Effect of Adapted Ergometer Setup and Rowing Speed on Lower Extremity Loading in People with and Without Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instrumentation
2.3. Experimental Protocol
2.4. Data Analyses
2.5. Statistical Analyses
3. Results
3.1. Effect of Rowing Speed
3.2. Effect of Knee Range of Motion (RoM)
3.3. Effect of Seat Position
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, C.O.; Battaglino, R.A.; Morse, L.R. Spinal Cord Injury and Osteoporosis: Causes, Mechanisms, and Rehabilitation Strategies. Int. J. Phys. Med. Rehabil. 2013, 1, 127. [Google Scholar] [PubMed]
- Panisset, M.G.; Galea, M.P.; El-Ansary, D. Does Early Exercise Attenuate Muscle Atrophy or Bone Loss after Spinal Cord Injury? Spinal Cord 2016, 54, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Hammond, E.R.; Metcalf, H.M.; McDonald, J.W.; Sadowsky, C.L. Bone Mass in Individuals with Chronic Spinal Cord Injury: Associations with Activity-Based Therapy, Neurologic and Functional Status, a Retrospective Study. Arch. Phys. Med. Rehabil. 2014, 95, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Dolbow, D.R.; Gorgey, A.S.; Daniels, J.A.; Adler, R.A.; Moore, J.R.; Gater, D.R. The Effects of Spinal Cord Injury and Exercise on Bone Mass: A Literature Review. NeuroRehabilitation 2011, 29, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Lai, C.-H.; Chan, W.P.; Huang, M.-H.; Tsai, H.-W.; Chen, J.-J.J. Increases in Bone Mineral Density after Functional Electrical Stimulation Cycling Exercises in Spinal Cord Injured Patients. Disabil. Rehabil. 2005, 27, 1337–1341. [Google Scholar] [CrossRef]
- Groah, S.L.; Lichy, A.M.; Libin, A.V.; Ljungberg, I. Intensive Electrical Stimulation Attenuates Femoral Bone Loss in Acute Spinal Cord Injury. PM R 2010, 2, 1080–1087. [Google Scholar] [CrossRef]
- Dudley-Javoroski, S.; Saha, P.K.; Liang, G.; Li, C.; Gao, Z.; Shields, R.K. High Dose Compressive Loads Attenuate Bone Mineral Loss in Humans with Spinal Cord Injury. Osteoporos. Int. 2012, 23, 2335–2346. [Google Scholar] [CrossRef]
- Andrews, B.; Shippen, J.; Armengol, M.; Gibbons, R.; Holderbaum, W.; Harwin, W. A Design Method for FES Bone Health Therapy in SCI. Eur. J. Transl. Myol. 2016, 26, 6419. [Google Scholar] [CrossRef]
- Morse, L.R.; Troy, K.L.; Fang, Y.; Nguyen, N.; Battaglino, R.; Goldstein, R.F.; Gupta, R.; Taylor, J.A. Combination Therapy With Zoledronic Acid and FES-Row Training Mitigates Bone Loss in Paralyzed Legs: Results of a Randomized Comparative Clinical Trial. JBMR Plus 2019, 3, e10167. [Google Scholar] [CrossRef]
- Lambach, R.L.; Stafford, N.E.; Kolesar, J.A.; Kiratli, B.J.; Creasey, G.H.; Gibbons, R.S.; Andrews, B.J.; Beaupre, G.S. Bone Changes in the Lower Limbs from Participation in an FES Rowing Exercise Program Implemented within Two Years after Traumatic Spinal Cord Injury. J. Spinal Cord Med. 2020, 43, 306–314. [Google Scholar] [CrossRef]
- Deley, G.; Denuziller, J.; Casillas, J.-M.; Babault, N. One Year of Training with FES Has Impressive Beneficial Effects in a 36-Year-Old Woman with Spinal Cord Injury. J. Spinal Cord Med. 2017, 40, 107–112. [Google Scholar] [CrossRef]
- Draghici, A.E.; Picard, G.; Taylor, J.A.; Shefelbine, S.J. Assessing Kinematics and Kinetics of Functional Electrical Stimulation Rowing. J. Biomech. 2017, 53, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.S.; McCarthy, I.D.; Gall, A.; Stock, C.G.; Shippen, J.; Andrews, B.J. Can FES-Rowing Mediate Bone Mineral Density in SCI: A Pilot Study. Spinal Cord 2014, 52 (Suppl. S3), S4–S5. [Google Scholar] [CrossRef]
- Halliday, S.E.; Zavatsky, A.B.; Hase, K. Can Functional Electric Stimulation-Assisted Rowing Reproduce a Race-Winning Rowing Stroke? Arch. Phys. Med. Rehabil. 2004, 85, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Chandran, V.D.; Lambach, R.L.; Gibbons, R.S.; Andrews, B.J.; Beaupre, G.S.; Pal, S. Tibiofemoral Forces during FES Rowing in Individuals with Spinal Cord Injury. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Černe, T.; Kamnik, R.; Vesnicer, B.; Žganec Gros, J.; Munih, M. Differences between Elite, Junior and Non-Rowers in Kinematic and Kinetic Parameters during Ergometer Rowing. Hum. Mov. Sci. 2013, 32, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Buckeridge, E.M.; Bull, A.M.J.; McGregor, A.H. Biomechanical Determinants of Elite Rowing Technique and Performance. Scand. J. Med. Sci. Sports 2015, 25, e176–e183. [Google Scholar] [CrossRef] [PubMed]
- Vinther, A.; Alkjaer, T.; Kanstrup, I.-L.; Zerahn, B.; Ekdahl, C.; Jensen, K.; Holsgaard-Larsen, A.; Aagaard, P. Slide-Based Ergometer Rowing: Effects on Force Production and Neuromuscular Activity. Scand. J. Med. Sci. Sports 2013, 23, 635–644. [Google Scholar] [CrossRef]
- Buckeridge, E.M.; Weinert-Aplin, R.A.; Bull, A.M.J.; McGregor, A.H. Influence of Foot-Stretcher Height on Rowing Technique and Performance. Sports Biomech. 2016, 15, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.L.; Popovic, M.R. Functional Electrical Stimulation. IEEE Control Syst. Mag. 2008, 28, 40–50. [Google Scholar] [CrossRef]
- Martin, R.; Sadowsky, C.; Obst, K.; Meyer, B.; McDonald, J. Functional Electrical Stimulation in Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2012, 18, 28–33. [Google Scholar] [CrossRef]
- Gerrits, H.L.; De Haan, A.; Hopman, M.T.; van Der Woude, L.H.; Jones, D.A.; Sargeant, A.J. Contractile Properties of the Quadriceps Muscle in Individuals with Spinal Cord Injury. Muscle Nerve 1999, 22, 1249–1256. [Google Scholar] [CrossRef]
- Davoodi, R.; Andrews, B.J.; Wheeler, G.D.; Lederer, R. Development of an Indoor Rowing Machine with Manual FES Controller for Total Body Exercise in Paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 197–203. [Google Scholar] [CrossRef]
- Taylor, J.A.; Picard, G.; Widrick, J.J. Aerobic Capacity With Hybrid FES Rowing in Spinal Cord Injury: Comparison With Arms-Only Exercise and Preliminary Findings with Regular Training. PM R 2011, 3, 817–824. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion--Part I: Ankle, Hip, and Spine. International Society of Biomechanics. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Moments of Force and Mechanical Power in Jogging. J. Biomech. 1983, 16, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.K.M.; Arnold, A.S.; Wakeling, J.M. Why Are Antagonist Muscles Co-Activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks. Ann. Biomed. Eng. 2017, 45, 2762–2774. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. Static and Dynamic Optimization Solutions for Gait Are Practically Equivalent. J. Biomech. 2001, 34, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Morse, L.R.; Nguyen, N.; Tsantes, N.G.; Troy, K.L. Anthropometric and Biomechanical Characteristics of Body Segments in Persons with Spinal Cord Injury. J. Biomech. 2017, 55, 11–17. [Google Scholar] [CrossRef]
- Černe, T.; Kamnik, R.; Munih, M. The Measurement Setup for Real-Time Biomechanical Analysis of Rowing on an Ergometer. Measurement 2011, 44, 1819–1827. [Google Scholar] [CrossRef]
- Hase, K.; Kaya, M.; Zavatsky, A.B.; Halliday, S.E. Musculoskeletal Loads in Ergometer Rowing. J. Appl. Biomech. 2004, 20, 317–323. [Google Scholar] [CrossRef]
- Fang, Y.; Morse, L.R.; Nguyen, N.; Battaglino, R.A.; Goldstein, R.F.; Troy, K.L. Functional Electrical Stimulation (FES)-Assisted Rowing Combined with Zoledronic Acid, but Not Alone, Preserves Distal Femur Strength and Stiffness in People with Chronic Spinal Cord Injury. Osteoporos. Int. 2021, 32, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Dudley-Javoroski, S.; Shields, R.K. Active-Resisted Stance Modulates Regional Bone Mineral Density in Humans with Spinal Cord Injury. J. Spinal Cord Med. 2013, 36, 191–199. [Google Scholar] [CrossRef]
Target Knee Angle, RoM, and Speed (SPM) | Achieved Knee Angle, RoM, and Speed (SPM) | Peak Foot Reaction Force (BW) | Peak Knee Moment (Nm/kg) | Peak Tibiofemoral Force (BW) |
---|---|---|---|---|
self-selected | 114–176°, 62°, 53 | 0.39 | 0.49 | 1.83 |
45–115°, 70°, 40 | 65–138°, 73°, 42 | 0.26 | 0.40 | 1.96 |
45–135°, 90°, 40 | 117–175°, 58°, 52 | |||
45–115°, 70°, 35 | 63–130°, 67°, 31 | 0.28 | 0.41 | 1.21 |
45–135°, 90°, 35 | 71–179°, 108°, 29 | 0.27 | 0.36 | 1.97 |
45–165°, 120°, 35 | 146–175°, 29°, 27 | |||
70–140°, 70°, 35 | 92–174°, 82°, 36 | 0.29 | 0.36 | 2.23 |
mean | 0.3 | 0.4 | 1.81 | |
maximum | 0.39 | 0.49 | 2.23 | |
minimum | 0.26 | 0.36 | 1.21 |
Knee RoM | Speed (SPM) | Peak Foot Reaction Force (BW) | Peak Knee Moment (Nm/kg) |
---|---|---|---|
RoM 70° (45–115°) | 25 SPM | 0.26 (0.06) * | 0.29 (0.14) * |
35 SPM | 0.36 (0.06) Ϯ | 0.54 (0.24) | |
40 SPM | 0.42 (0.08) § | 0.63 (0.32) § | |
RoM 90° (45–135°) | 25 SPM | 0.29 (0.07) * | 0.34 (0.15) * |
35 SPM | 0.39 (0.07) Ϯ | 0.63 (0.26) Ϯ | |
40 SPM | 0.45 (0.08) § | 0.71 (0.31) § |
Speed (SPM) | Knee RoM | Peak Foot Reaction Force (BW) | Peak Knee Moment (Nm/kg) |
---|---|---|---|
25 SPM | RoM 70° | 0.26 (0.06) * | 0.29 (0.14) * |
RoM 90° | 0.29 (0.07) | 0.34 (0.15) | |
RoM 120° | 0.30 (0.07) § | 0.39 (0.26) § | |
35 SPM | RoM 70° | 0.36 (0.06) * | 0.54 (0.24) * |
RoM 90° | 0.39 (0.07) | 0.63 (0.26) | |
RoM 120° | 0.41 (0.08) § | 0.61 (0.27) § |
Speed (SPM) | Seat Position | Peak Foot Reaction Force (BW) | Peak Knee Moment (Nm/kg) |
---|---|---|---|
25 SPM | Forward | 0.26 (0.06) | 0.29 (0.14) * |
Middle | 0.24 (0.07) | 0.19 (0.14) | |
Rear | 0.22 (0.07) § | 0.14 (0.12) § | |
35 SPM | Forward | 0.36 (0.06) | 0.54 (0.24) * |
Middle | 0.33 (0.08) | 0.34 (0.19) Ϯ | |
Rear | 0.29 (0.07) § | 0.22 (0.14) § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Troy, K.L. Effect of Adapted Ergometer Setup and Rowing Speed on Lower Extremity Loading in People with and Without Spinal Cord Injury. Bioengineering 2025, 12, 75. https://doi.org/10.3390/bioengineering12010075
Fang Y, Troy KL. Effect of Adapted Ergometer Setup and Rowing Speed on Lower Extremity Loading in People with and Without Spinal Cord Injury. Bioengineering. 2025; 12(1):75. https://doi.org/10.3390/bioengineering12010075
Chicago/Turabian StyleFang, Ying, and Karen L. Troy. 2025. "Effect of Adapted Ergometer Setup and Rowing Speed on Lower Extremity Loading in People with and Without Spinal Cord Injury" Bioengineering 12, no. 1: 75. https://doi.org/10.3390/bioengineering12010075
APA StyleFang, Y., & Troy, K. L. (2025). Effect of Adapted Ergometer Setup and Rowing Speed on Lower Extremity Loading in People with and Without Spinal Cord Injury. Bioengineering, 12(1), 75. https://doi.org/10.3390/bioengineering12010075