Reader2 | 2.03 ± 0.755 | 3.96 ± 0.777 | 4.03 ± 0.792 | <0.001 | <0.001 | 0.184 | |
Reader1 | anatomical details | 1.98 ± 0.795 | 3.89 ± 0.863 | 3.85 ± 0.742 | <0.001 | <0.001 | 0.343 |
Reader2 | 1.92 ± 0.752 | 3.91 ± 0.757 | 3.93 ± 0.859 | <0.001 | <0.001 | 0.210 | |
Reader1 | image distortion | 2.02 ± 0.845 | 3.94 ± 0.786 | 3.92 ± 0.820 | <0.001 | <0.001 | 0.367 |
Reader2 | 2.08 ± 0.795 | 4.00 ± 0.772 | 4.06 ± 0.712 | <0.001 | <0.001 | 0.318 | |
Reader1 | overall quality | 2.21 ± 0.768 | 4.23 ± 0.742 | 4.26 ± 0.733 | <0.001 | <0.001 | 0.634 |
Reader2 | 2.06 ± 0.879 | 4.15 ± 0.777 | 4.15 ± 0.833 | <0.001 | <0.001 | 0.998 |
Methods | PSNR ↑ | MSE ↓ | WPSNR ↑ | WMSE ↓ | SSIM ↑ | FSIM ↑ |
---|---|---|---|---|---|---|
CycleGAN | 27.0158 | 0.001347 | 27.0164 | 0.001338 | 0.9012 | 0.8302 |
CycleGAN-ViT | 28.4533 | 0.000977 | 28.4551 | 0.000963 | 0.9302 | 0.8554 |
CycleGAN-CBAM | 27.5579 | 0.001158 | 27.5591 | 0.001150 | 0.9105 | 0.8427 |
CycleGAN-DCL | 27.2201 | 0.001233 | 27.2211 | 0.001228 | 0.9088 | 0.8346 |
CycleGAN-ViT-CBAM | 29.4589 | 0.000899 | 29.4598 | 0.000884 | 0.9351 | 0.8613 |
CycleGAN-ViT-DCL | 29.1203 | 0.000945 | 29.1221 | 0.000932 | 0.9344 | 0.8601 |
CycleGAN-CBAM-DCL | 28.2301 | 0.001024 | 28.2320 | 0.001001 | 0.9245 | 0.8521 |
Ours | 30.4467 | 0.000882 | 30.4502 | 0.000861 | 0.9366 | 0.8653 |
ADC Dataset | Liver | Kidney | Gastric Cancer Lesion |
---|---|---|---|
b-ADC | 0.89 (0.84–0.94) | 0.90 (0.83–0.96) | 0.87 (0.79–0.93) |
s-ADC | 0.89 (0.85–0.96) | 0.89 (0.81–0.94) | 0.88 (0.81–0.97) |
Reader | ROI | b-ADC | s-ADC |
---|---|---|---|
Reader1 | Liver | 0.86 (0.80–0.89) | 0.85 (0.83–0.89) |
Reader2 | Liver | 0.87 (0.82–0.90) | 0.89 (0.80–0.92) |
Reader1 | Kidney | 0.85 (0.80–0.89) | 0.86 (0.80–0.89) |
Reader2 | Kidney | 0.86 (0.82–0.89) | 0.90 (0.80–0.93) |
Reader1 | Gastric Cancer Lesion | 0.86 (0.84–0.88) | 0.93 (0.84–0.97) |
Reader2 | Gastric Cancer Lesion | 0.87 (0.83–0.92) | 0.92 (0.88–0.96) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Bian, C.; Cao, N.; Zhou, H.; Guo, B. Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN. Bioengineering 2024, 11, 805. https://doi.org/10.3390/bioengineering11080805
Hu C, Bian C, Cao N, Zhou H, Guo B. Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN. Bioengineering. 2024; 11(8):805. https://doi.org/10.3390/bioengineering11080805
Chicago/Turabian StyleHu, Can, Congchao Bian, Ning Cao, Han Zhou, and Bin Guo. 2024. "Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN" Bioengineering 11, no. 8: 805. https://doi.org/10.3390/bioengineering11080805
APA StyleHu, C., Bian, C., Cao, N., Zhou, H., & Guo, B. (2024). Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN. Bioengineering, 11(8), 805. https://doi.org/10.3390/bioengineering11080805