Advancements in Biomedical and Bioengineering Technologies in Sports Monitoring and Healthcare
Conflicts of Interest
References
- West, S.W.; Clubb, J.; Torres-Ronda, L.; Howells, D.; Leng, E.; Vescovi, J.D.; Carmody, S.; Posthumus, M.; Dalen-Lorentsen, T.; Windt, J. More than a Metric: How Training Load is Used in Elite Sport for Athlete Management. Int. J. Sports Med. 2021, 42, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lee, G.H.; Kim, S.Y.; Kwon, S.Y.; Kim, H.R.; Park, S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021, 15, 1960–2004. [Google Scholar] [CrossRef] [PubMed]
- Galli, A.; Montree, R.J.H.; Que, S.; Peri, E.; Vullings, R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. Sensors 2022, 22, 4035. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Qi, J.; Fan, S.; Qiao, Z.; Yeo, J.C.; Lim, C.T. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv. Healthc. Mater. 2021, 10, e2100116. [Google Scholar] [CrossRef]
- Yamane, T.; Kimura, M.; Morita, M. Application of nine-axis accelerometer-based recognition of daily activities in clinical examination. Phys. Act. Health 2024, 8, 29–46. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Shi, Q.; Zeng, S.; Balezentis, T. Operationalizing the telemedicine platforms through the social network knowledge: An MCDM model based on the CIPFOHW operator. Technol. Forecast. Soc. Chang. 2022, 174, 121303. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device. npj Flex. Electron. 2022, 6, 73. [Google Scholar] [CrossRef]
- Sumner, J.; Lim, H.W.; Chong, L.S.; Bundele, A.; Mukhopadhyay, A.; Kayambu, G. Artificial intelligence in physical rehabilitation: A systematic review. Artif. Intell. Med. 2023, 146, 102693. [Google Scholar] [CrossRef] [PubMed]
- Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron. 2021, 176, 112946. [Google Scholar] [CrossRef]
- Paganelli, A.I.; Mondéjar, A.G.; da Silva, A.C.; Silva-Calpa, G.; Teixeira, M.F.; Carvalho, F.; Raposo, A.; Endler, M. Real-time data analysis in health monitoring systems: A comprehensive systematic literature review. J. Biomed. Inform. 2022, 127, 104009. [Google Scholar] [CrossRef]
- Dorris, H.; Oh, J.; Jacobson, N. Wearable movement data as a potential digital biomarker for chronic pain: An investigation using deep learning. Phys. Act. Health 2024, 8, 83–92. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, D.; Fang, Y.; Bíró, I.; Baker, J.S.; Gu, Y. PCA of Running Biomechanics after 5 km between Novice and Experienced Runners. Bioengineering 2023, 10, 876. [Google Scholar] [CrossRef]
- Franchi, M.V.; Fitze, D.P.; Hanimann, J.; Sarto, F.; Spörri, J. Panoramic ultrasound vs. MRI for the assessment of hamstrings cross-sectional area and volume in a large athletic cohort. Sci. Rep. 2020, 10, 14144. [Google Scholar] [CrossRef]
- Sarto, F.; Spörri, J.; Fitze, D.P.; Quinlan, J.I.; Narici, M.V.; Franchi, M.V. Implementing Ultrasound Imaging for the Assessment of Muscle and Tendon Properties in Elite Sports: Practical Aspects, Methodological Considerations and Future Directions. Sports Med. 2021, 51, 1151–1170. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, K.; Deng, L.; Liu, C.; Fu, W. The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius-Achilles Tendon Unit. Bioengineering 2023, 10, 264. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, H.; Song, Y.; Alla, N.; Fekete, G.; Li, J.; Gu, Y. Running Velocity and Longitudinal Bending Stiffness Influence the Asymmetry of Kinematic Variables of the Lower Limb Joints. Bioengineering 2022, 9, 607. [Google Scholar] [CrossRef]
- Cen, X.; Yu, P.; Song, Y.; Sárosi, J.; Mao, Z.; Bíró, I.; Gu, Y. The Effect of Arch Stiffness on the Foot-Ankle Temporal Kinematics during Gait Termination: A Statistical Nonparametric Mapping Study. Bioengineering 2022, 9, 703. [Google Scholar] [CrossRef] [PubMed]
- Henriques, D.; Martins, A.P.; Carvalho, M.S. Efficient 2D Neck Model for Simulation of the Whiplash Injury Mechanism. Bioengineering 2024, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, H.; Teo, E.C.; Gu, Y. Finite Element Analysis of Head-Neck Kinematics in Rear-End Impact Conditions with Headrest. Bioengineering 2023, 10, 1059. [Google Scholar] [CrossRef]
- Pan, C.C.; Lee, C.H.; Chen, K.H.; Yen, Y.C.; Su, K.C. Comparative Biomechanical Analysis of Unilateral, Bilateral, and Lateral Pedicle Screw Implantation in Oblique Lumbar Interbody Fusion: A Finite Element Study. Bioengineering 2023, 10, 1238. [Google Scholar] [CrossRef]
- Cassiolas, G.; Di Paolo, S.; Marchiori, G.; Grassi, A.; Della Villa, F.; Bragonzoni, L.; Visani, A.; Giavaresi, G.; Fini, M.; Zaffagnini, S.; et al. Knee Joint Contact Forces during High-Risk Dynamic Tasks: 90° Change of Direction and Deceleration Movements. Bioengineering 2023, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, A.; Akhundov, R.; Bryant, A.L.; Lloyd, D.G.; Saxby, D.J. Limiting the Use of Electromyography and Ground Reaction Force Data Changes the Magnitude and Ranking of Modelled Anterior Cruciate Ligament Forces. Bioengineering 2023, 10, 369. [Google Scholar] [CrossRef] [PubMed]
- Jayathilaka, W.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S.W.; et al. Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Adv. Mater. 2019, 31, e1805921. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Adhikari, D.; Heyat, M.B.B.; Guragai, B.; Lipari, V.; Brito Ballester, J.; De la Torre Díez, I.; Abbas, Z.; Lai, D. A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY. Bioengineering 2022, 9, 793. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Fernandez, J. Advancements in Biomedical and Bioengineering Technologies in Sports Monitoring and Healthcare. Bioengineering 2024, 11, 816. https://doi.org/10.3390/bioengineering11080816
Gu Y, Fernandez J. Advancements in Biomedical and Bioengineering Technologies in Sports Monitoring and Healthcare. Bioengineering. 2024; 11(8):816. https://doi.org/10.3390/bioengineering11080816
Chicago/Turabian StyleGu, Yaodong, and Justin Fernandez. 2024. "Advancements in Biomedical and Bioengineering Technologies in Sports Monitoring and Healthcare" Bioengineering 11, no. 8: 816. https://doi.org/10.3390/bioengineering11080816
APA StyleGu, Y., & Fernandez, J. (2024). Advancements in Biomedical and Bioengineering Technologies in Sports Monitoring and Healthcare. Bioengineering, 11(8), 816. https://doi.org/10.3390/bioengineering11080816