Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors
Abstract
:1. Introduction
2. Mechanisms of Signal Generation for Chemiluminescence Biosensors
2.1. Chemiluminescence
2.2. Electrochemiluminescence (ECL)
- 1.
- [Ru(bpy)3]2+/TPrA:
- Luminophore: Tris(2,2′-bipyridyl)ruthenium(II) ([Ru(bpy)3]2+);
- Co-reactant: Tripropylamine (TPrA).
- Immunoassays: The [Ru(bpy)3]2+/TPrA system is extensively used in immunoassays, where ECL tags help detect and quantify antigens or antibodies in samples [54,55,56,57,58,59,60,61,62]. This is crucial for disease diagnosis and monitoring. As an alternative labeling strategy, co-reactants employed in ECL reactions can be utilized for tagging biomolecules [63,64].
- 2.
- Luminol/H2O2:
- Luminophore: Luminol (3-aminophthalhydrazide);
- Co-reactant: Hydrogen Peroxide (H2O2).
- Biological substrates: Since H2O2 is the co-reactant of luminol, any substrate that produces H2O2 through enzymatic oxidation can be detected using this ECL system. Examples of these analytes include glucose [96,97,98,99,100,101,102,103], uric acid [104,105,106], cholesterol [107,108,109,110], l-lactate, and creatinine.
- 3.
- Other pairs:
2.2.1. Electrode Configurations in ECL
Conventional/Three-Electrode ECL
Bipolar ECL
Single-Electrode ECL
3. From Point Detectors to Optical Image Sensors
3.1. Photomultiplier Tubes (PMTs)
3.2. Avalanche Photodiodes (APDs)
3.3. Plate Readers
3.4. Optical Image Sensors
3.4.1. Charge-Coupled Devices (CCDs)
3.4.2. Complementary Metal–Oxide–Semiconductor (CMOS) Sensors
3.5. Parameters That Affect the Analytical Performance of a Biosensor
4. Integration of Chemiluminescence, Optical Image Sensors, and Microfluidic Components
4.1. Integrated CL-Based Optical Systems
4.2. Integration of Microfluidic Components with Optical Systems
5. Applications of Optical Image-Based Sensors at Point-of-Care/Need
5.1. Applications of Integrated CL Biosensors at Point-of-Care/Need
5.2. Limitations of Integrated CL Biosensors for Point-of-Care Applications
- Three Electrode System: Consists of a working electrode, a reference electrode, and a counter electrode. This configuration allows precise control over the electrochemical environment, enhancing the accuracy of measurements.
- Bipolar Electrode System: Utilizes a floating conductor, serving as both the anode and cathode, with the potential of the solution playing a crucial role in driving the redox reactions. This setup is advantageous for miniaturized and portable applications.
- Single Electrode System: Relies on a gradient potential over the surface of a single, partially conductive electrode, such as ITO. This configuration simplifies the design while still facilitating effective ECL reactions.
- ▪
- Point detectors, such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), convert light into electrical signals through the photoelectric effect and avalanche multiplication process, respectively, offering high sensitivity for weak light signals.
- ▪
- Pixelated detectors, including charge-coupled devices (CCD) and complementary metal–oxide–semiconductor (CMOS) sensors, use arrays of photodiodes to capture light and produce high-resolution images. CCDs provide excellent sensitivity and image quality, while CMOS sensors are favored for their low power consumption, faster readout speeds, and cost-effectiveness, enhancing their suitability for portable and point-of-care devices.
6. Landscape and Outlook of Optical Image Sensors and Machine Learning in Analytical Chemiluminescence Biosensors
6.1. Machine Learning-Assisted ECL Sensing
6.2. Machine Learning-Assisted Chemiluminescence and Bioluminescence Sensing
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de Araujo, W.R.; Lukas, H.; Torres, M.D.T.; Gao, W.; de la Fuente-Nunez, C. Low-Cost Biosensor Technologies for Rapid Detection of COVID-19 and Future Pandemics. ACS Nano 2024, 18, 1757–1777. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Rodríguez, M.G.; Silva-Lance, F.; Parra-Arroyo, L.; Medina-Salazar, D.A.; Martínez-Ruiz, M.; Melchor-Martínez, E.M.; Martínez-Prado, M.A.; Iqbal, H.M.N.; Parra-Saldívar, R.; Barceló, D.; et al. Biosensors for the detection of disease outbreaks through wastewater-based epidemiology. Trends Anal. Chem. 2022, 155, 116585. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.; Qin, J.; Lee, L.P.; Lee, H. Advances in Biosensor Technologies for Infection Diagnostics. Acc. Chem. Res. 2022, 55, 121–122. [Google Scholar] [CrossRef] [PubMed]
- Teles, F.S.R.R.; de Távora Tavira, L.A.P.; da Fonseca, L.J.P. Biosensors as rapid diagnostic tests for tropical diseases. Crit. Rev. Clin. Lab. Sci. 2010, 47, 139–169. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-H.; Sheu, S.-C.; Chen, C.-W.; Huang, S.-C.; Li, B.-R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187. [Google Scholar] [CrossRef]
- Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G.M. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors 2022, 22, 638. [Google Scholar] [CrossRef]
- Rakhi, R.B.; Nayak, P.; Xia, C.; Alshareef, H.N. Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 2016, 6, 36422. [Google Scholar] [CrossRef]
- Verma, N.; Bhardwaj, A. Biosensor Technology for Pesticides—A review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. [Google Scholar] [CrossRef]
- Hara, T.O.; Singh, B. Electrochemical Biosensors for Detection of Pesticides and Heavy Metal Toxicants in Water: Recent Trends and Progress. ACS EST Water 2021, 1, 462–478. [Google Scholar] [CrossRef]
- Gavrilaș, S.; Ursachi, C.; Perța-Crișan, S.; Munteanu, F.D. Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors 2022, 22, 1513. [Google Scholar] [CrossRef]
- Marin, M.; Nikolic, M.V.; Vidic, J. Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5880–5900. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Altemimi, A.B.; Alhelfi, N.; Ibrahim, S.A. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. Biosensors 2020, 10, 58. [Google Scholar] [CrossRef]
- Abbasi, R.; Imanbekova, M.; Wachsmann-Hogiu, S. On-chip bioluminescence biosensor for the detection of microbial surface contamination. Biosens. Bioelectron. 2024, 254, 116200. [Google Scholar] [CrossRef]
- Hamidi, S.V.; Jahromi, A.K.; Hosseini, I.I.; Moakhar, R.S.; Collazos, C.; Pan, Q.; Liang, C.; Mahshid, S. Surface-Based Multimeric Aptamer Generation and Bio-Functionalization for Electrochemical Biosensing Applications. Angew. Chem. Int. Ed. 2024, 136, e202402808. [Google Scholar] [CrossRef]
- Akhlaghi, A.A.; Kaur, H.; Adhikari, B.R.; Soleymani, L. Editors’ Choice—Challenges and Opportunities for Developing Electrochemical Biosensors with Commercialization Potential in the Point-of-Care Diagnostics Market. ECS Sens. Plus 2024, 3, 011601. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Chen, W.; Ma, B.; Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. Biosensors 2023, 13, 412. [Google Scholar] [CrossRef]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef] [PubMed]
- Geschwindner, S.; Carlsson, J.F.; Knecht, W. Application of Optical Biosensors in Small-Molecule Screening Activities. Sensors 2012, 12, 4311–4323. [Google Scholar] [CrossRef] [PubMed]
- Passaro, V.M.N.; Dell’Olio, F.; Casamassima, B.; De Leonardis, F. Guided-Wave Optical Biosensors. Sensors 2007, 7, 508–536. [Google Scholar] [CrossRef]
- Conant, G.; Lai, B.F.L.; Lu, R.X.Z.; Korolj, A.; Wang, E.Y.; Radisic, M. High-Content Assessment of Cardiac Function Using Heart-on-a-Chip Devices as Drug Screening Model. Stem Cell Rev. Rep. 2017, 13, 335–346. [Google Scholar] [CrossRef]
- Yang, D.; Singh, A.; Wu, H.; Kroe-Barrett, R. Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics. Anal. Biochem. 2016, 508, 78–96. [Google Scholar] [CrossRef]
- Bhatta, D.; Stadden, E.; Hashem, E.; Sparrow, I.J.G.; Emmerson, G.D. Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins. Sens. Actuators B Chem. 2010, 149, 233–238. [Google Scholar] [CrossRef]
- Terry, L.A.; White, S.F.; Tigwell, L.J. The Application of Biosensors to Fresh Produce and the Wider Food Industry. J. Agric. Food Chem. 2005, 53, 1309–1316. [Google Scholar] [CrossRef]
- Huang, Q.; Luo, F.; Lin, C.; Wang, J.; Qiu, B.; Lin, Z. Electrochemiluminescence biosensor for thrombin detection based on metal organic framework with electrochemiluminescence indicator embedded in the framework. Biosens. Bioelectron. 2021, 189, 113374. [Google Scholar] [CrossRef]
- Morbioli, G.G.; Mazzu-Nascimento, T.; Stockton, A.M.; Carrilho, E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)—A review. Anal. Chim. Acta 2017, 970, 1–22. [Google Scholar] [CrossRef]
- AbdElFatah, T.; Jalali, M.; Yedire, S.G.; Hosseini, I.; del Real Mata, C.; Khan, H.; Hamidi, S.V.; Jeanne, O.; Siavash Moakhar, R.; McLean, M.; et al. Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. Nat. Nanotechnol. 2023, 18, 922–932. [Google Scholar] [CrossRef]
- Mahmud, R.A.; Sagor, R.H.; Khan, M.Z.M. Surface plasmon refractive index biosensors: A review of optical fiber, multilayer 2D material and gratings, and MIM configurations. Opt. Laser Technol. 2023, 159, 108939. [Google Scholar] [CrossRef]
- Sharma, A.; Majdinasab, M.; Khan, R.; Li, Z.; Hayat, A.; Marty, J.L. Nanomaterials in fluorescence-based biosensors: Defining key roles. Nano-Struct. Nano-Obj. 2021, 27, 100774. [Google Scholar] [CrossRef]
- Tzani, M.A.; Gioftsidou, D.K.; Kallitsakis, M.G.; Pliatsios, N.V.; Kalogiouri, N.P.; Angaridis, P.A.; Lykakis, I.N.; Terzidis, M.A. Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules 2021, 26, 7664. [Google Scholar] [CrossRef]
- Ozcan, A.; McLeod, E. Lensless Imaging and Sensing. Annu. Rev. Biomed. Eng. 2016, 18, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Lee, Y.-C.; Lai, Y.-H.; Lim, J.-C.; Huang, N.-T.; Lin, C.-T.; Huang, J.-J. Review of Integrated Optical Biosensors for Point-of-Care Applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef]
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A.; Tiwari, M. Optical biosensors: A decade in review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Deshpande, K.; Mishra, R.K.; Bhand, S. A high sensitivity micro format chemiluminescence enzyme inhibition assay for determination of Hg(II). Sensors 2010, 10, 6377–6394. [Google Scholar] [CrossRef]
- Isobe, H.; Yamanaka, S.; Kuramitsu, S.; Yamaguchi, K. Regulation Mechanism of Spin−Orbit Coupling in Charge-Transfer-Induced Luminescence of Imidazopyrazinone Derivatives. J. Am. Chem. Soc. 2008, 130, 132–149. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Huang, J.; Yu, B.; Pu, K.; Xu, F.-J. Chemiluminescence: From mechanism to applications in biological imaging and therapy. Aggregate 2021, 2, e140. [Google Scholar] [CrossRef]
- Vacher, M.; Fdez Galván, I.; Ding, B.-W.; Schramm, S.; Berraud-Pache, R.; Naumov, P.; Ferré, N.; Liu, Y.-J.; Navizet, I.; Roca-Sanjuán, D.; et al. Chemi- and Bioluminescence of Cyclic Peroxides. Chem. Rev. 2018, 118, 6927–6974. [Google Scholar] [CrossRef]
- Augusto, F.A.; de Souza, G.A.; de Souza Júnior, S.P.; Khalid, M.; Baader, W.J. Efficiency of Electron Transfer Initiated Chemiluminescence. Photochem. Photobiol. 2013, 89, 1299–1317. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yin, W.; Van, R.; Yin, K.; Wang, P.; Zheng, C.; Zhu, B.; Ran, K.; Zhang, C.; Kumar, M.; et al. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo. Nat. Commun. 2020, 11, 4052. [Google Scholar] [CrossRef]
- Roda, A.; Guardigli, M. Analytical chemiluminescence and bioluminescence: Latest achievements and new horizons. Anal. Bioanal. Chem. 2012, 402, 69–76. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.; Xu, X.; Ding, S.; Li, Y. Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos. Talanta 2021, 235, 122798. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Zhang, D.; Jiang, F.; Yang, H.; Liu, S.; Li, P. Metal-enhanced chemiluminescence detection of C-reaction protein based on silver nanoparticle hybrid probes. Talanta 2019, 199, 164–169. [Google Scholar] [CrossRef]
- Ando, Y.; Niwa, K.; Yamada, N.; Enomoto, T.; Irie, T.; Kubota, H.; Ohmiya, Y.; Akiyama, H. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat. Photonics 2008, 2, 44–47. [Google Scholar] [CrossRef]
- Karimi, E.; Nikkhah, M.; Hosseinkhani, S. Label-Free and Bioluminescence-Based Nano-Biosensor for ATP Detection. Biosensors 2022, 12, 918. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liu, X.; Tian, Q.; Yue, W.; Zeng, J.; Chen, G.; Cai, X. Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal. Biochem. 2009, 394, 1–6. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef]
- Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef]
- Carrara, S.; Francis, P.S.; Hogan, C.F. Electrochemiluminescence. In Springer Handbook of Inorganic Photochemistry; Bahnemann, D., Patrocinio, A.O.T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1777–1809. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, C. Electrogenerated Chemiluminescence Biosensing. Anal. Chem. 2020, 92, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.W. A review of recent trends in analytical applications of electrogenerated chemiluminescence. TrAC Trends Anal. Chem. 1999, 18, 47–62. [Google Scholar] [CrossRef]
- Roda, A.; Guardigli, M.; Michelini, E.; Mirasoli, M. Bioluminescence in analytical chemistry and in vivo imaging. TrAC Trends Anal. Chem. 2009, 28, 307–322. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, R.; Chai, Y.; Zhuo, Y.; Mao, L.; Yuan, S. Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosens. Bioelectron. 2010, 25, 1851–1855. [Google Scholar] [CrossRef]
- Zhou, M.; Roovers, J.; Robertson, G.P.; Grover, C.P. Multilabeling Biomolecules at a Single Site. 1. Synthesis and Characterization of a Dendritic Label for Electrochemiluminescence Assays. Anal. Chem. 2003, 75, 6708–6717. [Google Scholar] [CrossRef]
- Zhan, W.; Bard, A.J. Electrogenerated Chemiluminescence. 83. Immunoassay of Human C-Reactive Protein by Using Ru(bpy)32+-Encapsulated Liposomes as Labels. Anal. Chem. 2007, 79, 459–463. [Google Scholar] [CrossRef]
- Wei, H.; Liu, J.; Zhou, L.; Li, J.; Jiang, X.; Kang, J.; Yang, X.; Dong, S.; Wang, E. [Ru(bpy)3]2+-Doped Silica Nanoparticles within Layer-by-Layer Biomolecular Coatings and Their Application as a Biocompatible Electrochemiluminescent Tag Material. Chem.—A Eur. J. 2008, 14, 3687–3693. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhou, L.; Li, J.; Liu, J.; Wang, E. Electrochemical and electrochemiluminescence study of Ru(bpy)2+3-doped silica nanoparticles with covalently grafted biomacromolecules. J. Colloid Interface Sci. 2008, 321, 310–314. [Google Scholar] [CrossRef]
- Sardesai, N.; Pan, S.; Rusling, J. Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+-doped silica nanoparticles. Chem. Commun. 2009, 33, 4968–4970. [Google Scholar] [CrossRef]
- Kurita, R.; Arai, K.; Nakamoto, K.; Kato, D.; Niwa, O. Development of Electrogenerated Chemiluminescence-Based Enzyme Linked Immunosorbent Assay for Sub-pM Detection. Anal. Chem. 2010, 82, 1692–1697. [Google Scholar] [CrossRef]
- Qian, J.; Zhou, Z.; Cao, X.; Liu, S. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+-encapsulated silica nanosphere labels. Anal. Chim. Acta 2010, 665, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.-B.; Qi, B.; Sun, X.; Yang, X.; Wang, E. 4-(Dimethylamino)butyric Acid Labeling for Electrochemiluminescence Detection of Biological Substances by Increasing Sensitivity with Gold Nanoparticle Amplification. Anal. Chem. 2005, 77, 3525–3530. [Google Scholar] [CrossRef]
- Yin, X.-B.; Du, Y.; Yang, X.; Wang, E. Microfluidic chip with electrochemiluminescence detection using 2-(2-aminoethyl)-1-methylpyrrolidine labeling. J. Chromatogr. A 2005, 1091, 158–162. [Google Scholar] [CrossRef]
- Dennany, L.; Forster, R.J.; Rusling, J.F. Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films. J. Am. Chem. Soc. 2003, 125, 5213–5218. [Google Scholar] [CrossRef]
- Miao, W.; Bard, A.J. Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres. Anal. Chem. 2004, 76, 5379–5386. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Du, Y.; Kang, J.; Wang, E. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2′-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation. Electrochem. Commun. 2007, 9, 1474–1479. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Electrochemiluminescence-based DNA Detection Using Guanine Oxidation at Electrostatic Self-assembly of Ru(bpy)32+-doped Silica Nanoparticles on Indium Tin Oxide Electrode. Chem. Lett. 2006, 36, 210–211. [Google Scholar] [CrossRef]
- Lee, J.-G.; Yun, K.; Lim, G.-S.; Lee, S.E.; Kim, S.; Park, J.-K. DNA biosensor based on the electrochemiluminescence of Ru(bpy)32+ with DNA-binding intercalators. Bioelectrochemistry 2007, 70, 228–234. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, L. Detection of Xanthomonas oryzae pv. oryzicola by electrochemiluminescence polymerase chain reaction method. In Bioluminescence and Chemiluminescence; World Scientific: Singapore, 2008; pp. 297–300. [Google Scholar] [CrossRef]
- Zhu, D.; Tang, Y.; Xing, D.; Chen, W.R. PCR-Free Quantitative Detection of Genetically Modified Organism from Raw Materials. An Electrochemiluminescence-Based Bio Bar Code Method. Anal. Chem. 2008, 80, 3566–3571. [Google Scholar] [CrossRef]
- Zhu, D.; Xing, D.; Tang, Y.; Zhang, L. A novel mutant allele specific amplification and electrochemiluminescence method for the detection of point mutation in clinical samples. Biosens. Bioelectron. 2009, 24, 3306–3310. [Google Scholar] [CrossRef]
- Duan, R.; Zhou, X.; Xing, D. Electrochemiluminescence Biobarcode Method Based on Cysteamine−Gold Nanoparticle Conjugates. Anal. Chem. 2010, 82, 3099–3103. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Xing, D.; Zhou, X. Magnetic beads based rolling circle amplification–electrochemiluminescence assay for highly sensitive detection of point mutation. Biosens. Bioelectron. 2010, 25, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.W.; Oh, J.-W.; Shin, I.-S.; Cho, M.S.; Kim, Y.-R.; Kim, H.; Hong, J.-I. Highly sensitive detection of DNA by electrogenerated chemiluminescence amplification using dendritic Ru(bpy)32+-doped silica nanoparticles. Analyst 2010, 135, 603–607. [Google Scholar] [CrossRef]
- Cao, W.; Ferrance, J.P.; Demas, J.; Landers, J.P. Quenching of the Electrochemiluminescence of Tris(2,2′-bipyridine)ruthenium(II) by Ferrocene and Its Potential Application to Quantitative DNA Detection. J. Am. Chem. Soc. 2006, 128, 7572–7578. [Google Scholar] [CrossRef]
- Wang, X.; Yun, W.; Dong, P.; Zhou, J.; He, P.; Fang, Y. A Controllable Solid-State Ru(bpy)32+ Electrochemiluminescence Film Based on Conformation Change of Ferrocene-Labeled DNA Molecular Beacon. Langmuir 2008, 24, 2200–2205. [Google Scholar] [CrossRef]
- Hu, L.; Xu, G. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Qi, H.; Ma, F.; Gao, Q.; Zhang, C.; Miao, W. Double Covalent Coupling Method for the Fabrication of Highly Sensitive and Reusable Electrogenerated Chemiluminescence Sensors. Anal. Chem. 2010, 82, 5046–5052. [Google Scholar] [CrossRef]
- Bruno, J.G.; Kiel, J.L. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens. Bioelectron. 1999, 14, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.G.; Kiel, J.L. Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 2002, 32, 178–183. [Google Scholar] [CrossRef]
- Li, Y.; Qi, H.; Peng, Y.; Yang, J.; Zhang, C. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochem. Commun. 2007, 9, 2571–2575. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Yun, W.; Xiao, S.; Chang, Z.; He, P.; Fang, Y. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal. Chim. Acta 2007, 598, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wei, H.; Li, B.; Song, L.; Fang, L.; Lv, Z.; Zhou, W.; Wang, E. [Ru(bpy)2(dcbpy)NHS] Labeling/Aptamer-Based Biosensor for the Detection of Lysozyme by Increasing Sensitivity with Gold Nanoparticle Amplification. Chem.—Asian J. 2008, 3, 1935–1941. [Google Scholar] [CrossRef]
- Fang, L.; Lü, Z.; Wei, H.; Wang, E. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal. Chim. Acta 2008, 628, 80–86. [Google Scholar] [CrossRef]
- Guo, W.; Yuan, J.; Li, B.; Du, Y.; Ying, E.; Wang, E. Nanoscale-enhanced Ru(bpy)32+ electrochemiluminescence labels and related aptamer-based biosensing system. Analyst 2008, 133, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Du, Y.; Wang, E. Polyethyleneimine-Functionalized Platinum Nanoparticles with High Electrochemiluminescence Activity and Their Applications to Amplified Analysis of Biomolecules. Chem.—Asian J. 2008, 3, 1942–1948. [Google Scholar] [CrossRef]
- Li, Y.; Qi, H.; Peng, Y.; Gao, Q.; Zhang, C. Electrogenerated chemiluminescence aptamer-based method for the determination of thrombin incorporating quenching of tris(2,2′-bipyridine)ruthenium by ferrocene. Electrochem. Commun. 2008, 10, 1322–1325. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Yun, W.; Zhou, J.-M.; Dong, P.; He, P.-G.; Fang, Y.-Z. Ru(bpy)32+-doped Silica Nanoparticle Aptasensor for Detection of Thrombin Based on Electrogenerated Chemiluminescence. Chin. J. Chem. 2008, 26, 315–320. [Google Scholar] [CrossRef]
- Hu, L.; Bian, Z.; Li, H.; Han, S.; Yuan, Y.; Gao, L.; Xu, G. [Ru(bpy)2dppz]2+ Electrochemiluminescence Switch and Its Applications for DNA Interaction Study and Label-free ATP Aptasensor. Anal. Chem. 2009, 81, 9807–9811. [Google Scholar] [CrossRef]
- Wang, X.; Dong, P.; Yun, W.; Xu, Y.; He, P.; Fang, Y. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens. Bioelectron. 2009, 24, 3288–3292. [Google Scholar] [CrossRef]
- Yao, W.; Wang, L.; Wang, H.; Zhang, X.; Li, L. An aptamer-based electrochemiluminescent biosensor for ATP detection. Biosens. Bioelectron. 2009, 24, 3269–3274. [Google Scholar] [CrossRef]
- Yin, X.-B.; Xin, Y.-Y.; Zhao, Y. Label-Free Electrochemiluminescent Aptasensor with Attomolar Mass Detection Limits Based on a Ru(phen)32+-Double-Strand DNA Composite Film Electrode. Anal. Chem. 2009, 81, 9299–9305. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, P.; He, P.; Fang, Y. A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Anal. Chim. Acta 2010, 658, 128–132. [Google Scholar] [CrossRef]
- Fang, C.; Li, H.; Yan, J.; Guo, H.; Yifeng, T. Progress of the Electrochemiluminescence Biosensing Strategy for Clinical Diagnosis with Luminol as the Sensing Probe. ChemElectroChem 2017, 4, 1587–1593. [Google Scholar] [CrossRef]
- Qingwen, L.; Guoan, L.; Yiming, W.; Xingrong, Z. Immobilization of glucose oxidase in sol–gel matrix and its application to fabricate chemiluminescent glucose sensor. Mater. Sci. Eng. C 2000, 11, 67–70. [Google Scholar] [CrossRef]
- Qiu, B.; Lin, Z.; Wang, J.; Chen, Z.; Chen, J.; Chen, G. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta 2009, 78, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, B.; Tavakoli, A.; Bozorgzadeh, S. Improved electrogenerated chemiluminescence of luminol by cobalt nanoparticles decorated multi-walled carbon nanotubes. J. Electroanal. Chem. 2016, 762, 80–86. [Google Scholar] [CrossRef]
- Tian, X.; Lian, S.; Zhao, L.; Chen, X.; Huang, Z.; Chen, X. A novel electrochemiluminescence glucose biosensor based on platinum nanoflowers/graphene oxide/glucose oxidase modified glassy carbon electrode. J. Solid State Electrochem. 2014, 18, 2375–2382. [Google Scholar] [CrossRef]
- Jia, F.-F.; Zhong, H.; Zhang, W.-G.; Li, X.-R.; Wang, G.-Y.; Song, J.; Cheng, Z.-P.; Yin, J.-Z.; Guo, L.-P. A novel nonenzymatic ECL glucose sensor based on perovskite LaTiO3-Ag0.1 nanomaterials. Sens. Actuators B Chem. 2015, 212, 174–182. [Google Scholar] [CrossRef]
- Yu, L.; Wei, X.; Fang, C.; Tu, Y. A disposable biosensor for noninvasive diabetic diagnosis rest on the Au/TiO2 nano-composite intensified electrochemiluminescence. Electrochim. Acta 2016, 211, 27–35. [Google Scholar] [CrossRef]
- Chen, X.-M.; Cai, Z.-M.; Lin, Z.-J.; Jia, T.-T.; Liu, H.-Z.; Jiang, Y.-Q.; Chen, X. A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes. Biosens. Bioelectron. 2009, 24, 3475–3480. [Google Scholar] [CrossRef]
- Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006, 556, 46–57. [Google Scholar] [CrossRef]
- Abbasi, R.; Liu, J.; Suarasan, S.; Wachsmann-Hogiu, S. SE-ECL on CMOS: A miniaturized electrochemiluminescence biosensor. Lab Chip 2022, 22, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; Wachsmann-Hogiu, S. Optimization and miniaturization of SE-ECL for potential-resolved, multi-color, multi-analyte detection. Biosens. Bioelectron. 2024, 257, 116322. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Muzyka, K.; Ma, X.; Lou, B.; Xu, G. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem. Sci. 2018, 9, 3911–3916. [Google Scholar] [CrossRef]
- Jameison, F.; Sanchez, R.I.; Dong, L.; Leland, J.K.; Yost, D.; Martin, M.T. Electrochemiluminescence-Based Quantitation of Classical Clinical Chemistry Analytes. Anal. Chem. 1996, 68, 1298–1302. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, R.; Chai, Y.; Chen, S.; Zhong, X.; Zhong, H.; Wang, C. A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection. RSC Adv. 2012, 2, 4639–4641. [Google Scholar] [CrossRef]
- Ou, X.; Tan, X.; Liu, X.; Chen, H.; Fan, Y.; Chen, S.; Wei, S. A cathodic luminol-based electrochemiluminescence biosensor for detecting cholesterol using 3D-MoS2–PANI nanoflowers and Ag nanocubes for signal enhancement. RSC Adv. 2015, 5, 66409–66415. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, Q.; Tu, Y. A sensitive electrochemiluminescent cholesterol biosensor based on Au/hollowed-TiO2 nano-composite pre-functionalized electrode. Sens. Actuators B Chem. 2016, 237, 416–422. [Google Scholar] [CrossRef]
- Wang, X.; Ge, L.; Yu, Y.; Dong, S.; Li, F. Highly sensitive electrogenerated chemiluminescence biosensor based on hybridization chain reaction and amplification of gold nanoparticles for DNA detection. Sens. Actuators B Chem. 2015, 220, 942–948. [Google Scholar] [CrossRef]
- Zhao, H.-F.; Liang, R.-P.; Wang, J.-W.; Qiu, J.-D. One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity. Biosens. Bioelectron. 2015, 63, 458–464. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, X.; Yuan, R.; Chai, Y. An “Off–On” Electrochemiluminescent Biosensor Based on DNAzyme-Assisted Target Recycling and Rolling Circle Amplifications for Ultrasensitive Detection of microRNA. Anal. Chem. 2015, 87, 3202–3207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, X.; Chai, Y.; Yuan, R. An electrochemiluminescent microRNA biosensor based on hybridization chain reaction coupled with hemin as the signal enhancer. Analyst 2014, 139, 2748–2753. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Li, X.-L.; Zhang, H.-R.; Xu, J.-J.; Chen, H.-Y. A highly sensitive ratiometric electrochemiluminescent biosensor for microRNA detection based on cyclic enzyme amplification and resonance energy transfer. Chem. Commun. 2014, 50, 14828–14830. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent Advances in Electrochemical Immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.M.; Maddipati, S.S.; Snyder, S.M. A Review of Electrogenerated Chemiluminescent Biosensors for Assays in Biological Matrices. Bioanalysis 2016, 8, 2071–2089. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, J.; Cheng, Y.; Ju, H. Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing. Biosens. Bioelectron. 2016, 77, 733–739. [Google Scholar] [CrossRef]
- Shu, J.; Shen, W.; Cui, H. Ultrasensitive label-free electrochemiluminescence immunosensor based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized graphene composite. Sci. China Chem. 2015, 58, 425–432. [Google Scholar] [CrossRef]
- Kong, W.; Zhou, H.; Ouyang, H.; Li, Z.; Fu, Z. A disposable label-free electrochemiluminescent immunosensor for transferrin detection based on a luminol-reduced gold nanoparticle-modified screen-printed carbon electrode. Anal. Methods 2014, 6, 2959–2964. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Q.; Ma, H.; Lv, X.; Wu, D.; Sun, X.; Du, B.; Wei, Q. Single-step cycle pulse operation of the label-free electrochemiluminescence immunosensor based on branched polypyrrole for carcinoembryonic antigen detection. Sci. Rep. 2016, 6, 24599. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-X.; Zhuo, Y.; Zhou, Y.; Wang, H.-J.; Yuan, R.; Chai, Y.-Q. Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid-β Detection. ACS Appl. Mater. Interfaces 2016, 8, 12968–12975. [Google Scholar] [CrossRef]
- Cheng, Y.; Yuan, R.; Chai, Y.; Niu, H.; Cao, Y.; Liu, H.; Bai, L.; Yuan, Y. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Anal. Chim. Acta 2012, 745, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chai, Y.; Yuan, R.; Cao, Y.; Chen, Y.; Wang, H.; Gan, X. An ultrasensitive luminol cathodic electrochemiluminescence immunosensor based on glucose oxidase and nanocomposites: Graphene–carbon nanotubes and gold-platinum alloy. Anal. Chim. Acta 2013, 783, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.; Richter, M.M. Green Electrochemiluminescence from Ortho-Metalated Tris(2-phenylpyridine)iridium(III). Anal. Chem. 2002, 74, 1340–1342. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Zhang, Q.; Yang, F.; Zhou, H.; Bai, L.; Hao, T.; Guo, Z.; Chen, Z. A green EC/ECL dual-mode biosensing platform for detection of Vibrio parahaemolyticus. Sens. Actuators B Chem. 2024, 415, 136010. [Google Scholar] [CrossRef]
- Marcus, R.A. On the Theory of Chemiluminescent Electron-Transfer Reactions. J. Chem. Phys. 1965, 43, 2654–2657. [Google Scholar] [CrossRef]
- Marcus, R.A. Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.—A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss. Faraday Soc. 1960, 29, 21–31. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, J.; Ivanov, I.; Hatzell, M.C.; Yang, W.; Ahn, Y.; Logan, B.E. Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems. Biotechnol. Bioeng. 2014, 111, 1931–1939. [Google Scholar] [CrossRef]
- Periasamy, V.; Elumalai, P.N.N.; Talebi, S.; Subramaniam, R.T.; Kasi, R.; Iwamoto, M.; Gnana Kumar, G. Novel same-metal three electrode system for cyclic voltammetry studies. RSC Adv. 2023, 13, 5744–5752. [Google Scholar] [CrossRef]
- Soulsby, L.C.; Hayne, D.J.; Doeven, E.H.; Chen, L.; Hogan, C.F.; Kerr, E.; Adcock, J.L.; Francis, P.S. Electrochemically, Spectrally, and Spatially Resolved Annihilation-Electrogenerated Chemiluminescence of Mixed-Metal Complexes at Working and Counter Electrodes. ChemElectroChem 2018, 5, 1543–1547. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Zhang, Y.; Yu, J.; Ge, S.; Yan, M. Graphene functionalized porous Au-paper based electrochemiluminescence device for detection of DNA using luminescent silver nanoparticles coated calcium carbonate/carboxymethyl chitosan hybrid microspheres as labels. Biosens. Bioelectron. 2014, 59, 307–313. [Google Scholar] [CrossRef]
- Bouffier, L.; Manojlovic, D.; Kuhn, A.; Sojic, N. Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. Curr. Opin. Electrochem. 2019, 16, 28–34. [Google Scholar] [CrossRef]
- Wu, M.; Xu, N.; Qiao, J.; Chen, J.; Jin, L. Bipolar electrode-electrochemiluminescence (ECL) biosensor based on a hybridization chain reaction. Analyst 2019, 144, 4633–4638. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Cao, J.-T.; Liu, Y.-M. Bipolar Electrochemistry—A Powerful Tool for Micro/Nano-Electrochemistry. ChemistryOpen 2022, 11, e202200163. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, N.; Pan, J.-B.; Song, J.; Zhao, W.; Chen, H.-Y.; Xu, J.-J. Bipolar Electrode Array for Multiplexed Detection of Prostate Cancer Biomarkers. Anal. Chem. 2022, 94, 3005–3012. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, C.; Liu, M. Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics. Sens. Actuators B Chem. 2015, 216, 255–262. [Google Scholar] [CrossRef]
- Mavré, F.; Anand, R.K.; Laws, D.R.; Chow, K.-F.; Chang, B.-Y.; Crooks, J.A.; Crooks, R.M. Bipolar Electrodes: A Useful Tool for Concentration, Separation, and Detection of Analytes in Microelectrochemical Systems. Anal. Chem. 2010, 82, 8766–8774. [Google Scholar] [CrossRef]
- Seo, M.; Yeon, S.Y.; Yun, J.; Chung, T.D. Nanoporous ITO implemented bipolar electrode sensor for enhanced electrochemiluminescence. Electrochim. Acta 2019, 314, 89–95. [Google Scholar] [CrossRef]
- Hsueh, A.J.; Mutalib, N.A.A.; Shirato, Y.; Suzuki, H. Bipolar Electrode Arrays for Chemical Imaging and Multiplexed Sensing. ACS Omega 2022, 7, 20298–20305. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, N.; Luo, X.; Ding, S.-N. Patchy gold coated Fe3O4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors. Biosens. Bioelectron. 2018, 114, 44–51. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Xu, C.-H.; Zhao, W.; Guan, Q.-Y.; Chen, H.-Y.; Xu, J.-J. Bipolar Electrode Based Multicolor Electrochemiluminescence Biosensor. Anal. Chem. 2017, 89, 8050–8056. [Google Scholar] [CrossRef]
- Jin, L.; Qiao, J.; Chen, J.; Xu, N.; Wu, M. Combination of area controllable sensing surface and bipolar electrode-electrochemiluminescence approach for the detection of tetracycline. Talanta 2020, 208, 120404. [Google Scholar] [CrossRef] [PubMed]
- Mwanza, C.; Ding, S.-N. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. Biosensors 2023, 13, 666. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qi, L.; Gao, W.; Yuan, F.; Xia, Y.; Lou, B.; Xu, G. A portable wireless single-electrode system for electrochemiluminescent analysis. Electrochim. Acta 2019, 308, 20–24. [Google Scholar] [CrossRef]
- Vidal, E.; Domini, C.E.; Whitehead, D.C.; Garcia, C.D. From glow-sticks to sensors: Single-electrode electrochemical detection for paper-based devices. Sens. Diagn. 2022, 1, 496–503. [Google Scholar] [CrossRef]
- Firoozbakhtian, A.; Hosseini, M.; Guan, Y.; Xu, G. Boosting Electrochemiluminescence Immunoassay Sensitivity via Co–Pt Nanoparticles within a Ti3C2 MXene-Modified Single Electrode Electrochemical System on Raspberry Pi. Anal. Chem. 2023, 95, 15110–15117. [Google Scholar] [CrossRef]
- Shi, Y.; Villani, E.; Chen, Y.; Zhou, Y.; Chen, Z.; Hussain, A.; Xu, G.; Inagi, S. High-Throughput Electrosynthesis of Gradient Polypyrrole Film Using a Single-Electrode Electrochemical System. Anal. Chem. 2023, 95, 1532–1540. [Google Scholar] [CrossRef]
- Bhaiyya, M.L.; Gangrade, S.; Pattnaik, P.K.; Goel, S. Laser Ablated Reduced Graphene Oxide on Paper to Realize Single Electrode Electrochemiluminescence Standalone Miniplatform Integrated With a Smartphone. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Du, F.; Dong, Z.; Liu, F.; Anjum, S.; Hosseini, M.; Xu, G. Single-electrode electrochemical system based on tris(1,10-phenanthroline)ruthenium modified carbon nanotube/graphene film electrode for visual electrochemiluminescence analysis. Electrochim. Acta 2022, 420, 140431. [Google Scholar] [CrossRef]
- Bhaiyya, M.L.; Pattnaik, P.K.; Goel, S. Miniaturized Electrochemiluminescence Platform With Laser-Induced Graphene-Based Single Electrode for Interference-Free Sensing of Dopamine, Xanthine, and Glucose. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Pattnaik, P.K.; Goel, S. Electrochemiluminescence sensing of vitamin B12 using laser-induced graphene based bipolar and single electrodes in a 3D-printed portable system. Microfluid. Nanofluid. 2021, 25, 41. [Google Scholar] [CrossRef]
- Du, F.; Dong, Z.; Guan, Y.; Zeid, A.M.; Ma, D.; Feng, J.; Yang, D.; Xu, G. Single-Electrode Electrochemical System for the Visual and High-Throughput Electrochemiluminescence Immunoassay. Anal. Chem. 2022, 94, 2189–2194. [Google Scholar] [CrossRef] [PubMed]
- Hertz, H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. 1887, 267, 983–1000. [Google Scholar] [CrossRef]
- Millikan, R.A. A Direct Photoelectric Determination of Planck’s “h”. Phys. Rev. 1916, 7, 355–388. [Google Scholar] [CrossRef]
- Lenard, P. Ueber die lichtelektrische Wirkung. Ann. Phys. 1902, 313, 149–198. [Google Scholar] [CrossRef]
- Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905, 322, 132–148. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid grapheneĝquantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef]
- Yotter, R.A.; Wilson, D.M. A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens. J. 2003, 3, 288–303. [Google Scholar] [CrossRef]
- Polyakov, S.V. Chapter 3—Photomultiplier Tubes. In Experimental Methods in the Physical Sciences; Migdall, A., Polyakov, S.V., Fan, J., Bienfang, J.C., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 45, pp. 69–82. [Google Scholar]
- Haemisch, Y.; Frach, T.; Degenhardt, C.; Thon, A. Fully Digital Arrays of Silicon Photomultipliers (dSiPM)—A Scalable Alternative to Vacuum Photomultiplier Tubes (PMT). Phys. Procedia 2012, 37, 1546–1560. [Google Scholar] [CrossRef]
- Barbarino, G.; Barbato, F.C.T.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Mollo, C.M.; Vivolo, D. Vacuum silicon photomultipliers: Recent developments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 718, 582–583. [Google Scholar] [CrossRef]
- Renker, D. New trends on photodetectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 571, 1–6. [Google Scholar] [CrossRef]
- Kang, J.; Li, Q.; Wan, Y. Experimental observation of the linear gain of back-illuminated ultraviolet avalanche photodiodes using a GaN/AlN periodically stacked structure. J. Phys. D Appl. Phys. 2021, 54, 285107. [Google Scholar] [CrossRef]
- Renker, D.; Lorenz, E. Advances in solid state photon detectors. J. Instrum. 2009, 4, P04004. [Google Scholar] [CrossRef]
- Gogami, T.; Asaturyan, A.; Bono, J.; Baturin, P.; Chen, C.; Chiba, A.; Chiga, N.; Fujii, Y.; Kawama, D.; Maruta, T.; et al. Bucking coil implementation on PMT for active canceling of magnetic field. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 729, 816–824. [Google Scholar] [CrossRef]
- Gautier, S.M.; Blum, L.J.; Coulet, P.R. Fibre-optic biosensor based on luminescence and immobilized enzymes: Microdetermination of sorbitol, ethanol and oxaloacetate. J. Biolumin. Chemilumin. 1990, 5, 57–63. [Google Scholar] [CrossRef]
- Gessei, T.; Arakawa, T.; Kudo, H.; Mitsubayashi, K. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications. Analyst 2015, 140, 6335–6342. [Google Scholar] [CrossRef]
- Yi, X.; Xie, S.; Liang, B.; Lim, L.W.; Cheong, J.S.; Debnath, M.C.; Huffaker, D.L.; Tan, C.H.; David, J.P.R. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nat. Photonics 2019, 13, 683–686. [Google Scholar] [CrossRef]
- Campbell, J.C. Recent advances in avalanche photodiodes. In Proceedings of the 2006 Digest of the LEOS Summer Topical Meetings, Quebec City, QC, Canada, 17–19 July 2006; pp. 5–6. [Google Scholar]
- Nada, M.; Yoshimatsu, T.; Muramoto, Y.; Yokoyama, H.; Matsuzaki, H. Design and Performance of High-Speed Avalanche Photodiodes for 100-Gb/s Systems and Beyond. J. Light. Technol. 2015, 33, 984–990. [Google Scholar] [CrossRef]
- Li, D.; Jiang, K.; Sun, X.; Guo, C. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Bruschini, C.; Homulle, H.; Antolovic, I.M.; Burri, S.; Charbon, E. Single-photon avalanche diode imagers in biophotonics: Review and outlook. Light Sci. Appl. 2019, 8, 87. [Google Scholar] [CrossRef]
- Daniel, R.; Almog, R.; Ron, A.; Belkin, S.; Diamand, Y.S. Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode. Biosens. Bioelectron. 2008, 24, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Sweeney, M.M.; Sheehan, M.M.; Mathewson, A. A protein biosensor using Geiger mode avalanche photodiodes. J. Phys. Conf. Ser. 2005, 10, 333. [Google Scholar] [CrossRef]
- An, J.; Carmichael, W.W. Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 1994, 32, 1495–1507. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.B.A.; Gee, S.J.; Hammock, B.D. Use of a 96-well microplate reader for measuring routine enzyme activities. Anal. Biochem. 1987, 166, 353–360. [Google Scholar] [CrossRef]
- Hodder, P.; Mull, R.; Cassaday, J.; Berry, K.; Strulovici, B. Miniaturization of intracellular calcium functional assays to 1536-well plate format using a fluorometric imaging plate reader. J. Biomol. Screen. 2004, 9, 417–426. [Google Scholar] [CrossRef]
- Kolb, A.J. The role of microplate selection and assay design in the application of automation and robotics. Chemom. Intell. Lab. Syst. 1994, 26, 107–113. [Google Scholar] [CrossRef]
- Heusinkveld, H.J.; Westerink, R.H.S. Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels. Toxicol. Appl. Pharmacol. 2011, 255, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Montaño-Gutierrez, L.F.; Moreno, N.M.; Farquhar, I.L.; Huo, Y.; Bandiera, L.; Swain, P.S. Analysing and meta-analysing time-series data of microbial growth and gene expression from plate readers. PLoS Comput. Biol. 2022, 18, e1010138. [Google Scholar] [CrossRef]
- Botasini, S.; Luzuriaga, L.; Cerdá, M.F.; Méndez, E.; Ferrer-Sueta, G.; Denicola, A. Multiple Experiments and a Single Measurement: Introducing Microplate Readers in the Laboratory. J. Chem. Educ. 2010, 87, 1011–1014. [Google Scholar] [CrossRef]
- Szymula, K.; Magaraci, M.S.; Patterson, M.; Clark, A.; Mannickarottu, S.G.; Chow, B.Y. An Open-Source Plate Reader. bioRxiv 2018, 413781. [Google Scholar] [CrossRef]
- Sendilraj, V.; Gulati, M.; Standeven, J.; Bhamla, S. Plate-Q: A Frugal Microplate-Reader for Bacterial Signal Quantification. bioRxiv 2022. [Google Scholar] [CrossRef]
- Imanbekova, M.; Perumal, A.S.; Kheireddine, S.; Nicolau, D.V.; Wachsmann-Hogiu, S. Lensless, reflection-based dark-field microscopy (RDFM) on a CMOS chip. Biomed. Opt. Express 2020, 11, 4942–4959. [Google Scholar] [CrossRef] [PubMed]
- Imanbekova, M.; Saridag, A.M.; Kahraman, M.; Liu, J.; Caglayan, H.; Wachsmann-Hogiu, S. Complementary Metal-Oxide-Semiconductor-Based Sensing Platform for Trapping, Imaging, and Chemical Characterization of Biological Samples. ACS Appl. Opt. Mater. 2023, 1, 329–339. [Google Scholar] [CrossRef]
- Fossum, E.R.; Hondongwa, D.B. A Review of the Pinned Photodiode for CCD and CMOS Image Sensors. IEEE J. Electron Devices Soc. 2014, 2, 33–43. [Google Scholar] [CrossRef]
- Gamal, A.E.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Boyle, W.S.; Smith, G.E. Charge coupled semiconductor devices. Bell Syst. Tech. J. 1970, 49, 587–593. [Google Scholar] [CrossRef]
- Tompsett, M.F.; Amelio, G.F.; Smith, G.E. CHARGE COUPLED 8-BIT SHIFT REGISTER. Appl. Phys. Lett. 1970, 17, 111–115. [Google Scholar] [CrossRef]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef]
- Waltham, N. CCD and CMOS sensors. In Observing Photons in Space: A Guide to Experimental Space Astronomy; Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A., Eds.; Springer: New York, NY, USA, 2013; pp. 423–442. [Google Scholar] [CrossRef]
- Eric, R.F. Active pixel sensors: Are CCDs dinosaurs? Proc. SPIE 1993, 1990, 2–14. [Google Scholar] [CrossRef]
- Mendis, S.; Kemeny, S.E.; Fossum, E.R. CMOS active pixel image sensor. IEEE Trans. Electron Devices 1994, 41, 452–453. [Google Scholar] [CrossRef]
- Hu, X.; Abbasi, R.; Wachsmann-Hogiu, S. Microfluidics on lensless, semiconductor optical image sensors: Challenges and opportunities for democratization of biosensing at the micro-and nano-scale. Nanophotonics 2023, 12, 3977–4008. [Google Scholar] [CrossRef]
- Callens, N.; Gielen, G.G.E. Analysis and Comparison of Readout Architectures and Analog-to-Digital Converters for 3D-Stacked CMOS Image Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3117–3130. [Google Scholar] [CrossRef]
- Choi, S.; Lee, S.; Lee, T.; Ji, H.; Park, H.; Im, D.; Lee, D.; Kim, J.; You, S.; Choi, J. World smallest 200Mp CMOS image sensor with 0.56 μm pixel equipped with novel deep trench isolation structure for better sensitivity and higher CG. In Proceedings of the Int’l Image Sensor Workshop (IISW), Crieff, UK, 21–25 May 2023; pp. 22–25. [Google Scholar]
- Kheireddine, S.; Smith, Z.J.; Nicolau, D.V.; Wachsmann-Hogiu, S. Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy. Biomed. Opt. Express 2019, 10, 4369–4380. [Google Scholar] [CrossRef]
- Polatoğlu, İ.; Aydın, L.; Nevruz, B.Ç.; Özer, S. A Novel Approach for the Optimal Design of a Biosensor. Anal. Lett. 2020, 53, 1428–1445. [Google Scholar] [CrossRef]
- Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. [Google Scholar] [CrossRef]
- GS, S.; CV, A.; Mathew, B.B. Biosensors: A Modern Day Achievement. J. Instrum. Technol. 2014, 2, 26–39. Available online: http://pubs.sciepub.com/jit/2/1/5 (accessed on 15 July 2024).
- Castillo, J.; Gáspár, S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S.A.; Ryabov, A.D.; Csöregi, E. Biosensors for life quality: Design, development and applications. Sens. Actuators B Chem. 2004, 102, 179–194. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Asal, M.; Özen, Ö.; Şahinler, M.; Baysal, H.T.; Polatoğlu, İ. An overview of biomolecules, immobilization methods and support materials of biosensors. Sens. Rev. 2019, 39, 377–386. [Google Scholar] [CrossRef]
- Narang, J.; Pundir, C.S. Biosensors: An Introductory Textbook; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Rinken, T. Biosensors; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications—An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 2002, 1, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Humbert, J.F. Advances in the detection of phycotoxins and cyanotoxins. Anal. Bioanal. Chem. 2010, 397, 1653–1654. [Google Scholar] [CrossRef]
- Sassolas, A.; Leca-Bouvier, B.D.; Blum, L.J. DNA Biosensors and Microarrays. Chem. Rev. 2008, 108, 109–139. [Google Scholar] [CrossRef]
- Rissin, D.M.; Walt, D.R. Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. Nano Lett. 2006, 6, 520–523. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Theuwissen, A.J.P. CMOS image sensors: State-of-the-art. Solid-State Electron. 2008, 52, 1401–1406. [Google Scholar] [CrossRef]
- Hamamatsu Photonics, K.K. Available online: https://www.hamamatsu.com/us/en.html (accessed on 15 July 2024).
- Hadfield, R.H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Yu, Y.; Nie, W.; Chu, K.; Wei, X.; Smith, Z.J. Highly Sensitive, Portable Detection System for Multiplex Chemiluminescence Analysis. Anal. Chem. 2023, 95, 14762–14769. [Google Scholar] [CrossRef]
- Roda, A.; Michelini, E.; Cevenini, L.; Calabria, D.; Calabretta, M.M.; Simoni, P. Integrating biochemiluminescence detection on smartphones: Mobile chemistry platform for point-of-need analysis. Anal. Chem. 2014, 86, 7299–7304. [Google Scholar] [CrossRef] [PubMed]
- Calabria, D.; Zangheri, M.; Trozzi, I.; Lazzarini, E.; Pace, A.; Mirasoli, M.; Guardigli, M. Smartphone-Based Chemiluminescent Origami µPAD for the Rapid Assessment of Glucose Blood Levels. Biosensors 2021, 11, 381. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wu, Y.; Wang, Y.; Ye, W.; Wu, M.; Liu, Q. Smartphone-Based Portable Sensing Systems for Point-of-Care Detections. In Portable and Wearable Sensing Systems; Wiley: Hoboken, NJ, USA, 2024; pp. 89–110. [Google Scholar] [CrossRef]
- Ma, J.; Guan, Y.; Xing, F.; Wang, Y.; Li, X.; Yu, Q.; Yu, X. Smartphone-based chemiluminescence detection of aflatoxin B1 via labelled and label-free dual sensing systems. Food Chem. 2023, 413, 135654. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, H.; Li, W.; Yao, C.; Wang, J.; Zhao, Y. A chemiluminescence method induced by microplasma jet for nitrites detection and the miniature detection system using smartphone. Anal. Chim. Acta 2023, 1267, 341339. [Google Scholar] [CrossRef]
- Calabria, D.; Pace, A.; Lazzarini, E.; Trozzi, I.; Zangheri, M.; Guardigli, M.; Pieraccini, S.; Masiero, S.; Mirasoli, M. Smartphone-Based Chemiluminescence Glucose Biosensor Employing a Peroxidase-Mimicking, Guanosine-Based Self-Assembled Hydrogel. Biosensors 2023, 13, 650. [Google Scholar] [CrossRef]
- Chen, H.; Feng, Y.; Liu, F.; Tan, C.; Xu, N.; Jiang, Y.; Tan, Y. Universal smartphone-assisted label-free CRISPR/Cas12a-DNAzyme chemiluminescence biosensing platform for on-site detection of nucleic acid and non-nucleic acid targets. Biosens. Bioelectron. 2024, 247, 115929. [Google Scholar] [CrossRef]
- Singh, P.; Kumari, N.; Ojha, R.P.; Nirala, N.R.; Prakash, R. Smartphone-Based Noninvasive Glucose Monitoring in Diabetic Patients Utilizing Enhanced Chemiluminescence Imaging Technique. Physica Status Solidi (A) 2023, 220, 2300077. [Google Scholar] [CrossRef]
- Rink, S.; Duerkop, A.; Baeumner, A.J. Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphone-Based Point-of-Care Testing with Enzymatic μPAD. Anal. Sens. 2023, 3, e202200111. [Google Scholar] [CrossRef]
- Wen, J.; He, D.; Luo, S.; Zhou, S.; Yuan, Y. Cloud-based smartphone-assisted chemiluminescent assay for rapid screening of electroactive bacteria. Sci. China Technol. Sci. 2023, 66, 743–750. [Google Scholar] [CrossRef]
- Rafee, R.S.; Pouretedal, H.R.; Damiri, S. Quantitative analysis of CL-20 explosive by smartphone-based chemiluminescence method. Luminescence 2024, 39, e4775. [Google Scholar] [CrossRef]
- Wang, S.; Qu, F.; Zhang, R.; Jin, T.; Zheng, T.; Shu, J.; Cui, H. Emission Onset Time-Adjustable Chemiluminescent Gold Nanoparticles with Ultrastrong Emission for Smartphone-Based Immunoassay of Severe Acute Respiratory Syndrome Coronavirus 2 Antigen. Anal. Chem. 2023, 95, 12497–12504. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Qin, D.; Luo, Z.; Hu, S.; Xu, L.; Deng, B. Construction of a smartphone-based electrochemiluminescence imaging device to guide the improvement of sensing performance via surface regulation. Sens. Actuators B Chem. 2023, 389, 133885. [Google Scholar] [CrossRef]
- Kumar, A.; Jain, D.; Bahuguna, J.; Bhaiyya, M.; Dubey, S.K.; Javed, A.; Goel, S. Machine learning assisted and smartphone integrated homogeneous electrochemiluminescence biosensor platform for sample to answer detection of various human metabolites. Biosens. Bioelectron. 2023, 238, 115582. [Google Scholar] [CrossRef]
- Lu, Z.; Dai, S.; Liu, T.; Yang, J.; Sun, M.; Wu, C.; Su, G.; Wang, X.; Rao, H.; Yin, H.; et al. Machine learning-assisted Te–CdS@Mn3O4 nano-enzyme induced self-enhanced molecularly imprinted ratiometric electrochemiluminescence sensor with smartphone for portable and visual monitoring of 2,4-D. Biosens. Bioelectron. 2023, 222, 114996. [Google Scholar] [CrossRef]
- Nie, W.; Zhang, R.; Hu, C.; Jin, T.; Wei, X.; Cui, H. A self-enhanced electrochemiluminescence array chip for portable label-free detection of SARS-CoV-2 nucleocapsid protein with smartphone. Biosens. Bioelectron. 2023, 240, 115662. [Google Scholar] [CrossRef]
- Chen, M.-M.; Zhang, M.-L.; Song, X.; Jiang, J.; Tang, X.; Zhang, Q.; Zhang, X.; Li, P. Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chin. Chem. Lett. 2024, 109785. [Google Scholar] [CrossRef]
- Tamiya, E.; Osaki, S.; Nagai, H. Wireless electrochemiluminescent biosensors: Powering innovation with smartphone technology. Biosens. Bioelectron. 2024, 252, 116083. [Google Scholar] [CrossRef]
- Zheng, K.; Pan, J.; Yu, Z.; Yi, C.; Li, M.-J. A smartphone-assisted electrochemiluminescent detection of miRNA-21 in situ using Ru(bpy)32+@MOF. Talanta 2024, 268, 125310. [Google Scholar] [CrossRef]
- Yao, Y.; Li, H.; Wang, D.; Liu, C.; Zhang, C. An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 2017, 142, 3715–3724. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, C.; Xing, D. Paper-based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy supply and smartphone read-out: A handheld ECL system for biochemical analysis at the point-of-care level. Sens. Actuators B Chem. 2016, 237, 308–317. [Google Scholar] [CrossRef]
- Kerr, E.; Farr, R.; Doeven, E.H.; Nai, Y.H.; Alexander, R.; Guijt, R.M.; Prieto-Simon, B.; Francis, P.S.; Dearnley, M.; Hayne, D.J.; et al. Amplification-free electrochemiluminescence molecular beacon-based microRNA sensing using a mobile phone for detection. Sens. Actuators B Chem. 2021, 330, 129261. [Google Scholar] [CrossRef]
- Liu, T.; He, J.; Lu, Z.; Sun, M.; Wu, M.; Wang, X.; Jiang, Y.; Zou, P.; Rao, H.; Wang, Y. A visual electrochemiluminescence molecularly imprinted sensor with Ag+@UiO-66-NH2 decorated CsPbBr3 perovskite based on smartphone for point-of-care detection of nitrofurazone. Chem. Eng. J. 2022, 429, 132462. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D.; Liu, J.; Cheng, C.; Zhu, L.; Li, C.; Lu, Y.; Low, S.S.; Su, B.; Liu, Q. Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Biosens. Bioelectron. 2019, 129, 284–291. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Z.; Li, S.; Wang, T.; Li, J.; Chen, M.; Chen, S.; Sun, M.; Wang, Y.; Rao, H.; et al. Portable smartphone device-based multi-signal sensing system for on-site and visual determination of alkaline phosphatase in human serum. Microchim. Acta 2021, 188, 157. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, S.; Liu, W.; Chen, J.; Yu, Q.; Zhang, Z.; Li, Y.; Liu, J.; Chen, X. Real time detection of 3-nitrotyrosine using smartphone-based electrochemiluminescence. Biosens. Bioelectron. 2021, 187, 113284. [Google Scholar] [CrossRef]
- Rahn, K.L.; Rhoades, T.D.; Anand, R.K. Alternating Current Voltammetry at a Bipolar Electrode with Smartphone Luminescence Imaging for Point-of-Need Sensing. ChemElectroChem 2020, 7, 1172–1181. [Google Scholar] [CrossRef]
- Li, S.; Lu, Y.; Liu, L.; Low, S.S.; Su, B.; Wu, J.; Zhu, L.; Li, C.; Liu, Q. Fingerprints mapping and biochemical sensing on smartphone by electrochemiluminescence. Sens. Actuators B Chem. 2019, 285, 34–41. [Google Scholar] [CrossRef]
- Zhu, L.; Fu, W.; Chen, J.; Li, S.; Xie, X.; Zhang, Z.; Liu, J.; Zhou, L.; Su, B.; Chen, X. A fully integrated and handheld electrochemiluminescence device for detection of dopamine in bio-samples. Sens. Actuators B Chem. 2022, 366, 131972. [Google Scholar] [CrossRef]
- Smith, Z.J.; Chu, K.; Espenson, A.R.; Rahimzadeh, M.; Gryshuk, A.; Molinaro, M.; Dwyre, D.M.; Lane, S.; Matthews, D.; Wachsmann-Hogiu, S. Cell-Phone-Based Platform for Biomedical Device Development and Education Applications. PLoS ONE 2011, 6, e17150. [Google Scholar] [CrossRef]
- Kheireddine, S.; Sudalaiyadum Perumal, A.; Smith, Z.J.; Nicolau, D.V.; Wachsmann-Hogiu, S. Dual-phone illumination-imaging system for high resolution and large field of view multi-modal microscopy. Lab Chip 2019, 19, 825–836. [Google Scholar] [CrossRef]
- van Delft, F.C.M.J.M.; Ipolitti, G.; Nicolau, D.V.; Sudalaiyadum Perumal, A.; Kašpar, O.; Kheireddine, S.; Wachsmann-Hogiu, S.; Nicolau, D.V. Something has to give: Scaling combinatorial computing by biological agents exploring physical networks encoding NP-complete problems. Interface Focus 2018, 8, 20180034. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 2018, 136, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Pushkarsky, I.; Liu, Y.; Weaver, W.; Su, T.-W.; Mudanyali, O.; Ozcan, A.; Di Carlo, D. Automated single-cell motility analysis on a chip using lensfree microscopy. Sci. Rep. 2014, 4, 4717. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ju, H.X. 3.07—Clinical Immunoassays and Immunosensing. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Oxford, UK, 2012; pp. 143–167. [Google Scholar] [CrossRef]
- Zangheri, M.; Di Nardo, F.; Anfossi, L.; Giovannoli, C.; Baggiani, C.; Roda, A.; Mirasoli, M. A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst 2015, 140, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Mirasoli, M.; Dolci, L.S.; Buragina, A.; Bonvicini, F.; Simoni, P.; Guardigli, M. Portable Device Based on Chemiluminescence Lensless Imaging for Personalized Diagnostics through Multiplex Bioanalysis. Anal. Chem. 2011, 83, 3178–3185. [Google Scholar] [CrossRef]
- Bolton, E.K.; Sayler, G.S.; Nivens, D.E.; Rochelle, J.M.; Ripp, S.; Simpson, M.L. Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens. Actuators B Chem. 2002, 85, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Cevenini, L.; Borg, S.; Michelini, E.; Calabretta, M.M.; Schüler, D. Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 2013, 13, 4881–4889. [Google Scholar] [CrossRef]
- Ma, J.; Veltman, B.; Tietel, Z.; Tsror, L.; Liu, Y.; Eltzov, E. Monitoring of infection volatile markers using CMOS-based luminescent bioreporters. Talanta 2020, 219, 121333. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.; Li, B. Chapter 6—Novel Nanomaterials for the Fabrication of Electrochemiluminescent Sensors. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Wang, X., Chen, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 189–214. [Google Scholar] [CrossRef]
- Tirgar, P.; Sarmadi, F.; Najafi, M.; Kazemi, P.; AzizMohseni, S.; Fayazi, S.; Zandi, G.; Ziaie, N.; Shoushtari Zadeh Naseri, A.; Ehrlicher, A.; et al. Toward embryo cryopreservation-on-a-chip: A standalone microfluidic platform for gradual loading of cryoprotectants to minimize cryoinjuries. Biomicrofluidics 2021, 15, 034104. [Google Scholar] [CrossRef]
- Mardanpour, M.M.; Sudalaiyadum Perumal, A.; Mahmoodi, Z.; Baassiri, K.; Montiel-Rubies, G.; LeDez, K.M.; Nicolau, D.V. Investigation of air bubble behaviour after gas embolism events induced in a microfluidic network mimicking microvasculature. Lab Chip 2024, 24, 2518–2536. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, H.; Yang, X.; Kang, S.; Cai, L.; Tian, T.; Su, R.; Yang, C.; Zhu, Z. Recent progress in microfluidic biosensors with different driving forces. TrAC Trends Anal. Chem. 2023, 158, 116894. [Google Scholar] [CrossRef]
- Lange, D.; Storment, C.W.; Conley, C.A.; Kovacs, G.T.A. A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space. Sens. Actuators B Chem. 2005, 107, 904–914. [Google Scholar] [CrossRef]
- Huang, X.; Farooq, U.; Chen, J.; Ge, Y.; Gao, H.; Su, J.; Wang, X.; Dong, S.; Luo, J.K. A Surface Acoustic Wave Pumped Lensless Microfluidic Imaging System for Flowing Cell Detection and Counting. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H.W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, J.; Wang, X.; Yan, M.; Kang, Y.; Yu, H. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing. PLoS ONE 2014, 9, e104539. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, Y.; Liu, X.; Xu, H.; Han, Z.; Rong, H.; Yang, H.; Yan, M.; Yu, H. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting. Sensors 2016, 16, 1836. [Google Scholar] [CrossRef]
- Zheng, G.; Lee, S.A.; Antebi, Y.; Elowitz, M.B.; Yang, C. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. USA 2011, 108, 16889–16894. [Google Scholar] [CrossRef]
- Liao, Y.; Yu, N.; Tian, D.; Li, S.; Li, Z. A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System. Sensors 2019, 19, 5103. [Google Scholar] [CrossRef]
- Lee, S.A.; Zheng, G.; Mukherjee, N.; Yang, C. On-chip continuous monitoring of motile microorganisms on an ePetri platform. Lab Chip 2012, 12, 2385–2390. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, J.E. Real-time bacterial microcolony counting using on-chip microscopy. Sci. Rep. 2016, 6, 21473. [Google Scholar] [CrossRef]
- Lee, S.A.; Erath, J.; Zheng, G.; Ou, X.; Willems, P.; Eichinger, D.; Rodriguez, A.; Yang, C. Imaging and Identification of Waterborne Parasites Using a Chip-Scale Microscope. PLoS ONE 2014, 9, e89712. [Google Scholar] [CrossRef]
- Annese, V.F.; Giagkoulovits, C.; Hu, C.; Al-Rawhani, M.A.; Grant, J.; Patil, S.B.; Cumming, D.R.S. Micromolar Metabolite Measurement in an Electronically Multiplexed Format. IEEE Trans. Biomed. Eng. 2022, 69, 2715–2722. [Google Scholar] [CrossRef]
- Van Dorst, B.; Brivio, M.; Van Der Sar, E.; Blom, M.; Reuvekamp, S.; Tanzi, S.; Groenhuis, R.; Adojutelegan, A.; Lous, E.J.; Frederix, F.; et al. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests. Biosens. Bioelectron. 2016, 78, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.-C.; Belkin, S.; Cheng, J.-Y. Microbial biosensing of ciprofloxacin residues in food by a portable lens-free CCD-based analyzer. Anal. Bioanal. Chem. 2018, 410, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Leitao, R.; Zheng, G.; Yang, S.; Rodriguez, A.; Yang, C. Color Capable Sub-Pixel Resolving Optofluidic Microscope and Its Application to Blood Cell Imaging for Malaria Diagnosis. PLoS ONE 2011, 6, e26127. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Lee, S.A.; Yang, S.; Yang, C. Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab Chip 2010, 10, 3125–3129. [Google Scholar] [CrossRef]
- Pang, S.; Cui, X.; DeModena, J.; Wang, Y.M.; Sternberg, P.; Yang, C. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate. Lab Chip 2010, 10, 411–414. [Google Scholar] [CrossRef]
- Han, Y.D.; Chun, H.J.; Yoon, H.C. Low-cost Point-of-Care Biosensors Using Common Electronic Components as Transducers. BioChip J. 2020, 14, 32–47. [Google Scholar] [CrossRef]
- Mirasoli, M.; Bonvicini, F.; Dolci, L.S.; Zangheri, M.; Gallinella, G.; Roda, A. Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes. Anal. Bioanal. Chem. 2013, 405, 1139–1143. [Google Scholar] [CrossRef]
- Baader, J.; Klapproth, H.; Bednar, S.; Brandstetter, T.; Rühe, J.; Lehmann, M.; Freund, I. Polysaccharide microarrays with a CMOS based signal detection unit. Biosens. Bioelectron. 2011, 26, 1839–1846. [Google Scholar] [CrossRef]
- Sciutto, G.; Zangheri, M.; Anfossi, L.; Guardigli, M.; Prati, S.; Mirasoli, M.; Di Nardo, F.; Baggiani, C.; Mazzeo, R.; Roda, A. Miniaturized Biosensors to Preserve and Monitor Cultural Heritage: From Medical to Conservation Diagnosis. Angew. Chem. Int. Ed. 2018, 57, 7385–7389. [Google Scholar] [CrossRef]
- Zangheri, M.; Mirasoli, M.; Guardigli, M.; Di Nardo, F.; Anfossi, L.; Baggiani, C.; Simoni, P.; Benassai, M.; Roda, A. Chemiluminescence-based biosensor for monitoring astronauts’ health status during space missions: Results from the International Space Station. Biosens. Bioelectron. 2019, 129, 260–268. [Google Scholar] [CrossRef]
- Calabretta, M.M.; Zangheri, M.; Calabria, D.; Lopreside, A.; Montali, L.; Marchegiani, E.; Trozzi, I.; Guardigli, M.; Mirasoli, M.; Michelini, E. Paper-Based Immunosensors with Bio-Chemiluminescence Detection. Sensors 2021, 21, 4309. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R.; Leng, L.; Guenther, A.; Genov, R. A CMOS-Microfluidic Chemiluminescence Contact Imaging Microsystem. IEEE J. Solid-State Circuits 2012, 47, 2822–2833. [Google Scholar] [CrossRef]
- Greenbaum, A.; Zhang, Y.; Feizi, A.; Chung, P.-L.; Luo, W.; Kandukuri, S.R.; Ozcan, A. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 2014, 6, 267ra175. [Google Scholar] [CrossRef] [PubMed]
- Göröcs, Z.; Ozcan, A. On-Chip Biomedical Imaging. IEEE Rev. Biomed. Eng. 2013, 6, 29–46. [Google Scholar] [CrossRef]
- Moon, S.; Keles, H.O.; Kim, Y.G.; Kuritzkes, D.; Demirci, U. Lensless imaging for point-of-care testing. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 6376–6379. [Google Scholar]
- Chaudhary, V.; Kaushik, A.; Furukawa, H.; Khosla, A. Review—Towards 5th Generation AI and IoT Driven Sustainable Intelligent Sensors Based on 2D MXenes and Borophene. ECS Sens. Plus 2022, 1, 013601. [Google Scholar] [CrossRef]
- Sagar Shrikrishna, N.; Sharma, R.; Sahoo, J.; Kaushik, A.; Gandhi, S. Navigating the landscape of optical biosensors. Chem. Eng. J. 2024, 490, 151661. [Google Scholar] [CrossRef]
- Amini, A.; Khavari, A.; Barthelat, F.; Ehrlicher, A.J. Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite. Science 2021, 373, 1229–1234. [Google Scholar] [CrossRef]
- Jain, S.; Nehra, M.; Kumar, R.; Dilbaghi, N.; Hu, T.; Kumar, S.; Kaushik, A.; Li, C.-z. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens. Bioelectron. 2021, 179, 113074. [Google Scholar] [CrossRef]
- Chugh, V.; Basu, A.; Kaushik, N.K.; Kaushik, A.; Mishra, Y.K.; Basu, A.K. Smart nanomaterials to support quantum-sensing electronics. Mater. Today Electron. 2023, 6, 100067. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Rogers, J.A.; Xu, S. Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Sci. Adv. 2020, 6, eabd4794. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J.-Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Knežević, S.; Kerr, E.; Goudeau, B.; Valenti, G.; Paolucci, F.; Francis, P.S.; Kanoufi, F.; Sojic, N. Bimodal Electrochemiluminescence Microscopy of Single Cells. Anal. Chem. 2023, 95, 7372–7378. [Google Scholar] [CrossRef]
- Taniguchi, M. Combination of Single-Molecule Electrical Measurements and Machine Learning for the Identification of Single Biomolecules. ACS Omega 2020, 5, 959–964. [Google Scholar] [CrossRef]
- Firoozbakhtian, A.; Sojic, N.; Xu, G.; Hosseini, M. Electrochemiluminescence Sensors in Bioanalysis. In Encyclopedia of Sensors and Biosensors, 1st ed.; Narayan, R., Ed.; Elsevier: Oxford, UK, 2023; pp. 317–340. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Pattnaik, P.K.; Goel, S. A brief review on miniaturized electrochemiluminescence devices: From fabrication to applications. Curr. Opin. Electrochem. 2021, 30, 100800. [Google Scholar] [CrossRef]
- Mousavizadegan, M.; Firoozbakhtian, A.; Hosseini, M.; Ju, H. Machine learning in analytical chemistry: From synthesis of nanostructures to their applications in luminescence sensing. TrAC Trends Anal. Chem. 2023, 167, 117216. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Bhaiyya, M.; Dudala, S.; Hota, C.; Goel, S. A machine learning approach for electrochemiluminescence based point of care testing device to detect multiple biomarkers. Sens. Actuators A Phys. 2023, 350, 114135. [Google Scholar] [CrossRef]
- Firoozbakhtian, A.; Hosseini, M.; Sheikholeslami, M.N.; Salehnia, F.; Xu, G.; Rabbani, H.; Sobhanie, E. Detection of COVID-19: A Smartphone-Based Machine-Learning-Assisted ECL Immunoassay Approach with the Ability of RT-PCR CT Value Prediction. Anal. Chem. 2022, 94, 16361–16368. [Google Scholar] [CrossRef]
- Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta 2000, 51, 415–439. [Google Scholar] [CrossRef] [PubMed]
- Kricka, L.J. Clinical applications of chemiluminescence. Anal. Chim. Acta 2003, 500, 279–286. [Google Scholar] [CrossRef]
- Barnett, N.; Francis, P. Chemiluminescence: Liquid-Phase. 2005. Available online: https://dro.deakin.edu.au/articles/journal_contribution/Chemiluminescence_liquid-phase/20569734 (accessed on 15 July 2024).
- Firoozbakhtian, A.; Hosseini, M. Chemiluminescence Sensors in Bioanalysis. In Encyclopedia of Sensors and Biosensors, 1st ed.; Narayan, R., Ed.; Elsevier: Oxford, UK, 2023; pp. 341–356. [Google Scholar] [CrossRef]
- Kazak, A.; Plugatar, Y.; Johnson, J.; Grishin, Y.; Chetyrbok, P.; Korzin, V.; Kaur, P.; Kokodey, T. The Use of Machine Learning for Comparative Analysis of Amperometric and Chemiluminescent Methods for Determining Antioxidant Activity and Determining the Phenolic Profile of Wines. Appl. Syst. Innov. 2022, 5, 104. [Google Scholar] [CrossRef]
- Syed, A.J.; Anderson, J.C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 2021, 50, 5668–5705. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-C.; Wei, C.-D.; Belkin, S.; Hsieh, T.-H.; Cheng, J.-Y. Machine-learning assisted antibiotic detection and categorization using a bacterial sensor array. Sens. Actuators B Chem. 2022, 355, 131257. [Google Scholar] [CrossRef]
- Denisov, I.A. Luciferase-based bioassay for rapid pollutants detection and classification by means of multilayer artificial neural networks. Sens. Actuators B Chem. 2017, 242, 653–657. [Google Scholar] [CrossRef]
Characteristics | PMT | APD | Plate Reader * (PMT) | CCD | CMOS |
---|---|---|---|---|---|
Photosensitivity (A/W) | 0.02–0.09 | 0.2–0.9 | 0.02–0.09 | 0.3–0.4 | 0.3–0.5 |
Gain | 105–107 | 10–100 | 105–107 | ––––– | ––––– |
Dynamic Range (dB) | ––––– | ––––– | ––––– | 60–90 | 50–70 |
Quantum Efficiency (%) | 20–35 | 70–85 | 20–25 | 75–90 | 70–90 |
Dark Current ** (nA) | 0.5–5 | 0.1–100 | 0.5–5 | 10−10–10−8 | 10−8–10−7 |
Cost | Expensive | Moderate | Expensive | Moderate | Low |
Power Consumption | High | Moderate | High | High | Low |
Size/Portability | Bulky | Compact | Bulky | Compact | Compact |
Multiplexing | No | No | Yes | Yes | Yes |
POC | No | Yes | No | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, R.; Hu, X.; Zhang, A.; Dummer, I.; Wachsmann-Hogiu, S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering 2024, 11, 912. https://doi.org/10.3390/bioengineering11090912
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering. 2024; 11(9):912. https://doi.org/10.3390/bioengineering11090912
Chicago/Turabian StyleAbbasi, Reza, Xinyue Hu, Alain Zhang, Isabelle Dummer, and Sebastian Wachsmann-Hogiu. 2024. "Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors" Bioengineering 11, no. 9: 912. https://doi.org/10.3390/bioengineering11090912
APA StyleAbbasi, R., Hu, X., Zhang, A., Dummer, I., & Wachsmann-Hogiu, S. (2024). Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering, 11(9), 912. https://doi.org/10.3390/bioengineering11090912