Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Harvesting
2.2. Test Apparatus
2.3. Biomechanical Testing
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nordin, L.; Sinisi, M. Brachial plexus-avulsion causing Brown-Sequard syndrome: A report of three cases. J. Bone Jt. Surg. Br. 2009, 91, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Akita, S.; Wada, E.; Kawai, H. Combined injuries of the brachial plexus and spinal cord. J. Bone Jt. Surg. Br. 2006, 88, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Grundy, D.J.; Silver, J.R. Combined brachial plexus and spinal cord trauma. Injury 1983, 15, 57–61. [Google Scholar] [CrossRef]
- Roaf, R. Lateral flexion injuries of the cervical spine. J. Bone Jt. Surg. Br. 1963, 45, 36–38. [Google Scholar] [CrossRef]
- Russell, N.A.; Mangan, M.A. Acute spinal cord compression by subarachnoid and subdural hematoma occurring in association with brachial plexus avulsion. Case report. J. Neurosurg. 1980, 52, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Warade, A.C.; Jha, A.K.; Pattankar, S.; Desai, K. Radiation-induced brachial plexus neuropathy: A review. Neurol. India 2019, 67, S47–S52. [Google Scholar] [CrossRef]
- Mahan, M.A. Nerve stretching: A history of tension. J. Neurosurg. 2020, 132, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Glover, N.M.; Black, A.C.; Murphy, P.B. Anatomy, Shoulder and Upper Limb, Radial Nerve. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Becker, R.E.; Manna, B. Anatomy, Shoulder and Upper Limb, Ulnar Nerve. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Brand, M.C. Part 1: Recognizing neonatal spinal cord injury. Adv. Neonatal. Care 2006, 6, 15–24. [Google Scholar] [CrossRef]
- Moran, S.L.; Steinmann, S.P.; Shin, A.Y. Adult brachial plexus injuries: Mechanism, patterns of injury, and physical diagnosis. Hand Clin. 2005, 21, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, J.; Wang, J.; Zhang, T.; Chen, Z. Review of rehabilitation protocols for brachial plexus injury. Front. Neurol. 2023, 14, 1084223. [Google Scholar] [CrossRef]
- Davis, D.; Roshan, A.; Varacallo, M. Shoulder Dystocia. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Destandau, J.; Micallef, J.P.; Rabischong, P. An experimental study of traction on the cervical spinal nerves. Surg. Radiol. Anat. 1986, 8, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Zapałowicz, K.; Radek, A. Mechanical properties of the human brachial plexus. Neurol. Neurochir. Pol. 2000, 34 (Suppl. 6), 89–93. [Google Scholar] [PubMed]
- Zapałowicz, K.; Radek, A. Experimental investigations of traction injury of the brachial plexus. Model and results. Ann. Acad. Med. Stetin. 2005, 51, 11–14. [Google Scholar] [PubMed]
- Ma, Z.; Hu, S.; Tan, J.S.; Myer, C.; Njus, N.M.; Xia, Z. In vitro and in vivo mechanical properties of human ulnar and median nerves. J. Biomed. Mater. Res. Part A 2013, 101, 2718–2725. [Google Scholar] [CrossRef]
- Zapałowicz, K.; Radek, M. The distribution of brachial plexus lesions after experimental traction: A cadaveric study. J. Neurosurg. Spine 2018, 29, 704–710. [Google Scholar] [CrossRef]
- Stouthandel, M.E.J.; Vanhove, C.; Devriendt, W.; De Bock, S.; Debbaut, C.; Vangestel, C.; Van Hoof, T. Biomechanical comparison of Thiel embalmed and fresh frozen nerve tissue. Anat. Sci. Int. 2020, 95, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Kawai, H.; Ohta, I.; Masatomi, T.; Kawabata, H.; Masada, K.; Ono, K. Stretching of the brachial plexus in rabbits. Acta Orthop. Scand. 1989, 60, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Shaji, S.; Delivoria-Papadopoulos, M.; Balasubramanian, S. Biomechanical Responses of Neonatal Brachial Plexus to Mechanical Stretch. J. Brachial Plex. Peripher. Nerve Inj. 2018, 13, e8–e14. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Lu, Y.; Chen, C.; Cavanaugh, J.M. Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J. Biomech. 2006, 39, 1669–1676. [Google Scholar] [CrossRef]
- Majmudar, T.; Balasubramanian, S.; Magee, R.; Gonik, B.; Singh, A. In-vitro stress relaxation response of neonatal peripheral nerves. J. Biomech. 2021, 128, 110702. [Google Scholar] [CrossRef]
- Singh, A. Extent of impaired axoplasmic transport and neurofilament compaction in traumatically injured axon at various strains and strain rates. Brain Inj. 2017, 31, 1387–1395. [Google Scholar] [CrossRef]
- Singh, A.; Kallakuri, S.; Chen, C.; Cavanaugh, J.M. Structural and functional changes in nerve roots due to tension at various strains and strain rates: An in-vivo study. J. Neurotrauma 2009, 26, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Pratt, H.; Amlie, R.N.; Starr, A. Short latency mechanically evoked peripheral nerve and somatosensory potentials in newborn infants. Pediatr. Res. 1981, 15 Pt 1, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Bhandekar, H.S.; Korday, C.S. Traumatic peripheral neuropraxias in neonates: A case series. J. Clin. Diagn. Res. 2014, 8, PD10–PD12. [Google Scholar] [CrossRef] [PubMed]
- Orozco, V.; Balasubramanian, S.; Singh, A. A Systematic Review of the Electrodiagnostic Assessment of Neonatal Brachial Plexus. Neurol. Neurobiol. 2020, 3, 1–25. [Google Scholar] [CrossRef]
- Orozco, V.; Magee, R.; Balasubramanian, S.; Singh, A. A Systematic Review of the Tensile Biomechanical Properties of the Neonatal Brachial Plexus. J. Biomech. Eng. 2021, 143, 110802. [Google Scholar] [CrossRef] [PubMed]
- Abid, A. Brachial plexus birth palsy: Management during the first year of life. Orthop. Traumatol. Surg. Res. 2016, 102 (Suppl. 1), S125–S132. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Magee, R.; Balasubramanian, S. Methods for In Vivo Biomechanical Testing on Brachial Plexus in Neonatal Piglets. J. Vis. Exp. 2019, 154, 1–15. [Google Scholar] [CrossRef]
- Orozco, V.; Balasubramanian, S.; Singh, A. Direct Linear Transformation for the Measurement of In-Situ Peripheral Nerve Strain During Stretching. J. Vis. Exp. 2024, 203. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, T.L. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 2008, 3, 034001. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, S.; Bradley, K.C. Stress-strain phenomena in human peripheral nerve trunks. Brain 1961, 84, 102–119. [Google Scholar] [CrossRef]
- Takai, S.; Dohno, H.; Watanabe, Y.; Yoshino, N.; Ogura, T.; Hirasawa, Y. In situ strain and stress of nerve conduction blocking in the brachial plexus. J. Orthop. Res. 2002, 20, 1311–1314. [Google Scholar] [CrossRef]
- Yamada, H.; Evans, F.G. Strength of Biological Materials; Williams & Wilkins: Philadelphia, PA, USA, 1970. [Google Scholar]
- Iaconianni, J.A.; Balasubramanian, S.; Grimm, M.J.; Gonik, B.; Singh, A. Studying the Effects of Shoulder Dystocia and Neonate-Focused Delivery Maneuvers on Brachial Plexus Strain: A Computational Study. J. Biomech. Eng. 2024, 146, 021009. [Google Scholar] [CrossRef]
- Singh, A. Available Computational and Physical Models to Understand the Mechanisms of Neonatal Brachial Plexus Injury During Shoulder Dystocia. Open Access J. Neurol. Neurosurg. 2019, 9, 1–3. [Google Scholar] [CrossRef]
Total # of Samples | Avulsion Strain (%) | Avulsion Load (N) | ||
---|---|---|---|---|
Average | Stdev | Average | Stdev | |
27 | 27.9 | 6.5 | 3.9 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Ghuge, K.; Patni, Y.; Balasubramanian, S. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model. Bioengineering 2025, 12, 91. https://doi.org/10.3390/bioengineering12010091
Singh A, Ghuge K, Patni Y, Balasubramanian S. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model. Bioengineering. 2025; 12(1):91. https://doi.org/10.3390/bioengineering12010091
Chicago/Turabian StyleSingh, Anita, Kalyani Ghuge, Yashvy Patni, and Sriram Balasubramanian. 2025. "Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model" Bioengineering 12, no. 1: 91. https://doi.org/10.3390/bioengineering12010091
APA StyleSingh, A., Ghuge, K., Patni, Y., & Balasubramanian, S. (2025). Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model. Bioengineering, 12(1), 91. https://doi.org/10.3390/bioengineering12010091