Electromyography-Triggered Constraint-Induced Movement Cycling Therapy for Enhancing Motor Function in Chronic Stroke Patients: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Design
2.2. Participants
2.3. Experimental Procedures
2.4. Intervention
2.5. Outcome Measurements
2.6. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Muscle Strength
3.3. Static Balance
3.4. Dynamic Balance
3.5. Activities of Daily Living
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collaborators, G.S. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795. [Google Scholar]
- Strilciuc, S.; Grad, D.A.; Radu, C.; Chira, D.; Stan, A.; Ungureanu, M.; Gheorghe, A.; Muresanu, F.-D. The economic burden of stroke: A systematic review of cost of illness studies. J. Med. Life 2021, 14, 606. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W.; Zorowitz, R.; Bates, B.; Choi, J.Y.; Glasberg, J.J.; Graham, G.D.; Katz, R.C.; Lamberty, K.; Reker, D. Management of adult stroke rehabilitation care: A clinical practice guideline. Stroke 2005, 36, e100–e143. [Google Scholar] [CrossRef]
- Kennedy, C.; Bernhardt, J.; Churilov, L.; Collier, J.M.; Ellery, F.; Rethnam, V.; Carvalho, L.B.; Donnan, G.A.; Hayward, K.S. Factors associated with time to independent walking recovery post-stroke. J. Neurol. Neurosurg. Psychiatry 2021, 92, 702–708. [Google Scholar] [CrossRef]
- Kwakkel, G.; Stinear, C.; Essers, B.; Munoz-Novoa, M.; Branscheidt, M.; Cabanas-Valdés, R.; Lakičević, S.; Lampropoulou, S.; Luft, A.R.; Marque, P. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework. Eur. Stroke J. 2023, 8, 880–894. [Google Scholar] [CrossRef]
- Olney, S.J.; Richards, C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Hsu, A.-L.; Tang, P.-F.; Jan, M.-H. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch. Phys. Med. Rehabil. 2003, 84, 1185–1193. [Google Scholar] [CrossRef]
- Gonzalez-Suarez, C.B.; Ogerio, C.G.V.; dela Cruz, A.R.; Roxas, E.A.; Fidel, B.C.; Fernandez, M.R.L.; Cruz, C. Motor impairment and its influence in gait velocity and asymmetry in community ambulating hemiplegic individuals. Arch. Rehabil. Res. Clin. Transl. 2021, 3, 100093. [Google Scholar] [CrossRef]
- Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22, 51–56. [Google Scholar] [CrossRef]
- Middleton, A.; Braun, C.H.; Lewek, M.D.; Fritz, S.L. Balance impairment limits ability to increase walking speed in individuals with chronic stroke. Disabil. Rehabil. 2017, 39, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Yoon, B.H.; Park, C.; You, J.S.H. Optimal Intervention Timing for Robotic-Assisted Gait Training in Hemiplegic Stroke. Brain Sci. 2022, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Choi, W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. Int. J. Environ. Res. Public Health 2022, 19, 5814. [Google Scholar] [CrossRef] [PubMed]
- Sana, V.; Ghous, M.; Kashif, M.; Albalwi, A.; Muneer, R.; Zia, M. Effects of vestibular rehabilitation therapy versus virtual reality on balance, dizziness, and gait in patients with subacute stroke: A randomized controlled trial. Medicine 2023, 102, e33203. [Google Scholar] [CrossRef]
- Akinci, M.; Burak, M.; Yasar, E.; Kilic, R.T. The effects of Robot-assisted gait training and virtual reality on balance and gait in stroke survivors: A randomized controlled trial. Gait Posture 2023, 103, 215–222. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, Y.; Jin, H.; Yang, F.; Feng, Y.; Pan, Y. Effects of soft robotic exoskeleton for gait training on clinical and biomechanical gait outcomes in patients with sub-acute stroke: A randomized controlled pilot study. Front. Neurol. 2023, 14, 1296102. [Google Scholar] [CrossRef]
- Gozzi, A. ReAble: A Wearable Robotic Locomotor Trainer for Post-Stroke Individuals; University of Illinois at Chicago: Chicago, IL, USA, 2022. [Google Scholar]
- Kim, J.; Jung, S.; Song, C. The effects of auditory feedback gait training using smart insole on stroke patients. Brain Sci. 2021, 11, 1377. [Google Scholar] [CrossRef]
- Kaneko, T.; Maeda, M.; Yokoyama, H.; Kai, S.; Obuchi, K.; Takase, S.; Horimoto, T.; Shimada, R.; Moriya, T.; Ohmae, H.; et al. Therapeutic effect of adjuvant therapy added to constraint-induced movement therapy in patients with subacute to chronic stroke: A systematic review and meta-analysis. Disabil. Rehabil. 2023, 1–15. [Google Scholar] [CrossRef]
- Hamzei, F.; Krüger, H.; Peters, M.; Ketels, G.; Blessin, J.; Ringer, T.; Liepert, J.; Taub, E. Shaping-Induced Movement Therapy for lower extremity (SIMT)—A pilot study. Neurol. Und Rehabil. 2012, 18, 236–241. [Google Scholar]
- Numata, K.; Murayama, T.; Takasugi, J.; Oga, M. Effect of modified constraint-induced movement therapy on lower extremity hemiplegia due to a higher-motor area lesion. Brain Inj. 2008, 22, 898–904. [Google Scholar] [CrossRef]
- Rodriguez, G.M.; Aruin, A.S. The effect of shoe wedges and lifts on symmetry of stance and weight bearing in hemiparetic individuals. Arch. Phys. Med. Rehabil. 2002, 83, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. EMG-Triggered Pedaling Training on Muscle Activation, Gait, and Motor Function for Stroke Patients. Brain Sci. 2022, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Reaz, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef]
- Konrad, P. A Practical Introduction to Kinesiological Electromyography; Noraxon, Inc.: Scottsdale, AZ, USA, 2005. [Google Scholar]
- Guzek, Z.; Dziubek, W.; Stefańska, M.; Kowalska, J. Evaluation of the functional state and mobility of patients after stroke depending on their cognitive state. Sci. Rep. 2023, 14, 1515. [Google Scholar]
- Brunnstrom, S. Motor testing procedures in hemiplegia: Based on sequential recovery stages. Phys. Ther. 1966, 46, 357–375. [Google Scholar] [CrossRef]
- Zabor, E.C.; Kaizer, A.M.; Hobbs, B.P. Randomized controlled trials. Chest 2020, 158, S79–S87. [Google Scholar] [CrossRef]
- Saghaei, M. Random allocation software for parallel group randomized trials. BMC Med. Res. Methodol. 2004, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Billinger, S.A.; Arena, R.; Bernhardt, J.; Eng, J.J.; Franklin, B.A.; Johnson, C.M.; MacKay-Lyons, M.; Macko, R.F.; Mead, G.E.; Roth, E.J. Physical activity and exercise recommendations for stroke survivors: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45, 2532–2553. [Google Scholar] [CrossRef]
- Ng, S.S.; Hui-Chan, C.W. The timed up & go test: Its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1641–1647. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83 (Suppl. S2), S7–S11. [Google Scholar]
- Persad, C.C.; Cook, S.; Giordani, B. Assessing falls in the elderly: Should we use simple screening tests or a comprehensive fall risk evaluation? Eur. J. Phys. Rehabil. Med. 2010, 46, 249–259. [Google Scholar]
- Hong, I.; Lim, Y.; Han, H.; Hay, C.C.; Woo, H.S. Application of the Korean Version of the Modified Barthel Index: Development of a keyform for use in Clinical Practice. Hong Kong J. Occup. Ther. 2017, 29, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Raasch, C.C.; Zajac, F.E. Locomotor strategy for pedaling: Muscle groups and biomechanical functions. J. Neurophysiol. 1999, 82, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Rijntjes, M.; Hamzei, F.; Glauche, V.; Saur, D.; Weiller, C. Activation changes in sensorimotor cortex during improvement due to CIMT in chronic stroke. Restor. Neurol. Neurosci. 2011, 29, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Speed-Interactive Pedaling Training Using Smartphone Virtual Reality Application for Stroke Patients: Single-Blinded, Randomized Clinical Trial. Brain Sci. 2019, 9, 295. [Google Scholar] [CrossRef]
- Kim, S.J.; Cho, H.Y.; Kim, Y.L.; Lee, S.M. Effects of stationary cycling exercise on the balance and gait abilities of chronic stroke patients. J. Phys. Ther. Sci. 2015, 27, 3529–3531. [Google Scholar] [CrossRef]
- Shen, C.; Liu, F.; Yao, L.; Li, Z.; Qiu, L.; Fang, S. Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: A systematic review and meta-analysis. Clin. Rehabil. 2018, 32, 1569–1580. [Google Scholar] [CrossRef]
- Au, C.Y.; Mehra, P.; Leung, K.W.; Tong, R.K. Effects of Electromyographically-driven Neuromuscular Stimulatio Cycling System on the Lower-Limb of Stroke Survivors. IEEE Int. Conf. Rehabil. Robot. 2019, 2019, 300–304. [Google Scholar] [CrossRef]
- Tang, A.; Sibley, K.M.; Thomas, S.G.; Bayley, M.T.; Richardson, D.; McIlroy, W.E.; Brooks, D. Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke. Neurorehabil. Neural Repair 2009, 23, 398–406. [Google Scholar] [CrossRef]
- Brouwer, B.; Parvataneni, K.; Olney, S.J. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke. Clin. Biomech. 2009, 24, 729–734. [Google Scholar] [CrossRef]
- Ivey, F.M.; Hafer-Macko, C.E.; Macko, R.F. Task-oriented treadmill exercise training in chronic hemiparetic stroke. J. Rehabil. Res. Dev. 2008, 45, 249–259. [Google Scholar] [CrossRef]
- Alsubiheen, A.M.; Choi, W.; Yu, W.; Lee, H. The effect of task-oriented activities training on upper-limb function, daily activities, and quality of life in chronic stroke patients: A randomized controlled trial. Int. J. Environ. Res. Public Health 2022, 19, 14125. [Google Scholar] [CrossRef] [PubMed]
- Kokotilo, K.J.; Eng, J.J.; Boyd, L.A. Reorganization of brain function during force production after stroke: A systematic review of the literature. J. Neurol. Phys. Ther. 2009, 33, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-L.; Sheu, C.-F.; Hsueh, I.-P.; Wang, C.-H. Trunk control as an early predictor of comprehensive activities of daily living function in stroke patients. Stroke 2002, 33, 2626–2630. [Google Scholar] [CrossRef] [PubMed]
n = | 39 | |||||||
---|---|---|---|---|---|---|---|---|
CIMCT | GCT | χ2/t | p | |||||
n = 20 | n = 19 | |||||||
Age (year) | 63.00 | ± | 6.96 | 65.00 | ± | 9.81 | 0.737 | 0.466 |
Height (cm) | 162.15 | ± | 7.74 | 162.58 | ± | 8.69 | 0.163 | 0.871 |
Weight (kg) | 58.89 | ± | 8.32 | 60.17 | ± | 8.69 | 0.470 | 0.641 |
BMI (point) | 22.35 | ± | 2.32 | 22.66 | ± | 1.79 | 0.475 | 0.638 |
Duration of stroke (month) | 13.85 | ± | 6.09 | 17.00 | ± | 5.83 | 1.648 | 0.108 |
MMSE-K | 25.80 | ± | 1.32 | 25.58 | ± | 1.02 | 0.583 | 0.563 |
MBI | 53.41 | ± | 10.16 | 56.47 | ± | 10.11 | 0.944 | 0.351 |
Gender (male/female) | 9 | / | 11 | 10 | / | 9 | 0.634 | 0.227 |
Paretic side (right/left) | 9 | / | 11 | 13 | / | 6 | 0.140 | 2.174 |
Stroke type (Infarction/hemorrhage) | 13 | / | 7 | 12 | / | 7 | 0.905 | 0.014 |
n = 39 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CIMCT | GCT | t/F | p | MDC | Effect Size | ||||||
n = 20 | n = 19 | MDC% | |||||||||
RF-A (n) | Pre | 82.52 | ± | 35.98 | 98.50 | ± | 36.31 | 1.380 | 0.176 | ||
Post | 92.10 | ± | 33.76 | 97.29 | ± | 34.29 | |||||
Pre–Post | 9.58 | ± | 7.49 | −1.21 | ± | 3.19 | 33.643 † | 0 | 4.64 | 1.86 | |
t | 5.724 * | 1.658 | 48.43 | ||||||||
p | 0 | 0.116 | |||||||||
BF-A (n) | Pre | 50.03 | ± | 19.15 | 53.14 | ± | 21.41 | 0.635 | 3.449 | ||
Post | 55.86 | ± | 21.37 | 53.40 | ± | 22.95 | |||||
Pre–Post | 5.83 | ± | 6.44 | 0.27 | ± | 2.88 | 11.898 † | 0.001 | 3.99 | 1.1 | |
t | 4.047 * | 0.404 | 68.50 | ||||||||
p | 0.001 | 0.691 | |||||||||
TA-A (n) | Pre | 59.17 | ± | 25.27 | 54.78 | ± | 21.11 | 0.588 | 0.56 | ||
Post | 64.84 | ± | 22.22 | 54.80 | ± | 20.98 | |||||
Pre–Post | 5.67 | ± | 5.06 | 0.02 | ± | 3.54 | 16.180 † | 0 | 3.13 | 1.29 | |
t | 5.015 * | 0.023 | 55.27 | ||||||||
p | 0 | 0.982 | |||||||||
Gastrocne mius-A (n) | Pre | 92.84 | ± | 23.27 | 93.36 | ± | 21.26 | 0.073 | 0.942 | ||
Post | 98.52 | ± | 23.92 | 93.87 | ± | 19.02 | |||||
Pre–Post | 5.67 | ± | 3.59 | 0.51 | ± | 4.25 | 16.891 † | 0 | 2.23 | 1.32 | |
t | 7.065 * | 0.519 | 39.23 | ||||||||
p | 0 | 0.61 |
n = 39 | |||||||||
---|---|---|---|---|---|---|---|---|---|
CIMCT | GCT | t | p | ||||||
n = 20 | n = 19 | ||||||||
RF-NA (n) | Pre | 159.42 | ± | 42.33 | 156.58 | ± | 34.68 | 0.229 | 0.82 |
Post | 161.68 | ± | 44.49 | 156.20 | ± | 35.24 | |||
Pre–Post | 2.26 | ± | 5.37 | −0.38 | ± | 5.50 | 1.521 | 0.137 | |
t | 1.884 | 0.305 | |||||||
p | 0.075 | 0.764 | |||||||
BF-NA (n) | Pre | 102.07 | ± | 32.07 | 102.83 | ± | 28.73 | 0.078 | 0.938 |
Post | 103.32 | ± | 32.12 | 103.07 | ± | 26.44 | |||
Pre–Post | 1.25 | ± | 3.90 | 0.24 | ± | 5.56 | 0.655 | 0.516 | |
t | 1.431 | 0.192 | |||||||
p | 0.169 | 0.85 | |||||||
TA-NA (n) | Pre | 151.10 | ± | 38.12 | 150.88 | ± | 33.62 | 0.019 | 0.985 |
Post | 153.41 | ± | 32.25 | 151.89 | ± | 32.26 | |||
Pre–Post | 2.31 | ± | 7.79 | 1.01 | ± | 4.77 | 0.625 | 0.536 | |
t | 1.327 | 0.927 | |||||||
p | 0.2 | 0.367 | |||||||
Gastrocne mius-NA (n) | Pre | 177.34 | ± | 30.15 | 173.17 | ± | 29.01 | 0.439 | 0.663 |
Post | 176.82 | ± | 28.50 | 174.98 | ± | 27.76 | |||
Pre–Post | −0.52 | ± | 7.29 | 1.81 | ± | 8.20 | 0.938 | 0.354 | |
t | 0.321 | 0.961 | |||||||
p | 0.752 | 0.35 |
n = 39 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CIMCT | GCT | t | p | |||||||
n = 20 | n = 19 | |||||||||
EC | M-L speed (mm/s) | Pre | 5.63 | ± | 2.19 | 5.41 | ± | 2.13 | 0.315 | 0.755 |
Post | 5.25 | ± | 3.14 | 5.66 | ± | 2.64 | ||||
Pre–Post | 0.38 | ± | 3.11 | −0.25 | ± | 4.16 | 0.539 | 0.593 | ||
t | 0.546 | 0.264 | ||||||||
p | 0.591 | 0.795 | ||||||||
A-P speed (mm/s) | Pre | 7.49 | ± | 2.87 | 7.23 | ± | 3.67 | 0.249 | 0.805 | |
Post | 6.88 | ± | 2.57 | 7.49 | ± | 2.80 | ||||
Pre–Post | 0.61 | ± | 3.12 | −0.26 | ± | 3.83 | 0.775 | 0.443 | ||
t | 0.867 | 0.296 | ||||||||
p | 0.397 | 0.771 | ||||||||
Velocity moment (mm2/s) | Pre | 6.50 | ± | 2.38 | 6.12 | ± | 2.55 | 0.489 | 0.628 | |
Post | 6.29 | ± | 2.06 | 5.95 | ± | 1.69 | ||||
Pre–Post | 0.22 | ± | 2.61 | 0.17 | ± | 2.19 | 0.061 | 0.952 | ||
t | 0.369 | 0.336 | ||||||||
p | 0.716 | 0.741 | ||||||||
EO | M-L speed (mm/s) | Pre | 4.16 | ± | 1.41 | 4.51 | ± | 1.20 | 0.845 | 0.404 |
Post | 4.32 | ± | 1.09 | 4.32 | ± | 1.12 | ||||
Pre–Post | −0.16 | ± | 1.19 | 0.19 | ± | 1.58 | 0.781 | 0.440 | ||
t | 0.610 | 0.515 | ||||||||
p | 0.549 | 0.613 | ||||||||
A-P speed (mm/s) | Pre | 5.75 | ± | 1.78 | 5.68 | ± | 0.91 | 0.160 | 0.874 | |
Post | 5.68 | ± | 0.91 | 5.39 | ± | 1.53 | ||||
Pre–Post | 0.30 | ± | 1.80 | 0.29 | ± | 1.69 | 0.017 | 0.987 | ||
t | 0.745 | 0.753 | ||||||||
p | 0.465 | 0.462 | ||||||||
Velocity moment (mm2/s) | Pre | 4.89 | ± | 2.16 | 4.77 | ± | 2.14 | 0.174 | 0.863 | |
Post | 4.34 | ± | 1.11 | 4.32 | ± | 1.12 | ||||
Pre–Post | −1.27 | ± | 0.90 | −0.66 | ± | 1.11 | 1.906 | 0.064 | ||
t | 1.131 | 0.660 | ||||||||
p | 0.272 | 0.518 |
n = 39 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CIMCT | GCT | t/F | p | MDC | Effect Size | ||||||
n = 20 | n = 19 | MDC% | |||||||||
TUG (sec) | Pre | 36.70 | ± | 4.89 | 35.50 | ± | 5.25 | 0.741 | 0.463 | ||
Post | 31.82 | ± | 4.56 | 33.70 | ± | 4.51 | |||||
Pre–Post | −4.88 | ± | 3.06 | −1.79 | ± | 3.38 | 8.926 † | 0.005 | 1.89 | −0.96 | |
t | 7.132 * | 2.322 * | 38.86 | ||||||||
p | 0 | 0.033 | |||||||||
BBS (point) | Pre | 30.56 | ± | 7.88 | 29.00 | ± | 9.51 | 0.561 | 0.578 | ||
Post | 35.05 | ± | 7.27 | 30.97 | ± | 9.12 | |||||
Pre–Post | 4.49 | ± | 2.94 | 1.97 | ± | 3.10 | 6.767 † | 0.013 | 1.82 | 0.83 | |
t | 6.832 * | 2.793 * | 40.57 | ||||||||
p | 0 | 0.012 | |||||||||
FRT (cm) | Pre | 14.45 | ± | 4.33 | 13.17 | ± | 4.08 | 0.945 | 0.351 | ||
Post | 17.83 | ± | 4.30 | 13.79 | ± | 4.59 | |||||
Pre–Post | 3.38 | ± | 2.85 | 0.62 | ± | 1.20 | 15.299 † | 0 | 1.76 | 1.25 | |
t | 5.315 * | 2.254 * | 52.15 | ||||||||
p | 0 | 0.038 |
n = 39 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CIMCT | GCT | t/F | p | MDC | Effect Size | ||||||
n = 20 | n = 19 | MDC% | |||||||||
MBI (score) | Pre | 53.41 | ± | 10.16 | 56.47 | ± | 10.11 | 0.944 | 0.351 | ||
Post | 62.40 | ± | 14.77 | 58.34 | ± | 9.69 | |||||
Pre–Post | 8.99 | ± | 6.46 | 1.87 | ± | 9.69 | 19.831 † | 0 | 4.01 | 0.87 | |
t | 6.224 * | 3.058 * | 44.53 | ||||||||
p | 0 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, K.; Kim, J.; Song, C. Electromyography-Triggered Constraint-Induced Movement Cycling Therapy for Enhancing Motor Function in Chronic Stroke Patients: A Randomized Controlled Trial. Bioengineering 2024, 11, 860. https://doi.org/10.3390/bioengineering11090860
Park J, Lee K, Kim J, Song C. Electromyography-Triggered Constraint-Induced Movement Cycling Therapy for Enhancing Motor Function in Chronic Stroke Patients: A Randomized Controlled Trial. Bioengineering. 2024; 11(9):860. https://doi.org/10.3390/bioengineering11090860
Chicago/Turabian StylePark, Jaemyoung, Kyeongjin Lee, Junghyun Kim, and Changho Song. 2024. "Electromyography-Triggered Constraint-Induced Movement Cycling Therapy for Enhancing Motor Function in Chronic Stroke Patients: A Randomized Controlled Trial" Bioengineering 11, no. 9: 860. https://doi.org/10.3390/bioengineering11090860
APA StylePark, J., Lee, K., Kim, J., & Song, C. (2024). Electromyography-Triggered Constraint-Induced Movement Cycling Therapy for Enhancing Motor Function in Chronic Stroke Patients: A Randomized Controlled Trial. Bioengineering, 11(9), 860. https://doi.org/10.3390/bioengineering11090860