Human-Aware Control for Physically Interacting Robots
Abstract
:1. Introduction
2. Methods
2.1. Holistic Model of Human Movements
2.1.1. The High-Level Module: Decision-Making Based on Internal Models
Internal model | |||
Parameter | Value | Parameter | Value |
m | 3 kg | () | |
30 ms | () | ||
1000 N | () | ||
(1) | () | ||
(0) | d | 50 ms | |
(1) | |||
Musculoskeletal model | |||
Model as described in Section 4.1.6 in [30] | |||
Robot model | |||
Parameter | Value | Description | |
m | Length of each link | ||
kg | Mass of each link | ||
m | Distance to center of mass | ||
kg.m2 | Moment of inertia about center of mass | ||
Human-aware robot controller | |||
Parameter | Value | Description | |
5 ms | Discretization step size | ||
50 time steps | Prediction horizon length | ||
D | 21 time steps | Dwell time at target | |
N | 221 time steps | Total duration of simulation | |
Impedance robot controller | |||
Parameter | Value | Description | |
50 N/m | Effective end-effector stiffness | ||
10 N.s/m | Effective end-effector damping |
2.1.2. The Mid-Level Module: Dimension Expansion with Muscle Synergies
2.1.3. The Low-Level Module: Musculoskeletal and Environment Dynamics
2.2. Human-Aware Control of Robot
3. Simulation Settings
4. Results
4.1. Predicting Movements with the Holistic Model
4.2. Human-Aware Control Results
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Anderson, F.C.; Pandy, M.G. Dynamic Optimization of Human Walking. J. Biomech. Eng. 2001, 123, 381. [Google Scholar] [CrossRef]
- Meyer, A.J.; Eskinazi, I.; Jackson, J.N.; Rao, A.V.; Patten, C.; Fregly, B.J. Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions. Front. Bioeng. Biotechnol. 2016, 4, 77. [Google Scholar] [CrossRef] [PubMed]
- Kinney, A.L.; Besier, T.F.; D’Lima, D.D.; Fregly, B.J. Update on Grand Challenge Competition to Predict in Vivo Knee Loads. J. Biomech. Eng. 2013, 135, 021012. [Google Scholar] [CrossRef]
- Uchida, T.K.; Seth, A.; Pouya, S.; Dembia, C.L.; Hicks, J.L.; Delp, S.L. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running. PLoS ONE 2016, 11, e0163417. [Google Scholar] [CrossRef] [PubMed]
- Ezati, M.; Ghannadi, B.; McPhee, J. A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Syst. Dyn. 2019, 47, 265–292. [Google Scholar] [CrossRef]
- Febrer-Nafría, M.; Nasr, A.; Ezati, M.; Brown, P.; Font-Llagunes, J.M.; McPhee, J. Predictive multibody dynamic simulation of human neuromusculoskeletal systems: A review. Multibody Syst. Dyn. 2023, 58, 299–339. [Google Scholar] [CrossRef]
- Ackermann, M.; van den Bogert, A.J. Optimality principles for model-based prediction of human gait. J. Biomech. 2010, 43, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Todorov, E.; Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 2002, 5, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.H. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 2004, 5, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Keemink, A.Q.; Van Der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018, 37, 1421–1444. [Google Scholar] [CrossRef]
- Atashzar, S.F.; Shahbazi, M.; Tavakoli, M.; Patel, R.V. A Passivity-Based Approach for Stable Patient–Robot Interaction in Haptics-Enabled Rehabilitation Systems: Modulated Time-Domain Passivity Control. IEEE Trans. Control Syst. Technol. 2017, 25, 991–1006. [Google Scholar] [CrossRef]
- Ghannadi, B.; McPhee, J. Optimal Impedance Control of an Upper Limb Stroke Rehabilitation Robot. In Proceedings of the ASME 2015 Dynamic Systems and Control Conference, Columbus, OH, USA, 28–30 October 2015; p. V001T09A002. [Google Scholar] [CrossRef]
- Der Spaa, L.V.; Gienger, M.; Bates, T.; Kober, J. Predicting and Optimizing Ergonomics in Physical Human-Robot Cooperation Tasks. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1799–1805. [Google Scholar] [CrossRef]
- Lorenzini, M.; Kim, W.; De Momi, E.; Ajoudani, A. A Synergistic Approach to the Real-Time Estimation of the Feet Ground Reaction Forces and Centers of Pressure in Humans with Application to Human-Robot Collaboration. IEEE Robot. Autom. Lett. 2018, 3, 3654–3661. [Google Scholar] [CrossRef]
- Peternel, L.; Fang, C.; Tsagarakis, N.; Ajoudani, A. A selective muscle fatigue management approach to ergonomic human-robot co-manipulation. Robot.-Comput.-Integr. Manuf. 2019, 58, 69–79. [Google Scholar] [CrossRef]
- McNamee, D.; Wolpert, D.M. Internal models in biological control. Annu. Rev. Control Robot. Auton. Syst. 2019, 2, 339–364. [Google Scholar] [CrossRef]
- Bizzi, E.; Mussa-Ivaldi, F.A.; Giszter, S. Computations underlying the execution of movement: A biological perspective. Science 1991, 253, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Todorov, E. Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J. Neurosci. 2007, 27, 9354–9368. [Google Scholar] [CrossRef]
- Sharif Razavian, R.; Ghannadi, B.; McPhee, J. A synergy-based motor control framework for the fast feedback control of musculoskeletal systems. J. Biomech. Eng. 2019, 141, 031009. [Google Scholar] [CrossRef] [PubMed]
- Sharif Razavian, R.; Ghannadi, B.; McPhee, J. On the relationship between muscle synergies and redundant degrees of freedom in musculoskeletal systems. Front. Comput. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed]
- Diedrichsen, J.; Shadmehr, R.; Ivry, R.B. The coordination of movement: Optimal feedback control and beyond. Trends Cogn. Sci. 2010, 14, 31–39. [Google Scholar] [CrossRef]
- Yeo, S.H.; Franklin, D.W.; Wolpert, D.M. When optimal feedback control is not enough: Feedforward strategies are required for optimal control with active sensing. PLoS Comput. Biol. 2016, 12, e1005190. [Google Scholar] [CrossRef] [PubMed]
- Crevecoeur, F.; Scott, S.H. Beyond Muscles Stiffness: Importance of State-Estimation to Account for Very Fast Motor Corrections. PLoS Comput. Biol. 2014, 10, e1003869. [Google Scholar] [CrossRef] [PubMed]
- Sharif Razavian, R.; Sadeghi, M.; Bazzi, S.; Nayeem, R.; Sternad, D. Body Mechanics, Optimality, and Sensory Feedback in the Human Control of Complex Objects. Neural Comput. 2023, 35, 853–895. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.M.; Wolpert, D.M. Signal-dependent noise determines motor planning. Nature 1998, 394, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Todorov, E.; Li, W.; Pan, X. From task parameters to motor synergies: A hierarchical framework for approximately optimal control of redundant manipulators. J. Robot. Syst. 2005, 22, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Todorov, E.; Jordan, M.I. A Minimal Intervention Principle for Coordinated Movement. In Proceedings of the Advances in Neural Information Processing Systems: Proceedings of the 2002 Conference, Vancouver, BC, Canada, 9–14 December 2002; pp. 27–34. [Google Scholar]
- Blum, K.P.; Lamotte D’Incamps, B.; Zytnicki, D.; Ting, L.H. Force encoding in muscle spindles during stretch of passive muscle. PLoS Comput. Biol. 2017, 13, e1005767. [Google Scholar] [CrossRef] [PubMed]
- Winters, J.M. An improved muscle-reflex actuator for use in large-scale neuro-musculoskeletal models. Ann. Biomed. Eng. 1995, 23, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Ghannadi, B. Model-based Control of Upper Extremity Human-Robot Rehabilitation Systems. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2017. [Google Scholar]
- Sharif Razavian, R.; Mehrabi, N.; McPhee, J. A model-based approach to predict muscle synergies using optimization: Application to feedback control. Front. Comput. Neurosci. 2015, 9, 121. [Google Scholar] [CrossRef] [PubMed]
- Sharif Razavian, R. A human Motor Control Framework Based on Muscle Synergies. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2017. [Google Scholar] [CrossRef]
- Wolpert, D.M.; Diedrichsen, J.; Flanagan, J.R. Principles of sensorimotor learning. Nat. Rev. Neurosci. 2011, 12, 739–751. [Google Scholar] [CrossRef]
- Ghannadi, B.; Sharif Razavian, R.; McPhee, J. Configuration-dependent optimal impedance control of an upper extremity stroke rehabilitation manipulandum. Front. Robot. AI 2018, 5. [Google Scholar] [CrossRef]
- Van Wouwe, T.; Ting, L.H.; De Groote, F. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise. PLoS Comput. Biol. 2022, 18, e1009338. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, N.; Sharif Razavian, R.; Ghannadi, B.; McPhee, J. Predictive simulation of reaching moving targets using nonlinear model predictive control. Front. Comput. Neurosci. 2017, 10. [Google Scholar] [CrossRef]
- Thelen, D.G. Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults. J. Biomech. Eng. 2003, 125, 70–77. [Google Scholar] [CrossRef]
- Allgöwer, F.; Findeisen, R.; Nagy, Z.K. Nonlinear model predictive control: From theory to application. J. Chin. Inst. Chem. Eng. 2004, 35, 299–315. [Google Scholar]
- Allgöwer, F.; Badgwell, T.A.; Qin, J.S.; Rawlings, J.B.; Wright, S.J. Nonlinear Predictive Control and Moving Horizon Estimation—An Introductory Overview. In Advances in Control; Frank, P.M., Ed.; Springer: London, UK, 1999; pp. 391–449. [Google Scholar] [CrossRef]
- Rao, C.; Rawlings, J.; Mayne, D. Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations. IEEE Trans. Autom. Control 2003, 48, 246–258. [Google Scholar] [CrossRef]
- Sheahan, H.R.; Franklin, D.W.; Wolpert, D.M. Motor Planning, Not Execution, Separates Motor Memories. Neuron 2016, 92, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P. Spatial control of arm movements. Exp. Brain Res. 1981, 42, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Flash, T.; Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985, 5, 1688–1703. [Google Scholar] [CrossRef]
- Shadmehr, R.; Mussa-Ivaldi, F. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 1994, 14, 3208–3224. [Google Scholar] [CrossRef]
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. J. Dyn. Syst. Meas. Control 1985, 107, 1–7. [Google Scholar] [CrossRef]
- Bizzi, E.; Cheung, V.C.K.; D’Avella, A.; Saltiel, P.; Tresch, M.C. Combining modules for movement. Brain Res. Rev. 2008, 57, 125–133. [Google Scholar] [CrossRef]
- Ting, L.H. Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture. Prog. Brain Res. 2007, 165, 299–321. [Google Scholar] [CrossRef] [PubMed]
- D’Avella, A.; Tresch, M.C. Modularity in the motor system: Decomposition of muscle patterns as combinations of time-varying synergies. In Proceedings of the Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Conference, Vancouver, BC, Canada, 3–8 December 2001; Volume 14. [Google Scholar]
- Hicks, J.L.; Uchida, T.K.; Seth, A.; Rajagopal, A.; Delp, S.L. Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement. J. Biomech. Eng. 2015, 137, 020905. [Google Scholar] [CrossRef] [PubMed]
- Pruszynski, J.A.; Scott, S.H. Optimal feedback control and the long-latency stretch response. Exp. Brain Res. 2012, 218, 341–359. [Google Scholar] [CrossRef] [PubMed]
- Burdet, E.; Osu, R.; Franklin, D.W.; Milner, T.E.; Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 2001, 414, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Belli, I.; Joshi, S.; Prendergast, J.M.; Beck, I.; Della Santina, C.; Peternel, L.; Seth, A. Does enforcing glenohumeral joint stability matter? A new rapid muscle redundancy solver highlights the importance of non-superficial shoulder muscles. PLoS ONE 2023, 18, e0295003. [Google Scholar] [CrossRef]
- Falisse, A.; Serrancolí, G.; Dembia, C.L.; Gillis, J.; Jonkers, I.; De Groote, F. Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies. J. R. Soc. Interface 2019, 16, 20190402. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Sharif Razavian, R.; Bazzi, S.; Chowdhury, R.H.; Batista, A.P.; Loughlin, P.J.; Sternad, D. Inferring control objectives in a virtual balancing task in humans and monkeys. eLife 2024, 12, RP88514. [Google Scholar] [CrossRef] [PubMed]
- Kutch, J.J.; Kuo, A.D.; Bloch, A.M.; Rymer, W.Z. Endpoint Force Fluctuations Reveal Flexible Rather Than Synergistic Patterns of Muscle Cooperation. J. Neurophysiol. 2008, 100, 2455–2471. [Google Scholar] [CrossRef]
- Izawa, J.; Rane, T.; Donchin, O.; Shadmehr, R. Motor adaptation as a process of reoptimization. J. Neurosci. 2008, 28, 2883–2891. [Google Scholar] [CrossRef]
- Ghannadi, B.; Sharif Razavian, R.; McPhee, J. A modified homotopy optimization for parameter identification in dynamic systems with backlash discontinuity. Nonlinear Dyn. 2019, 95, 57–72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharif Razavian, R. Human-Aware Control for Physically Interacting Robots. Bioengineering 2025, 12, 107. https://doi.org/10.3390/bioengineering12020107
Sharif Razavian R. Human-Aware Control for Physically Interacting Robots. Bioengineering. 2025; 12(2):107. https://doi.org/10.3390/bioengineering12020107
Chicago/Turabian StyleSharif Razavian, Reza. 2025. "Human-Aware Control for Physically Interacting Robots" Bioengineering 12, no. 2: 107. https://doi.org/10.3390/bioengineering12020107
APA StyleSharif Razavian, R. (2025). Human-Aware Control for Physically Interacting Robots. Bioengineering, 12(2), 107. https://doi.org/10.3390/bioengineering12020107