Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Instrumentation
2.2.2. Testing Protocol
2.2.3. Intervention Protocol
2.3. Data Analysis
2.4. Statistical Analysis
2.4.1. Hypotheses 1 and 2
2.4.2. Hypothesis 3
3. Results
3.1. Hypothesis 1: Cycling Asymmetries
3.2. Hypothesis 2: Overground Walking Asymmetries
3.3. Hypothesis 3: Gait Velocities, Functional Tests, and KOOS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andriacchi, T.P.; Stanwyck, T.S.; Galante, J.O. Knee biomechanics and total knee replacement. J. Arthroplast. 1986, 1, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Catani, F.; Bilotta, T.W.; Marcacci, M.; Mariani, E.; Giannini, S. Muscle activation pattern and gait biomechanics after total knee replacement. Clin. Biomech. (Bristol. Avon.) 2003, 18, 871–876. [Google Scholar] [CrossRef]
- Zeni, J.A., Jr.; Flowers, P.; Bade, M.; Cheuy, V.; Stevens-Lapsley, J.; Snyder-Mackler, L. Stiff knee gait may increase risk of second total knee arthroplasty. J. Orthop. Res. 2018, 37, 397–402. [Google Scholar] [CrossRef]
- Meier, W.; Mizner, R.L.; Marcus, R.L.; Dibble, L.E.; Peters, C.; Lastayo, P.C. Total knee arthroplasty: Muscle impairments, functional limitations, and recommended rehabilitation approaches. J. Orthop. Sports Phys. Ther. 2008, 38, 246–256. [Google Scholar] [CrossRef]
- Yoshida, Y.; Mizner, R.L.; Ramsey, D.K.; Snyder-Mackler, L. Examining outcomes from total knee arthroplasty and the relationship between quadriceps strength and knee function over time. Clin. Biomech. (Bristol. Avon.) 2008, 23, 320–328. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Vandenborne, K.; Snyder-Mackler, L. Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J. Bone Jt. Surg. Am. 2005, 87, 1047–1053. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Axe, M.J.; Snyder-Mackler, L. Preoperative quadriceps strength predicts functional ability one year after total knee arthroplasty. J. Rheumatol. 2005, 32, 1533–1539. [Google Scholar]
- Mizner, R.L.; Snyder-Mackler, L. Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. J. Orthop. Res. 2005, 23, 1083–1090. [Google Scholar] [CrossRef]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr. Cartil. 2008, 16, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Bock, P.; Schatz, K.; Wurnig, C. Physical activity after total knee replacement. Z. Orthop. Ihre Grenzgeb. 2003, 141, 272–276. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Steklov, N.; Patil, S.; Colwell, C.W., Jr. The Mark Coventry Award: In vivo knee forces during recreation and exercise after knee arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Artz, N.; Elvers, K.T.; Lowe, C.M.; Sackley, C.; Jepson, P.; Beswick, A.D. Effectiveness of physiotherapy exercise following total knee replacement: Systematic review and meta-analysis. BMC Musculoskelet. Disord. 2015, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Hummer, E.; Thorsen, T.; Weinhandl, J.T.; Cates, H.; Zhang, S. Knee joint biomechanics of patients with unilateral total knee arthroplasty during stationary cycling. J. Biomech. 2021, 115, 110111. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P. Functional analysis of pre and post-knee surgery: Total knee arthroplasty and ACL reconstruction. J. Biomech. Eng. 1993, 115, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Kramers-de Quervain, I.A.; Kampfen, S.; Munzinger, U.; Mannion, A.F. Prospective study of gait function before and 2 years after total knee arthroplasty. Knee 2012, 19, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Kutzner, I.; Trepczynski, A.; Heller, M.O.; Bergmann, G. Knee adduction moment and medial contact force--facts about their correlation during gait. PLoS ONE 2013, 8, e81036. [Google Scholar] [CrossRef] [PubMed]
- Liebs, T.R.; Herzberg, W.; Ruther, W.; Haasters, J.; Russlies, M.; Hassenpflug, J. Ergometer cycling after hip or knee replacement surgery: A randomized controlled trial. J. Bone Jt. Surg. Am. 2010, 92, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, E.; Parati, M.; Peri, E.; De Marchis, C.; Nava, C.; Pedrocchi, A.; Ferriero, G.; Ferrante, S. Changes in leg cycling muscle synergies after training augmented by functional electrical stimulation in subacute stroke survivors: A pilot study. J. Neuroeng. Rehabil. 2020, 17, 35. [Google Scholar] [CrossRef]
- Ambrosini, E.; Peri, E.; Nava, C.; Longoni, L.; Monticone, M.; Pedrocchi, A.; Ferriero, G.; Ferrante, S. A multimodal training with visual biofeedback in subacute stroke survivors: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2020, 56, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, S.; Ambrosini, E.; Ravelli, P.; Guanziroli, E.; Molteni, F.; Ferrigno, G.; Pedrocchi, A. A biofeedback cycling training to improve locomotion: A case series study based on gait pattern classification of 153 chronic stroke patients. J. Neuroeng. Rehabil. 2011, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, T.; Strohacker, K.; Weinhandl, J.T.; Zhang, S. Increased Q-Factor increases frontal-plane knee joint loading in stationary cycling. J. Sport. Health Sci. 2020, 9, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.K.; Klipple, G.; Stewart, C.; Asif, I.; Zhang, S. Acute effects of lateral shoe wedges on joint biomechanics of patients with medial compartment knee osteoarthritis during stationary cycling. J. Biomech. 2016, 49, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.K.; Zhang, S.; Liu, H.; Klipple, G.; Stewart, C.; Milner, C.E.; Asif, I.M. Effects of toe-in angles on knee biomechanics in cycling of patients with medial knee osteoarthritis. Clin. Biomech. (Bristol. Avon.) 2015, 30, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006, 29, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, N.; Shimomitsu, T.; Kawanishi, M.; Fukunaga, T.; Kanehisa, H. Relationship between performances of 10-time-repeated sit-to-stand and maximal walking tests in non-disabled older women. J. Physiol. Anthr. 2016, 36, 2. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fitzhugh, E.C.; Crouter, S.E.; Gardner, J.K.; Zhang, S. Effects of Workloads and Cadences on Frontal Plane Knee Biomechanics in Cycling. Med. Sci. Sports Exerc. 2016, 48, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Buddhadev, H.H.; Crisafulli, D.L.; Suprak, D.N.; San Juan, J.G. Individuals With Knee Osteoarthritis Demonstrate Interlimb Asymmetry in Pedaling Power During Stationary Cycling. J. Appl. Biomech. 2018, 34, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Cates, H.E.; Zhang, S. Is knee biomechanics different in uphill walking on different slopes for older adults with total knee replacement? J. Biomech. 2019, 89, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Vincent, W.J. Statistics in Kinesiology, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavoral Sciences; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Bini, R.; Hume, P.; Croft, J.; Kilding, A. Pedal force effectiveness in Cycling: A review of constraints and training effects. J. Sci. Cycl. 2013, 2, 11–24. [Google Scholar]
- Bade, M.J.; Stevens-Lapsley, J.E. Early high-intensity rehabilitation following total knee arthroplasty improves outcomes. J. Orthop. Sports Phys. Ther. 2011, 41, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Mangione, K.K.; McCully, K.; Gloviak, A.; Lefebvre, I.; Hofmann, M.; Craik, R. The effects of high-intensity and low-intensity cycle ergometry in older adults with knee osteoarthritis. J. Gerontol. A Biol. Sci. Med. Sci. 1999, 54, M184–M190. [Google Scholar] [CrossRef] [PubMed]
- Fowler, E.G.; Knutson, L.M.; Demuth, S.K.; Siebert, K.L.; Simms, V.D.; Sugi, M.H.; Souza, R.B.; Karim, R.; Azen, S.P.; for the Physical Therapy Clinical Research Network (PTClinResNet). Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: A randomized controlled trial. Phys. Ther. 2010, 90, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.R.; Jacques, T.C.; Carpes, F.P.; Vaz, M.A. Effectiveness of pedalling retraining in reducing bilateral pedal force asymmetries. J. Sports Sci. 2017, 35, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
Characteristics | |
---|---|
Age | 64.8 ± 7.7 |
Mass | 89.2 ± 21.3 |
Height | 1.70 ± 0.1 |
Time post-operation | 8.6 ± 2.4 |
Inclusion | Exclusion |
---|---|
|
|
80 W | 100 W | P (η2p) | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Interaction | Time | Work Rate | |
KEM | 36.0 ± 22.7 | −2.0 ± 14.4 | 33.2 ± 17.7 | 10.6 ± 11.4 | 0.109 (0.432) | 0.038 (0.610) | 0.262 (0.242) |
Vertical PRF | 3.6 ± 7.7 | −11.5 ± 21.8 | 1.2 ± 14.5 | −5.3 ± 15.3 | 0.032 (0.634) | 0.362 (0.168) | 0.548 (0.077) |
Posterior PRF | 26.2 ± 15.5 | 6.5 ± 3.6 | 29.0 ± 15.9 | 11.9 ± 8.3 | 0.537 (0.081) | 0.057 (0.549) | 0.050 (0.570) |
Preferred | Fast | P (η2p) | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Interaction | Time | Speed | |
LR KEM | 34.4 ± 36.6 | 14.8 ± 12.7 | 40.0 ± 16.9 | 26.9 ± 15.4 | 0.525 (0.108) | 0.382 (0.194) | 0.198 (0.373) |
PO KEM | 4.0 ± 17.4 | −17.6 ± 27.0 | 22.1 ± 10.6 | −2.5 ± 28.4 | 0.854 (0.009) | 0.134 (0.468) | 0.031 (0.726) |
LR vertical GRF | 3.1 ± 2.8 | 3.7 ± 3.4 | 5.2 ± 3.3 | 3.4 ± 4.7 | 0.225 (0.339) | 0.669 (0.050) | 0.182 (0.395) |
PO vertical GRF | 3.4 ± 1.4 | 5.1 ± 1.2 | 7.0 ± 3.6 | 3.4 ± 7.1 | 0.080 (0.575) | 0.351 (0.218) | 0.611 (0.071) |
Pre-Training | Post-Training | p | d | |
---|---|---|---|---|
Gait Speeds | ||||
Preferred Gait Velocity (m/s) | 1.21 ± 0.23 | 1.35 ± 0.25 | 0.001 | 0.583 |
Fast Gait Velocity (m/s) | 1.54 ± 0.18 | 1.67 ± 0.24 | 0.002 | 0.613 |
VNS Pain Score | ||||
Initial | 0.60 ± 1.34 | 0.95 ± 1.45 | 0.343 | 0.251 |
Preferred Speed | 0.60 ± 1.58 | 0.60 ± 1.26 | 1.000 | 0.000 |
Fast Speed | 0.65 ± 1.56 | 0.60 ± 1.26 | 0.758 | 0.035 |
Functional Tests | ||||
Timed-up-and-go (s) | 8.49 ± 1.65 | 7.96 ± 1.71 | 0.232 | 0.315 |
Sit-to-Stand (s) | 24.58 ± 5.72 | 24.19 ± 7.38 | 0.807 | 0.059 |
KOOS | ||||
Total Score | 339.2 ± 50.4 | 361.5 ± 39.9 | 0.009 | 0.492 |
Symptom’s subscale | 79.76 ± 17.00 | 83.93 ± 12.93 | 0.272 | 0.276 |
Pain subscale | 87.96 ± 14.66 | 93.23 ± 9.70 | 0.105 | 0.424 |
ADL subscale | 94.36 ± 5.13 | 95.83 ± 5.76 | 0.041 | 0.270 |
Quality of Life subscale | 77.08 ± 19.63 | 88.54 ± 16.02 | 0.100 | 0.640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummer, E.T.; Porter, J.; Cates, H.; Zhang, S. Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics. Bioengineering 2024, 11, 850. https://doi.org/10.3390/bioengineering11080850
Hummer ET, Porter J, Cates H, Zhang S. Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics. Bioengineering. 2024; 11(8):850. https://doi.org/10.3390/bioengineering11080850
Chicago/Turabian StyleHummer, Erik T., Jared Porter, Harold Cates, and Songning Zhang. 2024. "Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics" Bioengineering 11, no. 8: 850. https://doi.org/10.3390/bioengineering11080850
APA StyleHummer, E. T., Porter, J., Cates, H., & Zhang, S. (2024). Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics. Bioengineering, 11(8), 850. https://doi.org/10.3390/bioengineering11080850