Open Microfluidic Cell Culture in Hydrogels Enabled by 3D-Printed Molds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three-Dimensionally-Printed Mold Fabrication
2.2. Agarose and Gelatin Hydrogel Preparation and Loading into Multiwell Plate
2.3. Collagen Gel Preparation and Loading into Multiwell Plate
2.4. Cell Culture
2.5. Open-Channel Cell Culture for Blood Vessel Mimics
2.6. Immunofluorescence Staining and Imaging
2.7. Cell Viability Analysis
2.8. Statistical Analysis
3. Results
3.1. Generating Hydrogel Models Using 3D-Printed Molds
3.2. Generation of Various Architectures in Agarose and Gelatin
3.3. Characterization of Open Channels in Collagen
3.4. Formation and Characterization of Open Blood Vessel Mimics
3.5. Effect of Mild Hypoxia on Open Blood Vessel Mimics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, B.X.; Pek, N.M.Q.; Soh, B.S. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2018, 19, 936. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Martinez, E.; Suazo-Sanchez, I.; Celis-Romero, M.; Carnero, A. 3D and organoid culture in research: Physiology, hereditary genetic diseases and cancer. Cell Biosci. 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Prim. 2022, 2, 33. [Google Scholar] [CrossRef]
- Ong, L.J.Y.; Fan, X.; Sun, A.R.; Mei, L.; Toh, Y.C.; Prasadam, I. Controlling Microenvironments with Organs-on-Chips for Osteoarthritis Modelling. Cells 2023, 12, 579. [Google Scholar] [CrossRef]
- Yeo, L.Y.; Chang, H.C.; Chan, P.P.; Friend, J.R. Microfluidic devices for bioapplications. Small 2011, 7, 12–48. [Google Scholar] [CrossRef] [PubMed]
- Meyvantsson, I.; Beebe, D.J. Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 2008, 1, 423–449. [Google Scholar] [CrossRef]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Byun, C.K.; Abi-Samra, K.; Cho, Y.K.; Takayama, S. Pumps for microfluidic cell culture. Electrophoresis 2014, 35, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, Y.; Paul, R.; Qin, X.; Islam, K.; Liu, Y. Adaptable Microfluidic Vessel-on-a-Chip Platform for Investigating Tumor Metastatic Transport in Bloodstream. Anal. Chem. 2022, 18, 18. [Google Scholar] [CrossRef]
- Gong, M.M.; Lugo-Cintron, K.M.; White, B.R.; Kerr, S.C.; Harari, P.M.; Beebe, D.J. Human organotypic lymphatic vessel model elucidates microenvironment-dependent signaling and barrier function. Biomaterials 2019, 214, 119225. [Google Scholar] [CrossRef] [PubMed]
- Berthier, E.; Dostie, A.M.; Lee, U.N.; Berthier, J.; Theberge, A.B. Open Microfluidic Capillary Systems. Anal. Chem. 2019, 91, 8739–8750. [Google Scholar] [CrossRef] [PubMed]
- Davey, N.; Neild, A. Pressure-driven flow in open fluidic channels. J. Colloid Interface Sci. 2011, 357, 534–540. [Google Scholar] [CrossRef]
- Efremov, A.N.; Stanganello, E.; Welle, A.; Scholpp, S.; Levkin, P.A. Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell–cell communication. Biomaterials 2013, 34, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.N.; Su, X.; Guckenberger, D.J.; Dostie, A.M.; Zhang, T.; Berthier, E.; Theberge, A.B. Fundamentals of rapid injection molding for microfluidic cell-based assays. Lab Chip 2018, 18, 496. [Google Scholar] [CrossRef]
- Lade, R.K.; Hippchen, E.J.; Macosko, C.W.; Francis, L.F. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels. Langmuir 2017, 33, 2949–2964. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.J.; Feuerborn, A.; Wheeler, J.H.; Tan, A.N.; Durham, W.M.; Foster, K.R.; Cook, P.R. Microfluidics with fluid walls. Nat. Commun. 2017, 8, 816. [Google Scholar] [CrossRef] [PubMed]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Trinh, K.T.L.; Thai, D.A.; Lee, N.Y. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. Micromachines 2022, 13, 1503. [Google Scholar] [CrossRef]
- Groot, T.E.D.; Veserat, K.S.; Berthier, E.; Beebe, D.J.; Theberge, A.B. Surface-tension driven open microfluidic platform for hanging droplet culture. Lab Chip 2016, 16, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hite, Z.; Warrick, J.W.; Li, J.; Geller, S.H.; Trantow, V.G.; McClean, M.N.; Beebe, D.J. Under oil open-channel microfluidics empowered by exclusive liquid repellency. Sci. Adv. 2020, 6, eaay9919. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.M.; Vilabril, S.; Oliveira, M.B.; Reis, R.L.; Mano, J.F. Recent advances on open fluidic systems for biomedical applications: A review. Mater. Sci. Eng. C 2019, 97, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Feng, S.; Lin, L.; Mao, S.; Lin, J.M. Emerging open microfluidics for cell manipulation. Chem. Soc. Rev. 2021, 50, 5333–5348. [Google Scholar] [CrossRef] [PubMed]
- Kaigala, V.; Lovchik, R.D.; Delamarche, E.; Kaigala, G.V.; Delamarche, E.; Lovchik, R.D. Microfluidics in the “Open Space” for Performing Localized Chemistry on Biological Interfaces. Angew. Chem. Int. Ed. 2012, 51, 11224–11240. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.B.; Zhang, T.; Day, J.H.; Su, X.; Wilson, I.Z.; Berthier, E.; Theberge, A.B. Upgrading well plates using open microfluidic patterning. Lab Chip 2017, 17, 4253–4264. [Google Scholar] [CrossRef]
- Priest, D.G.; Tanaka, N.; Tanaka, Y.; Taniguchi, Y. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells. Sci. Rep. 2017, 7, 17750. [Google Scholar] [CrossRef] [PubMed]
- Pepelanova, I.; Kruppa, K.; Scheper, T.; Lavrentieva, A. Gelatin-Methacryloyl (GelMA) Hydrogels with Defined Degree of Functionalization as a Versatile Toolkit for 3D Cell Culture and Extrusion Bioprinting. Bioengineering 2018, 5, 55. [Google Scholar] [CrossRef]
- Paguirigan, A.; Beebe, D.J. Gelatin based microfluidic devices for cell culture. Lab Chip 2006, 6, 407–413. [Google Scholar] [CrossRef]
- Sasaki, S.; Suzuki, T.; Morikawa, K.; Matsusaki, M.; Sato, K. Fabrication of a Gelatin-Based Microdevice for Vascular Cell Culture. Micromachines 2023, 14, 107. [Google Scholar] [CrossRef] [PubMed]
- Pak, O.; Aldashev, A.; Welsh, D.; Peacock, A. The effects of hypoxia on the cells of the pulmonary vasculature. Eur. Respir. J. 2007, 30, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Norcross, J.R.; Conkin, J.; Wessel, J.H.; Norsk, P.; Law, J.; Arias, D.; Goodwin, T.; Crucian, B.; Whitmire, A.; Bloomberg, J.; et al. Evidence Report: Risk of Hypobaric Hypoxia from the Exploration Atmosphere. 2015. Available online: https://ntrs.nasa.gov/citations/20150021491 (accessed on 1 December 2024).
- Abercromby, A.F.; Gernhardt, M.L.; Conkin, J. Fifteen-minute extravehicular activity prebreathe protocol using NASA’s exploration atmosphere (8.2 psia /34% O2). In Proceedings of the 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013. [Google Scholar] [CrossRef]
- Au, A.K.; Lee, W.; Folch, A. Mail-Order Microfluidics: Evaluation of Stereolithography for the Production of Microfluidic Devices. Lab Chip 2014, 14, 1294–1301. [Google Scholar] [CrossRef]
- Bae, J.; Kim, M.H.; Han, S.; Park, S. Development of Tumor-Vasculature Interaction on Chip Mimicking Vessel Co-Option of Glioblastoma. Biochip J. 2023, 17, 77–84. [Google Scholar] [CrossRef]
- Choi, D.H.; Oh, D.; Na, K.; Kim, H.; Choi, D.; Jung, Y.H.; Ahn, J.; Kim, J.; Kim, C.H.; Chung, S. Radiation induces acute and subacute vascular regression in a three-dimensional microvasculature model. Front. Oncol. 2023, 13, 1252014. [Google Scholar] [CrossRef] [PubMed]
- Baldea, I.; Teacoe, I.; Olteanu, D.E.; Vaida-Voievod, C.; Clichici, A.; Sirbu, A.; Filip, G.A.; Clichici, S. Effects of different hypoxia degrees on endothelial cell cultures—Time course study. Mech. Ageing Dev. 2018, 172, 45–50. [Google Scholar] [CrossRef]
- Song, J.; Miermont, A.; Lim, C.T.; Kamm, R.D. A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines. Sci. Rep. 2018, 8, 17949. [Google Scholar] [CrossRef]
- Zhang, B.; Niu, W.; Dong, H.Y.; Liu, M.L.; Luo, Y.; Li, Z.C. Hypoxia induces endothelial-mesenchymal transition in pulmonary vascular remodeling. Int. J. Mol. Med. 2018, 42, 270. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Liu, J.; Zhou, M.; Wang, G.; Xiong, X.; Deng, Y. Hypoxia-induced interstitial transformation of microvascular endothelial cells by mediating HIF-1a/VEGF signaling in systemic sclerosis. PLoS ONE 2022, 17, e0263369. [Google Scholar] [CrossRef]
- Mendes, R.T.; Nguyen, D.; Stephens, D.; Pamuk, F.; Fernandes, D.; Hasturk, H.; Dyke, T.E.V.; Kantarci, A. Hypoxia-induced endothelial cell responses—Possible roles during periodontal disease. Clin. Exp. Dent. Res. 2018, 4, 241. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, G. CD31 as a Therapeutic Target in Atherosclerosis. Circ. Res. 2020, 126, 1178–1189. [Google Scholar] [CrossRef]
- Venkataramani, V.; Kuffer, S.; Cheung, K.C.; Jiang, X.; Trumper, L.; Wulf, G.G.; Strobel, P. CD31 Expression Determines Redox Status and Chemoresistance in Human Angiosarcomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 460. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Arambula, J.F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J.L.; Kim, J.S. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 2019, 48, 771–813. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Brien, M.; Spirrison, A.N.; Abdul Halim, M.S.; Li, Y.; Neild, A.; Gemrich, C.; Nosrati, R.; Solorio, L.; Gong, M.M. Open Microfluidic Cell Culture in Hydrogels Enabled by 3D-Printed Molds. Bioengineering 2025, 12, 102. https://doi.org/10.3390/bioengineering12020102
O’Brien M, Spirrison AN, Abdul Halim MS, Li Y, Neild A, Gemrich C, Nosrati R, Solorio L, Gong MM. Open Microfluidic Cell Culture in Hydrogels Enabled by 3D-Printed Molds. Bioengineering. 2025; 12(2):102. https://doi.org/10.3390/bioengineering12020102
Chicago/Turabian StyleO’Brien, Madison, Ashley N. Spirrison, Melati S. Abdul Halim, Yulai Li, Adrian Neild, Catherine Gemrich, Reza Nosrati, Luis Solorio, and Max M. Gong. 2025. "Open Microfluidic Cell Culture in Hydrogels Enabled by 3D-Printed Molds" Bioengineering 12, no. 2: 102. https://doi.org/10.3390/bioengineering12020102
APA StyleO’Brien, M., Spirrison, A. N., Abdul Halim, M. S., Li, Y., Neild, A., Gemrich, C., Nosrati, R., Solorio, L., & Gong, M. M. (2025). Open Microfluidic Cell Culture in Hydrogels Enabled by 3D-Printed Molds. Bioengineering, 12(2), 102. https://doi.org/10.3390/bioengineering12020102