Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review
Abstract
:1. Introduction
Bone Loss—Definitions and Challenges
2. Current Strategies for Segmental Bone Loss
2.1. Bone Grafts
2.1.1. Autologous Bone Graft
2.1.2. Allogeneic Bone Graft
2.1.3. Synthetic Bone Graft Substitutes
2.2. Cell-Based Therapies
2.3. FDA-Approved Growth Factors for Bone Repair
2.4. Surgical Techniques for Large Defects
2.4.1. Vascularized Bone Grafts
2.4.2. Induced Membrane (Masquelet) Technique
2.4.3. Distraction Osteogenesis
3. Bone Tissue Engineering: Regional Gene Therapy
3.1. In Vivo Gene Delivery
Author | Vector | Gene | Delivery Method | Animal Model | Findings |
---|---|---|---|---|---|
Fang et al. [73] | pDNA | PTH 1-34 BMP-4 | GAM | Rat 5 mm Femoral Defect | Defect healing by 9 weeks in single plasmid (PTH 1-34 or BMP-4)-treated animals. More rapid healing and higher-quality bone formed in animals treated with both plasmids. |
Bonadio et al. [74] | pDNA | PTH 1-34 | GAM | Canine 8 mm Tibial Defect | PTH 1-34 expression detectable for 6 weeks in vivo. There was a dose-dependent effect on in vivo bone healing. |
Baltzer et al. [75] | AV | BMP-2 TGF-β | Direct Injection | Rabbit 13 mm Femoral Defect | Radiographic healing by 12 weeks in 7/7 of treated animals. Superior biomechanical properties compared to control animals. |
Geiger et al. [76] | pDNA | VEGF | GAM | Rabbit 15 mm Radial Defect | Most animals treated with VEGF exhibited partial or complete bone healing by 12 weeks, compared to none in controls. VEGF groups had 2–3 times the number of blood vessels by 6 weeks compared to controls. |
Egermann et al. [77] | AV | BMP-2 | Direct Injection | Sheep 20 mm × 5 mm Iliac Crest Defect; Sheep 3 mm Tibial Defect | Significantly reduced bone formation in animals treated with AV-BMP-2 injection compared to controls. Treated animals developed antibodies against the vector and human transgene. |
Betz et al. [78] | AV | BMP-2 | Direct Injection | Rat 5 mm Femoral Defect | A 100% healing rate in animals treated with high-dose AV-BMP-2 compared to 25% in the low-dose group. The high-dose group had higher bone volumes and bone mineral density, suggesting more robust bone formation and more rapid maturation. |
Elangovan et al. [72] | pDNA | PDGF-B | GAM | Rat 5 mm × 2 mm Calvarial Defect | Complexes of polyethyleniminie-pPNA encoding for PDGF-B delivered on a collagen sponge resulted in up to 55-fold-greater new bone volume in animals relative to untreated controls. |
Bez et al. [79] | pDNA | BMP-6 | sonoporation | Mini-pig 1 cm tibial defect | Injection of pDNA microbubbles followed by delayed transcutaneous ultrasound (US)-mediated transfection produced union in 6/6 treated animals. Biomechanical properties of the US-treated animals were comparable to autograft. |
Zhang et al. [80] | cmRNA | BMP-2 | GAM | Rat 5 mm Femoral Defect | cmRNA encoding for BMP-2 was suspended in lipoplexes and delivered on a collagen sponge into defects. Bone formation was observed, but no defects had united by 8 weeks. |
3.2. Ex Vivo Gene Delivery
Author | Species | MSC Cell Source | Vector | Gene | Scaffold | Animal Model | Results |
---|---|---|---|---|---|---|---|
Lieberman et al. [81] | Murine | Bone Marrow | AV | BMP-2 | DBM | Nude Rat 8 mm Femoral Defect | Radiographic healing by 8 weeks in 3/3 animals treated with AV-BMP-2 |
Lieberman et al. [82] | Murine | Bone Marrow | AV | BMP-2 | DBM | Rat 8 mm Femoral Defect | Radiographic healing by 8 weeks in 22/24 of treated animals. AV-BMP-2 group displaced thicker trabeculae compared to rhBMP-2-treated controls. |
Tsuchida et al. [83] | Murine | (Allogeneic) Bone Marrow | AV | BMP-2 | Collagen | Rat 6 mm Femoral Defect + Immunosuppression | Radiographic healing by 8 weeks in 8/8 of allogeneic + systemic tacrolimus-treated animals. Results were comparable to animals receiving transduced syngeneic cells. |
Peterson et al. [84] | Human | Adipose | AV | BMP-2 | Collagen–ceramic | Nude Rat 6 mm Femoral Defect | Radiographic healing by 8 weeks in 11/12 treated animals. |
Virk et al. [85] | Rat | Bone Marrow | LV, AV | BMP-2 | Collagen–ceramic | Lewis Rat 8 mm Femoral Defect | Radiographic healing by 8 weeks in 10/10 of LV-BMP-2-treated animals vs. 7/10 in AV-BMP2-treated animals. Superior biomechanical properties in LV-BMP-treated animals. |
Hao et al. [86] | Rabbit | Adipose | AV | BMP-2 | Novel biocomposite | White Rabbit 5 mm Radial Defect | Superior radiographic healing by 6 weeks in treated animals compared to controls. Complete healing and scaffold resorption by 12 weeks. |
Virk et al. [87] | Murine | Bone Marrow | LV | BMP-2 | Collagen–ceramic | Lewis Rat 8 mm Femoral Defect | Radiographic healing by 8 weeks in 13/13 “same day” treated animals. Earlier healing, greater bone volume, and superior biomechanical properties in “same day” vs. traditional 2-step ex vivo approach. |
Qing et al. [88] | Murine | Adipose | LV | BMP-2 BMP-7 | Calcium ceramic | Rat 2 mm Femoral Defect | Faster and more efficient healing noted at 6 weeks in BMP2 + BMP7 co-transfected treated animals. |
De La Vega et al. [89] | Murine | (Allogeneic) Skeletal Muscle | AV | BMP-2 | Muscle Disc | Rat 5 mm Femoral Defect | Enhanced bone formation by 8 weeks in AV-BMP-2 + immunosuppressed animals. |
Bougioukli et al. [90] | Human | Bone Marrow | LV | BMP-2 | Collagen–ceramic | Nude Rat 6 mm Femoral Defect | Radiographic healing by 8 weeks in 12/14 of traditional “two step” BMP-2-treated animals vs. 7/14 of “same day” treated animals. |
Vakhshori et al. [91] | Human | Adipose | LV | BMP-2 | Calcium ceramic | Athymic Nude Rat 6 mm Femoral Defect | Radiographic healing by 12 weeks in 13/14 treated animals. Comparable biomechanical qualities to positive control animals. |
Kang et al. [92] | Rat | Bone marrow | LV | BMP-2 | 3D-Printed Hyperelastic bone | Lewis Rat 6 mm Femoral Defect | Radiographic healing by 12 weeks in 12/14 treated animals. Comparable biomechanical qualities to animals treated with rhBMP-2. |
3.3. Viral Vectors
3.4. Viral Vectors—Preclinical Results for Bone Repair
3.5. Non-Viral Vectors
4. Gene Candidates
5. Stem Cells for Ex Vivo Regional Gene Therapy
5.1. Embryonic Stem Cells (ESCs)
5.2. Induced Pluripotent Stem Cells (iPSCs)
5.3. Mesenchymal Stem Cells (MSCs)
5.3.1. MSC Heterogeneity
5.3.2. Bone-Marrow-Derived Stem Cells (BMSCs)
5.3.3. Adipose-Derived Stem Cells (ADSCs)
5.3.4. Muscle-Derived Stem Cells (MDSCs)
5.3.5. Dental-Derived Stem Cells
5.3.6. Other Adult MSC Sources
5.3.7. Perinatal Mesenchymal Stem Cells
5.4. Autologous vs. Allogenic Gene Therapy
6. Scaffolds in Gene Therapy
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Norris, B.L.; Vanderkarr, M.; Sparks, C.; Chitnis, A.S.; Ray, B.; Holy, C.E. Treatments, Cost and Healthcare Utilization of Patients with Segmental Bone Defects. Injury 2021, 52, 2935–2940. [Google Scholar] [CrossRef] [PubMed]
- Mauffrey, C.; Barlow, B.T.; Smith, W. Management of Segmental Bone Defects. J. Am. Acad. Orthop. Surg. 2015, 23, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Nauth, A.; Schemitsch, E.; Norris, B.; Nollin, Z.; Watson, J. Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment? J. Orthop. Trauma 2018, 32 (Suppl. S1), S7–S11. [Google Scholar] [CrossRef] [PubMed]
- Haines, N.M.; Lack, W.D.; Seymour, R.B.; Bosse, M.J. Defining the Lower Limit of a “Critical Bone Defect” in Open Diaphyseal Tibial Fractures. J. Orthop. Trauma 2016, 30, e158–e163. [Google Scholar] [CrossRef]
- Sanders, D.W.; Bhandari, M.; Guyatt, G.; Heels-Ansdell, D.; Schemitsch, E.H.; Swiontkowski, M.; Tornetta, P.; Walter, S.; SPRINT Investigators. Critical-Sized Defect in the Tibia: Is It Critical? Results from the SPRINT Trial. J. Orthop. Trauma 2014, 28, 632–635. [Google Scholar] [CrossRef]
- Khan, S.N.; Cammisa, F.P.; Sandhu, H.S.; Diwan, A.D.; Girardi, F.P.; Lane, J.M. The Biology of Bone Grafting. J. Am. Acad. Orthop. Surg. 2005, 13, 77–86. [Google Scholar] [CrossRef]
- Patterson, J.T.; Lieberman, J.R. Segmental Defect Repair and Nonunion. In Orthobiologics: Scientific and Clinical Solutions for Orthopaedic Surgeons; Bruder, S.P., Aaron, R.K., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2024; pp. 311–326. ISBN 978-1-975175-45-0. [Google Scholar]
- Collon, K.; Gallo, M.C.; Lieberman, J.R. Musculoskeletal Tissue Engineering: Regional Gene Therapy for Bone Repair. Biomaterials 2021, 275, 120901. [Google Scholar] [CrossRef]
- Dimitriou, R.; Mataliotakis, G.I.; Angoules, A.G.; Kanakaris, N.K.; Giannoudis, P.K. Complications Following Autologous Bone Graft Harvesting from the Iliac Crest and Using the RIA: A Systematic Review. Injury 2011, 42 (Suppl. S2), S3–S15. [Google Scholar] [CrossRef]
- Baldwin, P.; Li, D.J.; Auston, D.A.; Mir, H.S.; Yoon, Y.S.; Koval, K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J. Orthop. Trauma 2019, 33, 203–213. [Google Scholar] [CrossRef]
- Myeroff, C.; Archdeacon, M. Autogenous Bone Graft: Donor Sites and Techniques. J. Bone Jt. Surg. Am. 2011, 93, 2227–2236. [Google Scholar] [CrossRef]
- Loeffler, B.J.; Kellam, J.F.; Sims, S.H.; Bosse, M.J. Prospective Observational Study of Donor-Site Morbidity Following Anterior Iliac Crest Bone-Grafting in Orthopaedic Trauma Reconstruction Patients. J. Bone Jt. Surg. Am. 2012, 94, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Greenberger, J.S.; Epperly, M.W.; Goff, J.P.; Adler, C.; Leboff, M.S.; Glowacki, J. Age-Related Intrinsic Changes in Human Bone-Marrow-Derived Mesenchymal Stem Cells and Their Differentiation to Osteoblasts. Aging Cell 2008, 7, 335–343. [Google Scholar] [CrossRef]
- Fillingham, Y.; Jacobs, J. Bone Grafts and Their Substitutes. Bone Jt. J. 2016, 98-B, 6–9. [Google Scholar] [CrossRef]
- Jt, M. The Use of Allografts to Reconstruct Intercalary Defects of Long Bones. Clin. Orthop. 1985, 197, 58–75. [Google Scholar]
- Hamer, A.J.; Strachan, J.R.; Black, M.M.; Ibbotson, C.J.; Stockley, I.; Elson, R.A. Biochemical Properties of Cortical Allograft Bone Using a New Method of Bone Strength Measurement. A Comparison of Fresh, Fresh-Frozen and Irradiated Bone. J. Bone Jt. Surg. Br. 1996, 78, 363–368. [Google Scholar] [CrossRef]
- Flierl, M.A.; Smith, W.R.; Mauffrey, C.; Irgit, K.; Williams, A.E.; Ross, E.; Peacher, G.; Hak, D.J.; Stahel, P.F. Outcomes and Complication Rates of Different Bone Grafting Modalities in Long Bone Fracture Nonunions: A Retrospective Cohort Study in 182 Patients. J. Orthop. Surg. 2013, 8, 33. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized Bone Matrix in Bone Repair: History and Use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Peterson, B.; Whang, P.G.; Iglesias, R.; Wang, J.C.; Lieberman, J.R. Osteoinductivity of Commercially Available Demineralized Bone Matrix. Preparations in a Spine Fusion Model. J. Bone Jt. Surg. Am. 2004, 86, 2243–2250. [Google Scholar] [CrossRef]
- Bae, H.W.; Zhao, L.; Kanim, L.E.A.; Wong, P.; Delamarter, R.B.; Dawson, E.G. Intervariability and Intravariability of Bone Morphogenetic Proteins in Commercially Available Demineralized Bone Matrix Products. Spine 2006, 31, 1299–1306; discussion 1307–1308. [Google Scholar] [CrossRef]
- Oakes, D.A.; Lee, C.C.; Lieberman, J.R. An Evaluation of Human Demineralized Bone Matrices in a Rat Femoral Defect Model. Clin. Orthop. 2003, 413, 281–290. [Google Scholar] [CrossRef]
- Cammisa, F.P.; Lowery, G.; Garfin, S.R.; Geisler, F.H.; Klara, P.M.; McGuire, R.A.; Sassard, W.R.; Stubbs, H.; Block, J.E. Two-Year Fusion Rate Equivalency between Grafton DBM Gel and Autograft in Posterolateral Spine Fusion: A Prospective Controlled Trial Employing a Side-by-Side Comparison in the Same Patient. Spine 2004, 29, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Drosos, G.I.; Touzopoulos, P.; Ververidis, A.; Tilkeridis, K.; Kazakos, K. Use of Demineralized Bone Matrix in the Extremities. World J. Orthop. 2015, 6, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Ammerman, J.M.; Libricz, J.; Ammerman, M.D. The Role of Osteocel Plus as a Fusion Substrate in Minimally Invasive Instrumented Transforaminal Lumbar Interbody Fusion. Clin. Neurol. Neurosurg. 2013, 115, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Baboolal, T.G.; Boxall, S.A.; El-Sherbiny, Y.M.; Moseley, T.A.; Cuthbert, R.J.; Giannoudis, P.V.; McGonagle, D.; Jones, E. Multipotential Stromal Cell Abundance in Cellular Bone Allograft: Comparison with Fresh Age-Matched Iliac Crest Bone and Bone Marrow Aspirate. Regen. Med. 2014, 9, 593–607. [Google Scholar] [CrossRef]
- Kurien, T.; Pearson, R.G.; Scammell, B.E. Bone Graft Substitutes Currently Available in Orthopaedic Practice: The Evidence for Their Use. Bone Jt. J. 2013, 95-B, 583–597. [Google Scholar] [CrossRef]
- Zimmermann, G.; Moghaddam, A. Allograft Bone Matrix versus Synthetic Bone Graft Substitutes. Injury 2011, 42 (Suppl. S2), S16–S21. [Google Scholar] [CrossRef]
- McDonald, E.; Chu, T.; Tufaga, M.; Marmor, M.; Singh, R.; Yetkinler, D.; Matityahu, A.; Buckley, J.M.; McClellan, R.T. Tibial Plateau Fracture Repairs Augmented with Calcium Phosphate Cement Have Higher in Situ Fatigue Strength than Those with Autograft. J. Orthop. Trauma 2011, 25, 90–95. [Google Scholar] [CrossRef]
- McKee, M.D.; Wild, L.M.; Schemitsch, E.H.; Waddell, J.P. The Use of an Antibiotic-Impregnated, Osteoconductive, Bioabsorbable Bone Substitute in the Treatment of Infected Long Bone Defects: Early Results of a Prospective Trial. J. Orthop. Trauma 2002, 16, 622–627. [Google Scholar] [CrossRef]
- Huddleston, H.P.; Tauro, T.; Credille, K.; Dandu, N.; Hevesi, M.; Chahla, J.; Forsythe, B.; Verma, N.; Yanke, A.B.; Cole, B.J. Patient Demographic Factors Are Not Associated With Mesenchymal Stromal Cell Concentration in Bone Marrow Aspirate Concentrate. Arthrosc. Sports Med. Rehabil. 2023, 5, e559–e567. [Google Scholar] [CrossRef]
- Cavallo, C.; Boffa, A.; de Girolamo, L.; Merli, G.; Kon, E.; Cattini, L.; Santo, E.; Grigolo, B.; Filardo, G. Bone Marrow Aspirate Concentrate Quality Is Affected by Age and Harvest Site. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2023, 31, 2140–2151. [Google Scholar] [CrossRef]
- Imam, M.A.; Holton, J.; Ernstbrunner, L.; Pepke, W.; Grubhofer, F.; Narvani, A.; Snow, M. A Systematic Review of the Clinical Applications and Complications of Bone Marrow Aspirate Concentrate in Management of Bone Defects and Nonunions. Int. Orthop. 2017, 41, 2213–2220. [Google Scholar] [CrossRef]
- Jäger, M.; Herten, M.; Fochtmann, U.; Fischer, J.; Hernigou, P.; Zilkens, C.; Hendrich, C.; Krauspe, R. Bridging the Gap: Bone Marrow Aspiration Concentrate Reduces Autologous Bone Grafting in Osseous Defects. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2011, 29, 173–180. [Google Scholar] [CrossRef]
- Gianakos, A.; Ni, A.; Zambrana, L.; Kennedy, J.G.; Lane, J.M. Bone Marrow Aspirate Concentrate in Animal Long Bone Healing: An Analysis of Basic Science Evidence. J. Orthop. Trauma 2016, 30, 1–9. [Google Scholar] [CrossRef]
- Lin, K.; VandenBerg, J.; Putnam, S.M.; Parks, C.D.; Spraggs-Hughes, A.; McAndrew, C.M.; Ricci, W.M.; Gardner, M.J. Bone Marrow Aspirate Concentrate with Cancellous Allograft versus Iliac Crest Bone Graft in the Treatment of Long Bone Nonunions. OTA Int. Open Access J. Orthop. Trauma 2019, 2, e012. [Google Scholar] [CrossRef]
- Le Nail, L.-R.; Stanovici, J.; Fournier, J.; Splingard, M.; Domenech, J.; Rosset, P. Percutaneous Grafting with Bone Marrow Autologous Concentrate for Open Tibia Fractures: Analysis of Forty Three Cases and Literature Review. Int. Orthop. 2014, 38, 1845–1853. [Google Scholar] [CrossRef]
- Hernigou, P.; Dubory, A.; Homma, Y.; Flouzat Lachaniette, C.H.; Chevallier, N.; Rouard, H. Single-Stage Treatment of Infected Tibial Non-Unions and Osteomyelitis with Bone Marrow Granulocytes Precursors Protecting Bone Graft. Int. Orthop. 2018, 42, 2443–2450. [Google Scholar] [CrossRef]
- Andersen, C.; Wragg, N.M.; Shariatzadeh, M.; Wilson, S.L. The Use of Platelet-Rich Plasma (PRP) for the Management of Non-Union Fractures. Curr. Osteoporos. Rep. 2021, 19, 1–14. [Google Scholar] [CrossRef]
- Calori, G.M.; Tagliabue, L.; Gala, L.; d’Imporzano, M.; Peretti, G.; Albisetti, W. Application of rhBMP-7 and Platelet-Rich Plasma in the Treatment of Long Bone Non-Unions: A Prospective Randomised Clinical Study on 120 Patients. Injury 2008, 39, 1391–1402. [Google Scholar] [CrossRef]
- Sarkar, M.R.; Augat, P.; Shefelbine, S.J.; Schorlemmer, S.; Huber-Lang, M.; Claes, L.; Kinzl, L.; Ignatius, A. Bone Formation in a Long Bone Defect Model Using a Platelet-Rich Plasma-Loaded Collagen Scaffold. Biomaterials 2006, 27, 1817–1823. [Google Scholar] [CrossRef]
- Gillman, C.E.; Jayasuriya, A.C. FDA-Approved Bone Grafts and Bone Graft Substitute Devices in Bone Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 130, 112466. [Google Scholar] [CrossRef]
- Cao, X.; Chen, D. The BMP Signaling and in Vivo Bone Formation. Gene 2005, 357, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, G.; Li, Y.-P. TGF-β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef] [PubMed]
- McKay, W.F.; Peckham, S.M.; Badura, J.M. A Comprehensive Clinical Review of Recombinant Human Bone Morphogenetic Protein-2 (INFUSE Bone Graft). Int. Orthop. 2007, 31, 729–734. [Google Scholar] [CrossRef]
- Govender, S.; Csimma, C.; Genant, H.K.; Valentin-Opran, A.; Amit, Y.; Arbel, R.; Aro, H.; Atar, D.; Bishay, M.; Börner, M.G.; et al. Recombinant Human Bone Morphogenetic Protein-2 for Treatment of Open Tibial Fractures: A Prospective, Controlled, Randomized Study of Four Hundred and Fifty Patients. J. Bone Jt. Surg. Am. 2002, 84, 2123–2134. [Google Scholar] [CrossRef]
- Burkus, J.K.; Gornet, M.F.; Dickman, C.A.; Zdeblick, T.A. Anterior Lumbar Interbody Fusion Using rhBMP-2 with Tapered Interbody Cages. J. Spinal Disord. Tech. 2002, 15, 337–349. [Google Scholar] [CrossRef]
- Jones, A.L.; Bucholz, R.W.; Bosse, M.J.; Mirza, S.K.; Lyon, T.R.; Webb, L.X.; Pollak, A.N.; Golden, J.D.; Valentin-Opran, A.; BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group. Recombinant Human BMP-2 and Allograft Compared with Autogenous Bone Graft for Reconstruction of Diaphyseal Tibial Fractures with Cortical Defects. A Randomized, Controlled Trial. J. Bone Jt. Surg. Am. 2006, 88, 1431–1441. [Google Scholar] [CrossRef]
- James, A.W.; LaChaud, G.; Shen, J.; Asatrian, G.; Nguyen, V.; Zhang, X.; Ting, K.; Soo, C. A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Eng. Part B Rev. 2016, 22, 284–297. [Google Scholar] [CrossRef]
- Hollinger, J.O.; Hart, C.E.; Hirsch, S.N.; Lynch, S.; Friedlaender, G.E. Recombinant Human Platelet-Derived Growth Factor: Biology and Clinical Applications. J. Bone Jt. Surg. Am. 2008, 90 (Suppl. S1), 48–54. [Google Scholar] [CrossRef]
- DiGiovanni, C.W.; Petricek, J.M. The Evolution of rhPDGF-BB in Musculoskeletal Repair and Its Role in Foot and Ankle Fusion Surgery. Foot Ankle Clin. 2010, 15, 621–640. [Google Scholar] [CrossRef]
- Daniels, T.R.; Anderson, J.; Swords, M.P.; Maislin, G.; Donahue, R.; Pinsker, E.; Quiton, J.D. Recombinant Human Platelet-Derived Growth Factor BB in Combination With a Beta-Tricalcium Phosphate (rhPDGF-BB/β-TCP)-Collagen Matrix as an Alternative to Autograft. Foot Ankle Int. 2019, 40, 1068–1078. [Google Scholar] [CrossRef]
- Daniels, T.R.; Younger, A.S.E.; Penner, M.J.; Wing, K.J.; Le, I.L.D.; Russell, I.S.; Lalonde, K.-A.; Evangelista, P.T.; Quiton, J.D.; Glazebrook, M.; et al. Prospective Randomized Controlled Trial of Hindfoot and Ankle Fusions Treated With rhPDGF-BB in Combination With a β-TCP-Collagen Matrix. Foot Ankle Int. 2015, 36, 739–748. [Google Scholar] [CrossRef]
- Alkindi, M.; Ramalingam, S.; Alghamdi, O.; Alomran, O.M.; Binsalah, M.A.; Badwelan, M. Guided Bone Regeneration with Osteoconductive Grafts and PDGF: A Tissue Engineering Option for Segmental Bone Defect Reconstruction. J. Appl. Biomater. Funct. Mater. 2021, 19, 2280800020987405. [Google Scholar] [CrossRef]
- Novak, S.; Madunic, J.; Shum, L.; Vucetic, M.; Wang, X.; Tanigawa, H.; Ghosh, M.; Sanjay, A.; Kalajzic, I. PDGF Inhibits BMP2-Induced Bone Healing. npj Regen. Med. 2023, 8, 3. [Google Scholar] [CrossRef]
- Beris, A.E.; Lykissas, M.G.; Korompilias, A.V.; Vekris, M.D.; Mitsionis, G.I.; Malizos, K.N.; Soucacos, P.N. Vascularized Fibula Transfer for Lower Limb Reconstruction. Microsurgery 2011, 31, 205–211. [Google Scholar] [CrossRef]
- Malizos, K.N.; Zalavras, C.G.; Soucacos, P.N.; Beris, A.E.; Urbaniak, J.R. Free Vascularized Fibular Grafts for Reconstruction of Skeletal Defects. J. Am. Acad. Orthop. Surg. 2004, 12, 360–369. [Google Scholar] [CrossRef]
- Eward, W.C.; Kontogeorgakos, V.; Levin, L.S.; Brigman, B.E. Free Vascularized Fibular Graft Reconstruction of Large Skeletal Defects after Tumor Resection. Clin. Orthop. 2010, 468, 590–598. [Google Scholar] [CrossRef]
- Soucacos, P.N.; Korompilias, A.V.; Vekris, M.D.; Zoubos, A.; Beris, A.E. The Free Vascularized Fibular Graft for Bridging Large Skeletal Defects of the Upper Extremity. Microsurgery 2011, 31, 190–197. [Google Scholar] [CrossRef]
- Nusbickel, F.R.; Dell, P.C.; McAndrew, M.P.; Moore, M.M. Vascularized Autografts for Reconstruction of Skeletal Defects Following Lower Extremity Trauma. A Review. Clin. Orthop. 1989, 243, 65–70. [Google Scholar] [CrossRef]
- Minami, A.; Kasashima, T.; Iwasaki, N.; Kato, H.; Kaneda, K. Vascularised Fibular Grafts. An Experience of 102 Patients. J. Bone Jt. Surg. Br. 2000, 82, 1022–1025. [Google Scholar] [CrossRef]
- Mayfield, C.K.; Ayad, M.; Lechtholz-Zey, E.; Chen, Y.; Lieberman, J.R. 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioengineering 2022, 9, 680. [Google Scholar] [CrossRef]
- Masquelet, A.C.; Begue, T. The Concept of Induced Membrane for Reconstruction of Long Bone Defects. Orthop. Clin. N. Am. 2010, 41, 27–37. [Google Scholar] [CrossRef]
- Aho, O.-M.; Lehenkari, P.; Ristiniemi, J.; Lehtonen, S.; Risteli, J.; Leskelä, H.-V. The Mechanism of Action of Induced Membranes in Bone Repair. J. Bone Jt. Surg. Am. 2013, 95, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Pelissier, P.; Masquelet, A.C.; Bareille, R.; Pelissier, S.M.; Amedee, J. Induced Membranes Secrete Growth Factors Including Vascular and Osteoinductive Factors and Could Stimulate Bone Regeneration. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2004, 22, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Fung, B.; Hoit, G.; Schemitsch, E.; Godbout, C.; Nauth, A. The Induced Membrane Technique for the Management of Long Bone Defects. Bone Jt. J. 2020, 102-B, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Ilizarov, G.A. Clinical Application of the Tension-Stress Effect for Limb Lengthening. Clin. Orthop. 1990, 250, 8–26. [Google Scholar] [CrossRef]
- Spiegelberg, B.; Parratt, T.; Dheerendra, S.K.; Khan, W.S.; Jennings, R.; Marsh, D.R. Ilizarov Principles of Deformity Correction. Ann. R. Coll. Surg. Engl. 2010, 92, 101–105. [Google Scholar] [CrossRef]
- Forriol, F.; Denaro, L.; Longo, U.G.; Taira, H.; Maffulli, N.; Denaro, V. Bone Lengthening Osteogenesis, a Combination of Intramembranous and Endochondral Ossification: An Experimental Study in Sheep. Strateg. Trauma Limb Reconstr. 2010, 5, 71–78. [Google Scholar] [CrossRef]
- Papakostidis, C.; Bhandari, M.; Giannoudis, P.V. Distraction Osteogenesis in the Treatment of Long Bone Defects of the Lower Limbs: Effectiveness, Complications and Clinical Results; a Systematic Review and Meta-Analysis. Bone Jt. J. 2013, 95-B, 1673–1680. [Google Scholar] [CrossRef]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef]
- Lieberman, J.R.; Daluiski, A.; Einhorn, T.A. The Role of Growth Factors in the Repair of Bone. Biology and Clinical Applications. J. Bone Jt. Surg. Am. 2002, 84, 1032–1044. [Google Scholar] [CrossRef]
- Elangovan, S.; D’Mello, S.R.; Hong, L.; Ross, R.D.; Allamargot, C.; Dawson, D.V.; Stanford, C.M.; Johnson, G.K.; Sumner, D.R.; Salem, A.K. The Enhancement of Bone Regeneration by Gene Activated Matrix Encoding for Platelet Derived Growth Factor. Biomaterials 2014, 35, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhu, Y.Y.; Smiley, E.; Bonadio, J.; Rouleau, J.P.; Goldstein, S.A.; McCauley, L.K.; Davidson, B.L.; Roessler, B.J. Stimulation of New Bone Formation by Direct Transfer of Osteogenic Plasmid Genes. Proc. Natl. Acad. Sci. USA 1996, 93, 5753–5758. [Google Scholar] [CrossRef]
- Bonadio, J.; Smiley, E.; Patil, P.; Goldstein, S. Localized, Direct Plasmid Gene Delivery in Vivo: Prolonged Therapy Results in Reproducible Tissue Regeneration. Nat. Med. 1999, 5, 753–759. [Google Scholar] [CrossRef]
- Baltzer, A.W.; Lattermann, C.; Whalen, J.D.; Wooley, P.; Weiss, K.; Grimm, M.; Ghivizzani, S.C.; Robbins, P.D.; Evans, C.H. Genetic Enhancement of Fracture Repair: Healing of an Experimental Segmental Defect by Adenoviral Transfer of the BMP-2 Gene. Gene Ther. 2000, 7, 734–739. [Google Scholar] [CrossRef]
- Geiger, F.; Bertram, H.; Berger, I.; Lorenz, H.; Wall, O.; Eckhardt, C.; Simank, H.; Richter, W. Vascular Endothelial Growth Factor Gene-Activated Matrix (VEGF165-GAM) Enhances Osteogenesis and Angiogenesis in Large Segmental Bone Defects. J. Bone Miner. Res. 2005, 20, 2028–2035. [Google Scholar] [CrossRef]
- Egermann, M.; Lill, C.A.; Griesbeck, K.; Evans, C.H.; Robbins, P.D.; Schneider, E.; Baltzer, A.W. Effect of BMP-2 Gene Transfer on Bone Healing in Sheep. Gene Ther. 2006, 13, 1290–1299. [Google Scholar] [CrossRef]
- Betz, V.M.; Betz, O.B.; Glatt, V.; Gerstenfeld, L.C.; Einhorn, T.A.; Bouxsein, M.L.; Vrahas, M.S.; Evans, C.H. Healing of Segmental Bone Defects by Direct Percutaneous Gene Delivery: Effect of Vector Dose. Hum. Gene Ther. 2007, 18, 907–915. [Google Scholar] [CrossRef]
- Bez, M.; Sheyn, D.; Tawackoli, W.; Avalos, P.; Shapiro, G.; Giaconi, J.C.; Da, X.; David, S.B.; Gavrity, J.; Awad, H.A.; et al. In Situ Bone Tissue Engineering via Ultrasound-Mediated Gene Delivery to Endogenous Progenitor Cells in Mini-Pigs. Sci. Transl. Med. 2017, 9, eaal3128. [Google Scholar] [CrossRef]
- Zhang, W.; De La Vega, R.E.; Coenen, M.J.; Müller, S.A.; Peniche Silva, C.J.; Aneja, M.K.; Plank, C.; van Griensven, M.; Evans, C.H.; Balmayor, E.R. An Improved, Chemically Modified RNA Encoding BMP-2 Enhances Osteogenesis In Vitro and In Vivo. Tissue Eng. Part A 2019, 25, 131–144. [Google Scholar] [CrossRef]
- Lieberman, J.R.; Le, L.Q.; Wu, L.; Finerman, G.A.; Berk, A.; Witte, O.N.; Stevenson, S. Regional Gene Therapy with a BMP-2-Producing Murine Stromal Cell Line Induces Heterotopic and Orthotopic Bone Formation in Rodents. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1998, 16, 330–339. [Google Scholar] [CrossRef]
- Lieberman, J.R.; Daluiski, A.; Stevenson, S.; Wu, L.; McAllister, P.; Lee, Y.P.; Kabo, J.M.; Finerman, G.A.; Berk, A.J.; Witte, O.N. The Effect of Regional Gene Therapy with Bone Morphogenetic Protein-2-Producing Bone-Marrow Cells on the Repair of Segmental Femoral Defects in Rats. J. Bone Jt. Surg. Am. 1999, 81, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, H.; Hashimoto, J.; Crawford, E.; Manske, P.; Lou, J. Engineered Allogeneic Mesenchymal Stem Cells Repair Femoral Segmental Defect in Rats. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2003, 21, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.; Zhang, J.; Iglesias, R.; Kabo, M.; Hedrick, M.; Benhaim, P.; Lieberman, J.R. Healing of Critically Sized Femoral Defects, Using Genetically Modified Mesenchymal Stem Cells from Human Adipose Tissue. Tissue Eng. 2005, 11, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Virk, M.S.; Conduah, A.; Park, S.-H.; Liu, N.; Sugiyama, O.; Cuomo, A.; Kang, C.; Lieberman, J.R. Influence of Short-Term Adenoviral Vector and Prolonged Lentiviral Vector Mediated Bone Morphogenetic Protein-2 Expression on the Quality of Bone Repair in a Rat Femoral Defect Model. Bone 2008, 42, 921–931. [Google Scholar] [CrossRef]
- Hao, W.; Dong, J.; Jiang, M.; Wu, J.; Cui, F.; Zhou, D. Enhanced Bone Formation in Large Segmental Radial Defects by Combining Adipose-Derived Stem Cells Expressing Bone Morphogenetic Protein 2 with nHA/RHLC/PLA Scaffold. Int. Orthop. 2010, 34, 1341–1349. [Google Scholar] [CrossRef]
- Virk, M.S.; Sugiyama, O.; Park, S.H.; Gambhir, S.S.; Adams, D.J.; Drissi, H.; Lieberman, J.R. “Same Day” Ex-Vivo Regional Gene Therapy: A Novel Strategy to Enhance Bone Repair. Mol. Ther. J. Am. Soc. Gene Ther. 2011, 19, 960–968. [Google Scholar] [CrossRef]
- Qing, W.; Guang-Xing, C.; Lin, G.; Liu, Y. The Osteogenic Study of Tissue Engineering Bone with BMP2 and BMP7 Gene-Modified Rat Adipose-Derived Stem Cell. J. Biomed. Biotechnol. 2012, 2012, 410879. [Google Scholar] [CrossRef]
- De La Vega, R.E.; De Padilla, C.L.; Trujillo, M.; Quirk, N.; Porter, R.M.; Evans, C.H.; Ferreira, E. Contribution of Implanted, Genetically Modified Muscle Progenitor Cells Expressing BMP-2 to New Bone Formation in a Rat Osseous Defect. Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 208–218. [Google Scholar] [CrossRef]
- Bougioukli, S.; Alluri, R.; Pannell, W.; Sugiyama, O.; Vega, A.; Tang, A.; Skorka, T.; Park, S.H.; Oakes, D.; Lieberman, J.R. Ex Vivo Gene Therapy Using Human Bone Marrow Cells Overexpressing BMP-2: “Next-Day” Gene Therapy versus Standard “Two-Step” Approach. Bone 2019, 128, 115032. [Google Scholar] [CrossRef]
- Vakhshori, V.; Bougioukli, S.; Sugiyama, O.; Kang, H.P.; Tang, A.H.; Park, S.-H.; Lieberman, J.R. Ex Vivo Regional Gene Therapy with Human Adipose-Derived Stem Cells for Bone Repair. Bone 2020, 138, 115524. [Google Scholar] [CrossRef]
- Kang, H.P.; Ihn, H.; Robertson, D.M.; Chen, X.; Sugiyama, O.; Tang, A.; Hollis, R.; Skorka, T.; Longjohn, D.; Oakes, D.; et al. Regional Gene Therapy for Bone Healing Using a 3D Printed Scaffold in a Rat Femoral Defect Model. J. Biomed. Mater. Res. A 2021, 109, 2346–2356. [Google Scholar] [CrossRef]
- Betz, O.B.; Betz, V.M.; Schröder, C.; Penzkofer, R.; Göttlinger, M.; Mayer-Wagner, S.; Augat, P.; Jansson, V.; Müller, P.E. Repair of Large Segmental Bone Defects: BMP-2 Gene Activated Muscle Grafts vs. Autologous Bone Grafting. BMC Biotechnol. 2013, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Betz, O.B.; Betz, V.M.; Abdulazim, A.; Penzkofer, R.; Schmitt, B.; Schröder, C.; Mayer-Wagner, S.; Augat, P.; Jansson, V.; Müller, P.E. The Repair of Critical-Sized Bone Defects Using Expedited, Autologous BMP-2 Gene-Activated Fat Implants. Tissue Eng. Part A 2010, 16, 1093–1101. [Google Scholar] [CrossRef]
- Evans, C.H.; Liu, F.-J.; Glatt, V.; Hoyland, J.A.; Kirker-Head, C.; Walsh, A.; Betz, O.; Wells, J.W.; Betz, V.; Porter, R.M.; et al. Use of Genetically Modified Muscle and Fat Grafts to Repair Defects in Bone and Cartilage. Eur. Cell. Mater. 2009, 18, 96–111. [Google Scholar] [CrossRef]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral Vector Platforms within the Gene Therapy Landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef]
- Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zheng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis. 2017, 4, 43–63. [Google Scholar] [CrossRef]
- Loi, F.; Córdova, L.A.; Pajarinen, J.; Lin, T.; Yao, Z.; Goodman, S.B. Inflammation, Fracture and Bone Repair. Bone 2016, 86, 119–130. [Google Scholar] [CrossRef]
- Muruve, D.A. The Innate Immune Response to Adenovirus Vectors. Hum. Gene Ther. 2004, 15, 1157–1166. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Zaiss, A.-K.; Liu, Q.; Bowen, G.P.; Wong, N.C.W.; Bartlett, J.S.; Muruve, D.A. Differential Activation of Innate Immune Responses by Adenovirus and Adeno-Associated Virus Vectors. J. Virol. 2002, 76, 4580–4590. [Google Scholar] [CrossRef]
- Lin, C.; Greenblatt, M.B.; Gao, G.; Shim, J.-H. Development of AAV-Mediated Gene Therapy Approaches to Treat Skeletal Diseases. Hum. Gene Ther. 2024, 35, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Bougioukli, S.; Chateau, M.; Morales, H.; Vakhshori, V.; Sugiyama, O.; Oakes, D.; Longjohn, D.; Cannon, P.; Lieberman, J.R. Limited Potential of AAV-Mediated Gene Therapy in Transducing Human Mesenchymal Stem Cells for Bone Repair Applications. Gene Ther. 2021, 28, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Naldini, L.; Blömer, U.; Gallay, P.; Ory, D.; Mulligan, R.; Gage, F.H.; Verma, I.M.; Trono, D. In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector. Science 1996, 272, 263–267. [Google Scholar] [CrossRef]
- Ciuffi, A. Mechanisms Governing Lentivirus Integration Site Selection. Curr. Gene Ther. 2008, 8, 419–429. [Google Scholar] [CrossRef]
- Zufferey, R.; Dull, T.; Mandel, R.J.; Bukovsky, A.; Quiroz, D.; Naldini, L.; Trono, D. Self-Inactivating Lentivirus Vector for Safe and Efficient in Vivo Gene Delivery. J. Virol. 1998, 72, 9873–9880. [Google Scholar] [CrossRef]
- Beard, B.C.; Dickerson, D.; Beebe, K.; Gooch, C.; Fletcher, J.; Okbinoglu, T.; Miller, D.G.; Jacobs, M.A.; Kaul, R.; Kiem, H.-P.; et al. Comparison of HIV-Derived Lentiviral and MLV-Based Gammaretroviral Vector Integration Sites in Primate Repopulating Cells. Mol. Ther. J. Am. Soc. Gene Ther. 2007, 15, 1356–1365. [Google Scholar] [CrossRef]
- Montini, E.; Cesana, D.; Schmidt, M.; Sanvito, F.; Ponzoni, M.; Bartholomae, C.; Sergi Sergi, L.; Benedicenti, F.; Ambrosi, A.; Di Serio, C.; et al. Hematopoietic Stem Cell Gene Transfer in a Tumor-Prone Mouse Model Uncovers Low Genotoxicity of Lentiviral Vector Integration. Nat. Biotechnol. 2006, 24, 687–696. [Google Scholar] [CrossRef]
- Bushman, F.D. Retroviral Insertional Mutagenesis in Humans: Evidence for Four Genetic Mechanisms Promoting Expansion of Cell Clones. Mol. Ther. J. Am. Soc. Gene Ther. 2020, 28, 352–356. [Google Scholar] [CrossRef]
- Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.P.; Soulier, J.; Lim, A.; Morillon, E.; Clappier, E.; Caccavelli, L.; Delabesse, E.; Beldjord, K.; et al. Insertional Oncogenesis in 4 Patients after Retrovirus-Mediated Gene Therapy of SCID-X1. J. Clin. Investig. 2008, 118, 3132–3142. [Google Scholar] [CrossRef]
- Milone, M.C.; O’Doherty, U. Clinical Use of Lentiviral Vectors. Leukemia 2018, 32, 1529–1541. [Google Scholar] [CrossRef]
- Bell, J.A.; Collon, K.; Mayfield, C.; Gallo, M.C.; Chang, S.W.; Sugiyama, O.; Tang, A.H.; Hollis, R.; Chopra, S.; Kohn, D.B.; et al. Biodistribution of Lentiviral Transduced Adipose-Derived Stem Cells for “Ex-Vivo” Regional Gene Therapy for Bone Repair. Gene Ther. 2023, 30, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Alaee, F.; Bartholomae, C.; Sugiyama, O.; Virk, M.S.; Drissi, H.; Wu, Q.; Schmidt, M.; Lieberman, J.R. Biodistribution of LV-TSTA Transduced Rat Bone Marrow Cells Used for “Ex-Vivo” Regional Gene Therapy for Bone Repair. Curr. Gene Ther. 2015, 15, 481–491. [Google Scholar] [CrossRef]
- Bougioukli, S.; Vakhshori, V.; Ortega, B.; Sugiyama, O.; Lieberman, J. Regulated Ex Vivo Regional Gene Therapy for Bone Repair Using an Inducible Caspase-9 Suicide Gene System. Gene Ther. 2019, 26, 230–239. [Google Scholar] [CrossRef]
- Alaee, F.; Sugiyama, O.; Virk, M.S.; Tang, H.; Drissi, H.; Lichtler, A.C.; Lieberman, J.R. Suicide Gene Approach Using a Dual-Expression Lentiviral Vector to Enhance the Safety of Ex Vivo Gene Therapy for Bone Repair. Gene Ther. 2014, 21, 139–147. [Google Scholar] [CrossRef]
- Taguchi, T.; Lopez, M.J. An Overview of de Novo Bone Generation in Animal Models. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2021, 39, 7–21. [Google Scholar] [CrossRef]
- Musgrave, D.S.; Bosch, P.; Ghivizzani, S.; Robbins, P.D.; Evans, C.H.; Huard, J. Adenovirus-Mediated Direct Gene Therapy with Bone Morphogenetic Protein-2 Produces Bone. Bone 1999, 24, 541–547. [Google Scholar] [CrossRef]
- Peric, M.; Dumic-Cule, I.; Grcevic, D.; Matijasic, M.; Verbanac, D.; Paul, R.; Grgurevic, L.; Trkulja, V.; Bagi, C.M.; Vukicevic, S. The Rational Use of Animal Models in the Evaluation of Novel Bone Regenerative Therapies. Bone 2015, 70, 73–86. [Google Scholar] [CrossRef]
- Ball, A.N.; Donahue, S.W.; Wojda, S.J.; McIlwraith, C.W.; Kawcak, C.E.; Ehrhart, N.; Goodrich, L.R. The Challenges of Promoting Osteogenesis in Segmental Bone Defects and Osteoporosis. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2018, 36, 1559–1572. [Google Scholar] [CrossRef]
- Pelled, G.; Sheyn, D.; Tawackoli, W.; Jun, D.S.; Koh, Y.; Su, S.; Cohn Yakubovich, D.; Kallai, I.; Antebi, B.; Da, X.; et al. BMP6-Engineered MSCs Induce Vertebral Bone Repair in a Pig Model: A Pilot Study. Stem Cells Int. 2016, 2016, 6530624. [Google Scholar] [CrossRef]
- Peng, H.; Wright, V.; Usas, A.; Gearhart, B.; Shen, H.-C.; Cummins, J.; Huard, J. Synergistic Enhancement of Bone Formation and Healing by Stem Cell-Expressed VEGF and Bone Morphogenetic Protein-4. J. Clin. Investig. 2002, 110, 751–759. [Google Scholar] [CrossRef]
- Alden, T.D.; Pittman, D.D.; Hankins, G.R.; Beres, E.J.; Engh, J.A.; Das, S.; Hudson, S.B.; Kerns, K.M.; Kallmes, D.F.; Helm, G.A. In Vivo Endochondral Bone Formation Using a Bone Morphogenetic Protein 2 Adenoviral Vector. Hum. Gene Ther. 1999, 10, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Betz, O.B.; Betz, V.M.; Nazarian, A.; Pilapil, C.G.; Vrahas, M.S.; Bouxsein, M.L.; Gerstenfeld, L.C.; Einhorn, T.A.; Evans, C.H. Direct Percutaneous Gene Delivery to Enhance Healing of Segmental Bone Defects. J. Bone Jt. Surg. Am. 2006, 88, 355–365. [Google Scholar] [CrossRef] [PubMed]
- De la Vega, R.E.; Coenen, M.J.; Müller, S.A.; Nagelli, C.V.; Quirk, N.P.; de Padilla, C.L.; Evans, C.H. Effects of FK506 on the Healing of Diaphyseal, Critical Size Defects in the Rat Femur. Eur. Cell. Mater. 2020, 40, 160–171. [Google Scholar] [CrossRef]
- Liu, F.; Ferreira, E.; Porter, R.M.; Glatt, V.; Schinhan, M.; Shen, Z.; Randolph, M.A.; Kirker-Head, C.A.; Wehling, C.; Vrahas, M.S.; et al. Rapid and Reliable Healing of Critical Size Bone Defects with Genetically Modified Sheep Muscle. Eur. Cell. Mater. 2015, 30, 118–130; discussion 130–131. [Google Scholar] [CrossRef]
- Egermann, M.; Baltzer, A.W.; Adamaszek, S.; Evans, C.; Robbins, P.; Schneider, E.; Lill, C.A. Direct Adenoviral Transfer of Bone Morphogenetic Protein-2 cDNA Enhances Fracture Healing in Osteoporotic Sheep. Hum. Gene Ther. 2006, 17, 507–517. [Google Scholar] [CrossRef]
- Kaihara, S.; Bessho, K.; Okubo, Y.; Sonobe, J.; Kawai, M.; Iizuka, T. Simple and Effective Osteoinductive Gene Therapy by Local Injection of a Bone Morphogenetic Protein-2-Expressing Recombinant Adenoviral Vector and FK506 Mixture in Rats. Gene Ther. 2004, 11, 439–447. [Google Scholar] [CrossRef]
- Feeley, B.T.; Conduah, A.H.; Sugiyama, O.; Krenek, L.; Chen, I.S.Y.; Lieberman, J.R. In Vivo Molecular Imaging of Adenoviral versus Lentiviral Gene Therapy in Two Bone Formation Models. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2006, 24, 1709–1721. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between Mouse and Human Immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Sugiyama, O.; An, D.S.; Kung, S.P.K.; Feeley, B.T.; Gamradt, S.; Liu, N.Q.; Chen, I.S.Y.; Lieberman, J.R. Lentivirus-Mediated Gene Transfer Induces Long-Term Transgene Expression of BMP-2 in Vitro and New Bone Formation in Vivo. Mol. Ther. J. Am. Soc. Gene Ther. 2005, 11, 390–398. [Google Scholar] [CrossRef]
- Miyazaki, M.; Sugiyama, O.; Tow, B.; Zou, J.; Morishita, Y.; Wei, F.; Napoli, A.; Sintuu, C.; Lieberman, J.R.; Wang, J.C. The Effects of Lentiviral Gene Therapy with Bone Morphogenetic Protein-2-Producing Bone Marrow Cells on Spinal Fusion in Rats. J. Spinal Disord. Tech. 2008, 21, 372–379. [Google Scholar] [CrossRef]
- Hsu, W.K.; Sugiyama, O.; Park, S.H.; Conduah, A.; Feeley, B.T.; Liu, N.Q.; Krenek, L.; Virk, M.S.; An, D.S.; Chen, I.S.; et al. Lentiviral-Mediated BMP-2 Gene Transfer Enhances Healing of Segmental Femoral Defects in Rats. Bone 2007, 40, 931–938. [Google Scholar] [CrossRef] [PubMed]
- De la Vega, R.E.; Atasoy-Zeybek, A.; Panos, J.A.; VAN Griensven, M.; Evans, C.H.; Balmayor, E.R. Gene Therapy for Bone Healing: Lessons Learned and New Approaches. Transl. Res. J. Lab. Clin. Med. 2021, 236, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Krut, Z.; Gazit, D.; Gazit, Z.; Pelled, G. Applications of Ultrasound-Mediated Gene Delivery in Regenerative Medicine. Bioengineering 2022, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Hamann, A.; Pannier, A.K. Innovative Nonviral Gene Delivery Strategies for Engineering Human Mesenchymal Stem Cell Phenotypes toward Clinical Applications. Curr. Opin. Biotechnol. 2022, 78, 102819. [Google Scholar] [CrossRef]
- Elangovan, S.; Khorsand, B.; Do, A.-V.; Hong, L.; Dewerth, A.; Kormann, M.; Ross, R.D.; Sumner, D.R.; Allamargot, C.; Salem, A.K. Chemically Modified RNA Activated Matrices Enhance Bone Regeneration. J. Control. Release Off. J. Control. Release Soc. 2015, 218, 22–28. [Google Scholar] [CrossRef]
- Feichtinger, G.A.; Hofmann, A.T.; Slezak, P.; Schuetzenberger, S.; Kaipel, M.; Schwartz, E.; Neef, A.; Nomikou, N.; Nau, T.; van Griensven, M.; et al. Sonoporation Increases Therapeutic Efficacy of Inducible and Constitutive BMP2/7 in Vivo Gene Delivery. Hum. Gene Ther. Methods 2014, 25, 57–71. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Bigham-Sadegh, A. Bone Morphogenetic Proteins: A Powerful Osteoinductive Compound with Non-Negligible Side Effects and Limitations. BioFactors 2014, 40, 459–481. [Google Scholar] [CrossRef]
- Bez, M.; Pelled, G.; Gazit, D. BMP Gene Delivery for Skeletal Tissue Regeneration. Bone 2020, 137, 115449. [Google Scholar] [CrossRef]
- Cheng, H.; Jiang, W.; Phillips, F.M.; Haydon, R.C.; Peng, Y.; Zhou, L.; Luu, H.H.; An, N.; Breyer, B.; Vanichakarn, P.; et al. Osteogenic Activity of the Fourteen Types of Human Bone Morphogenetic Proteins (BMPs). J. Bone Jt. Surg. Am. 2003, 85, 1544–1552. [Google Scholar] [CrossRef]
- Luu, H.H.; Song, W.-X.; Luo, X.; Manning, D.; Luo, J.; Deng, Z.-L.; Sharff, K.A.; Montag, A.G.; Haydon, R.C.; He, T.-C. Distinct Roles of Bone Morphogenetic Proteins in Osteogenic Differentiation of Mesenchymal Stem Cells. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2007, 25, 665–677. [Google Scholar] [CrossRef]
- Samee, M.; Kasugai, S.; Kondo, H.; Ohya, K.; Shimokawa, H.; Kuroda, S. Bone Morphogenetic Protein-2 (BMP-2) and Vascular Endothelial Growth Factor (VEGF) Transfection to Human Periosteal Cells Enhances Osteoblast Differentiation and Bone Formation. J. Pharmacol. Sci. 2008, 108, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.T.; Zhao, Z.; Wang, Z.; Lewis, I.S.; Krebsbach, P.H.; Franceschi, R.T. Combinatorial Gene Therapy with BMP2/7 Enhances Cranial Bone Regeneration. J. Dent. Res. 2008, 87, 845–849. [Google Scholar] [CrossRef]
- Geng, Y.; Duan, H.; Xu, L.; Witman, N.; Yan, B.; Yu, Z.; Wang, H.; Tan, Y.; Lin, L.; Li, D.; et al. BMP-2 and VEGF-A modRNAs in Collagen Scaffold Synergistically Drive Bone Repair through Osteogenic and Angiogenic Pathways. Commun. Biol. 2021, 4, 82. [Google Scholar] [CrossRef]
- Bougioukli, S.; Jain, A.; Sugiyama, O.; Tinsley, B.A.; Tang, A.H.; Tan, M.H.; Adams, D.J.; Kostenuik, P.J.; Lieberman, J.R. Combination Therapy with BMP-2 and a Systemic RANKL Inhibitor Enhances Bone Healing in a Mouse Critical-Sized Femoral Defect. Bone 2016, 84, 93–103. [Google Scholar] [CrossRef]
- Kowalczewski, C.J.; Saul, J.M. Surface-Mediated Delivery of siRNA from Fibrin Hydrogels for Knockdown of the BMP-2 Binding Antagonist Noggin. Acta Biomater. 2015, 25, 109–120. [Google Scholar] [CrossRef]
- Mora-Raimundo, P.; Lozano, D.; Manzano, M.; Vallet-Regí, M. Nanoparticles to Knockdown Osteoporosis-Related Gene and Promote Osteogenic Marker Expression for Osteoporosis Treatment. ACS Nano 2019, 13, 5451–5464. [Google Scholar] [CrossRef]
- Leng, Q.; Chen, L.; Lv, Y. RNA-Based Scaffolds for Bone Regeneration: Application and Mechanisms of mRNA, miRNA and siRNA. Theranostics 2020, 10, 3190–3205. [Google Scholar] [CrossRef]
- Freitas, G.P.; Lopes, H.B.; Souza, A.T.P.; Gomes, M.P.O.; Quiles, G.K.; Gordon, J.; Tye, C.; Stein, J.L.; Stein, G.S.; Lian, J.B.; et al. Mesenchymal Stem Cells Overexpressing BMP-9 by CRISPR-Cas9 Present High in Vitro Osteogenic Potential and Enhance in Vivo Bone Formation. Gene Ther. 2021, 28, 748–759. [Google Scholar] [CrossRef]
- Li, C.; Du, Y.; Zhang, T.; Wang, H.; Hou, Z.; Zhang, Y.; Cui, W.; Chen, W. “Genetic Scissors” CRISPR/Cas9 Genome Editing Cutting-Edge Biocarrier Technology for Bone and Cartilage Repair. Bioact. Mater. 2023, 22, 254–273. [Google Scholar] [CrossRef]
- Gao, X.; Ruzbarsky, J.J.; Layne, J.E.; Xiao, X.; Huard, J. Stem Cells and Bone Tissue Engineering. Life 2024, 14, 287. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Bielby, R.C.; Boccaccini, A.R.; Polak, J.M.; Buttery, L.D.K. In Vitro Differentiation and in Vivo Mineralization of Osteogenic Cells Derived from Human Embryonic Stem Cells. Tissue Eng. 2004, 10, 1518–1525. [Google Scholar] [CrossRef]
- Buttery, L.D.; Bourne, S.; Xynos, J.D.; Wood, H.; Hughes, F.J.; Hughes, S.P.; Episkopou, V.; Polak, J.M. Differentiation of Osteoblasts and in Vitro Bone Formation from Murine Embryonic Stem Cells. Tissue Eng. 2001, 7, 89–99. [Google Scholar] [CrossRef]
- Blum, B.; Bar-Nur, O.; Golan-Lev, T.; Benvenisty, N. The Anti-Apoptotic Gene Survivin Contributes to Teratoma Formation by Human Embryonic Stem Cells. Nat. Biotechnol. 2009, 27, 281–287. [Google Scholar] [CrossRef]
- Swijnenburg, R.-J.; Tanaka, M.; Vogel, H.; Baker, J.; Kofidis, T.; Gunawan, F.; Lebl, D.R.; Caffarelli, A.D.; de Bruin, J.L.; Fedoseyeva, E.V.; et al. Embryonic Stem Cell Immunogenicity Increases upon Differentiation after Transplantation into Ischemic Myocardium. Circulation 2005, 112, I166–I172. [Google Scholar] [CrossRef]
- Grinnemo, K.-H.; Sylvén, C.; Hovatta, O.; Dellgren, G.; Corbascio, M. Immunogenicity of Human Embryonic Stem Cells. Cell Tissue Res. 2008, 331, 67–78. [Google Scholar] [CrossRef]
- Lo, B.; Parham, L. Ethical Issues in Stem Cell Research. Endocr. Rev. 2009, 30, 204–213. [Google Scholar] [CrossRef]
- Wen, C.; Kang, H.; Shih, Y.-R.V.; Hwang, Y.; Varghese, S. In Vivo Comparison of Biomineralized Scaffold-Directed Osteogenic Differentiation of Human Embryonic and Mesenchymal Stem Cells. Drug Deliv. Transl. Res. 2016, 6, 121–131. [Google Scholar] [CrossRef]
- Both, S.K.; van Apeldoorn, A.A.; Jukes, J.M.; Englund, M.C.O.; Hyllner, J.; van Blitterswijk, C.A.; de Boer, J. Differential Bone-Forming Capacity of Osteogenic Cells from Either Embryonic Stem Cells or Bone Marrow-Derived Mesenchymal Stem Cells. J. Tissue Eng. Regen. Med. 2011, 5, 180–190. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Bauer, G.; Nolta, J.A. Concise Review: Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells: Progress toward Safe Clinical Products. Stem Cells 2012, 30, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, S.P.; Shevchenko, A.I.; Zakian, S.M. Induced Pluripotent Stem Cells: Problems and Advantages When Applying Them in Regenerative Medicine. Acta Naturae 2010, 2, 18–28. [Google Scholar] [CrossRef]
- Knoepfler, P.S. Deconstructing Stem Cell Tumorigenicity: A Roadmap to Safe Regenerative Medicine. Stem Cells 2009, 27, 1050–1056. [Google Scholar] [CrossRef]
- Sheyn, D.; Ben-David, S.; Shapiro, G.; De Mel, S.; Bez, M.; Ornelas, L.; Sahabian, A.; Sareen, D.; Da, X.; Pelled, G.; et al. Human Induced Pluripotent Stem Cells Differentiate into Functional Mesenchymal Stem Cells and Repair Bone Defects. Stem Cells Transl. Med. 2016, 5, 1447–1460. [Google Scholar] [CrossRef]
- Bastami, F.; Nazeman, P.; Moslemi, H.; Rezai Rad, M.; Sharifi, K.; Khojasteh, A. Induced Pluripotent Stem Cells as a New Getaway for Bone Tissue Engineering: A Systematic Review. Cell Prolif. 2017, 50, e12321. [Google Scholar] [CrossRef]
- Jungbluth, P.; Spitzhorn, L.-S.; Grassmann, J.; Tanner, S.; Latz, D.; Rahman, M.S.; Bohndorf, M.; Wruck, W.; Sager, M.; Grotheer, V.; et al. Human iPSC-Derived iMSCs Improve Bone Regeneration in Mini-Pigs. Bone Res. 2019, 7, 32. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Zhao, Z.; Xu, H.H.K. Reprogramming of Mesenchymal Stem Cells Derived from iPSCs Seeded on Biofunctionalized Calcium Phosphate Scaffold for Bone Engineering. Biomaterials 2013, 34, 7862–7872. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Caplan, A.I.; Dennis, J.E. Mesenchymal Stem Cells as Trophic Mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Ankrum, J.A.; Ong, J.F.; Karp, J.M. Mesenchymal Stem Cells: Immune Evasive, Not Immune Privileged. Nat. Biotechnol. 2014, 32, 252–260. [Google Scholar] [CrossRef]
- Gao, F.; Chiu, S.M.; Motan, D.A.L.; Zhang, Z.; Chen, L.; Ji, H.-L.; Tse, H.-F.; Fu, Q.-L.; Lian, Q. Mesenchymal Stem Cells and Immunomodulation: Current Status and Future Prospects. Cell Death Dis. 2016, 7, e2062. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Zhao, L.; Liu, Y.; Su, Y.; Gong, X.; Liu, F.; Zhang, L. The Heterogeneity of Mesenchymal Stem Cells: An Important Issue to Be Addressed in Cell Therapy. Stem Cell Res. Ther. 2023, 14, 381. [Google Scholar] [CrossRef]
- Collon, K.; Bell, J.A.; Gallo, M.C.; Chang, S.W.; Bougioukli, S.; Sugiyama, O.; Tassey, J.; Hollis, R.; Heckmann, N.; Oakes, D.A.; et al. Influence of Donor Age and Comorbidities on Transduced Human Adipose-Derived Stem Cell in Vitro Osteogenic Potential. Gene Ther. 2023, 30, 369–376. [Google Scholar] [CrossRef]
- Bethel, M.; Chitteti, B.R.; Srour, E.F.; Kacena, M.A. The Changing Balance between Osteoblastogenesis and Adipogenesis in Aging and Its Impact on Hematopoiesis. Curr. Osteoporos. Rep. 2013, 11, 99–106. [Google Scholar] [CrossRef]
- Baker, N.; Boyette, L.B.; Tuan, R.S. Characterization of Bone Marrow-Derived Mesenchymal Stem Cells in Aging. Bone 2015, 70, 37–47. [Google Scholar] [CrossRef]
- Gao, X.; Lu, A.; Tang, Y.; Schneppendahl, J.; Liebowitz, A.B.; Scibetta, A.C.; Morris, E.R.; Cheng, H.; Huard, C.; Amra, S.; et al. Influences of Donor and Host Age on Human Muscle-Derived Stem Cell-Mediated Bone Regeneration. Stem Cell Res. Ther. 2018, 9, 316. [Google Scholar] [CrossRef]
- Aksu, A.E.; Rubin, J.P.; Dudas, J.R.; Marra, K.G. Role of Gender and Anatomical Region on Induction of Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Ann. Plast. Surg. 2008, 60, 306–322. [Google Scholar] [CrossRef]
- Calle, A.; Barrajón-Masa, C.; Gómez-Fidalgo, E.; Martín-Lluch, M.; Cruz-Vigo, P.; Sánchez-Sánchez, R.; Ramírez, M.Á. Iberian Pig Mesenchymal Stem/Stromal Cells from Dermal Skin, Abdominal and Subcutaneous Adipose Tissues, and Peripheral Blood: In Vitro Characterization and Migratory Properties in Inflammation. Stem Cell Res. Ther. 2018, 9, 178. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Piatetzky-Shapiro, I.I.; Petrakova, K.V. Osteogenesis in Transplants of Bone Marrow Cells. J. Embryol. Exp. Morphol. 1966, 16, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Mesenchymal Stem Cells. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1991, 9, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Gholami Farashah, M.S.; Mohammadi, A.; Javadi, M.; Soleimani Rad, J.; Shakouri, S.K.; Meshgi, S.; Roshangar, L. Bone Marrow Mesenchymal Stem Cells’ Osteogenic Potential: Superiority or Non-Superiority to Other Sources of Mesenchymal Stem Cells? Cell Tissue Bank. 2023, 24, 663–681. [Google Scholar] [CrossRef]
- Kozlowska, U.; Krawczenko, A.; Futoma, K.; Jurek, T.; Rorat, M.; Patrzalek, D.; Klimczak, A. Similarities and Differences between Mesenchymal Stem/Progenitor Cells Derived from Various Human Tissues. World J. Stem Cells 2019, 11, 347. [Google Scholar] [CrossRef]
- Amati, E.; Perbellini, O.; Rotta, G.; Bernardi, M.; Chieregato, K.; Sella, S.; Rodeghiero, F.; Ruggeri, M.; Astori, G. High-Throughput Immunophenotypic Characterization of Bone Marrow- and Cord Blood-Derived Mesenchymal Stromal Cells Reveals Common and Differentially Expressed Markers: Identification of Angiotensin-Converting Enzyme (CD143) as a Marker Differentially Expressed between Adult and Perinatal Tissue Sources. Stem Cell Res. Ther. 2018, 9, 10. [Google Scholar] [CrossRef]
- Strem, B.M.; Hicok, K.C.; Zhu, M.; Wulur, I.; Alfonso, Z.; Schreiber, R.E.; Fraser, J.K.; Hedrick, M.H. Multipotential Differentiation of Adipose Tissue-Derived Stem Cells. Keio J. Med. 2005, 54, 132–141. [Google Scholar] [CrossRef]
- Bragdon, B.; Burns, R.; Baker, A.H.; Belkina, A.C.; Morgan, E.F.; Denis, G.V.; Gerstenfeld, L.C.; Schlezinger, J.J. Intrinsic Sex-Linked Variations in Osteogenic and Adipogenic Differentiation Potential of Bone Marrow Multipotent Stromal Cells. J. Cell. Physiol. 2015, 230, 296–307. [Google Scholar] [CrossRef]
- D’Ippolito, G.; Schiller, P.C.; Ricordi, C.; Roos, B.A.; Howard, G.A. Age-Related Osteogenic Potential of Mesenchymal Stromal Stem Cells from Human Vertebral Bone Marrow. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1999, 14, 1115–1122. [Google Scholar] [CrossRef]
- Rodbell, M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 1964, 239, 375–380. [Google Scholar] [CrossRef]
- De Francesco, F.; Ricci, G.; D’Andrea, F.; Nicoletti, G.F.; Ferraro, G.A. Human Adipose Stem Cells: From Bench to Bedside. Tissue Eng. Part B Rev. 2015, 21, 572–584. [Google Scholar] [CrossRef]
- Wickham, M.Q.; Erickson, G.R.; Gimble, J.M.; Vail, T.P.; Guilak, F. Multipotent Stromal Cells Derived from the Infrapatellar Fat Pad of the Knee. Clin. Orthop. 2003, 412, 196–212. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Shi, W.; Tai, W.; Liu, F. The Comparition of Biological Characteristics and Multilineage Differentiation of Bone Marrow and Adipose Derived Mesenchymal Stem Cells. Cell Tissue Res. 2012, 350, 277–287. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan-Wong, K.; Nadeau, S.; Carrier-Leclerc, A.; Apablaza, F.; Hamdy, R.; Shum-Tim, D.; Rodier, F.; Colmegna, I. Increased IL-6 Secretion by Aged Human Mesenchymal Stromal Cells Disrupts Hematopoietic Stem and Progenitor Cells’ Homeostasis. Oncotarget 2016, 7, 13285–13296. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Laranjeira, P.; Mendes, S.; Velada, I.; Leite, C.; Andrade, P.; Santos, F.; Henriques, A.; Grãos, M.; Cardoso, C.M.P.; et al. Mesenchymal Stem Cells from Umbilical Cord Matrix, Adipose Tissue and Bone Marrow Exhibit Different Capability to Suppress Peripheral Blood B, Natural Killer and T Cells. Stem Cell Res. Ther. 2013, 4, 125. [Google Scholar] [CrossRef]
- Melief, S.M.; Zwaginga, J.J.; Fibbe, W.E.; Roelofs, H. Adipose Tissue-Derived Multipotent Stromal Cells Have a Higher Immunomodulatory Capacity than Their Bone Marrow-Derived Counterparts. Stem Cells Transl. Med. 2013, 2, 455–463. [Google Scholar] [CrossRef]
- Liao, H.-T.; Chen, C.-T. Osteogenic Potential: Comparison between Bone Marrow and Adipose-Derived Mesenchymal Stem Cells. World J. Stem Cells 2014, 6, 288–295. [Google Scholar] [CrossRef]
- Marędziak, M.; Marycz, K.; Tomaszewski, K.A.; Kornicka, K.; Henry, B.M. The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells. Stem Cells Int. 2016, 2016, 2152435. [Google Scholar] [CrossRef]
- Beane, O.S.; Fonseca, V.C.; Cooper, L.L.; Koren, G.; Darling, E.M. Impact of Aging on the Regenerative Properties of Bone Marrow-, Muscle-, and Adipose-Derived Mesenchymal Stem/Stromal Cells. PLoS ONE 2014, 9, e115963. [Google Scholar] [CrossRef]
- Dragoo, J.L.; Choi, J.Y.; Lieberman, J.R.; Huang, J.; Zuk, P.A.; Zhang, J.; Hedrick, M.H.; Benhaim, P. Bone Induction by BMP-2 Transduced Stem Cells Derived from Human Fat. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2003, 21, 622–629. [Google Scholar] [CrossRef]
- Hsu, W.K.; Wang, J.C.; Liu, N.Q.; Krenek, L.; Zuk, P.A.; Hedrick, M.H.; Benhaim, P.; Lieberman, J.R. Stem Cells from Human Fat as Cellular Delivery Vehicles in an Athymic Rat Posterolateral Spine Fusion Model. J. Bone Jt. Surg. Am. 2008, 90, 1043–1052. [Google Scholar] [CrossRef]
- Atasoy-Zeybek, A.; Coenen, M.J.; Hawse, G.P.; Logeart-Avramoglou, D.; Evans, C.H.; De La Vega, R.E. Efficient Autocrine and Paracrine Signaling Explain the Osteogenic Superiority of Transgenic BMP-2 over rhBMP-2. Mol. Ther. Methods Clin. Dev. 2023, 29, 350–363. [Google Scholar] [CrossRef]
- Bougioukli, S.; Sugiyama, O.; Pannell, W.; Ortega, B.; Tan, M.H.; Tang, A.H.; Yoho, R.; Oakes, D.A.; Lieberman, J.R. Gene Therapy for Bone Repair Using Human Cells: Superior Osteogenic Potential of Bone Morphogenetic Protein 2-Transduced Mesenchymal Stem Cells Derived from Adipose Tissue Compared to Bone Marrow. Hum. Gene Ther. 2018, 29, 507–519. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, B.-J.; Kim, W.H.; Yun, H.-S.; Kweon, O.-K. Evaluation of Mesenchymal Stem Cell Sheets Overexpressing BMP-7 in Canine Critical-Sized Bone Defects. Int. J. Mol. Sci. 2018, 19, 2073. [Google Scholar] [CrossRef]
- Hsu, M.-N.; Yu, F.-J.; Chang, Y.-H.; Huang, K.-L.; Pham, N.N.; Truong, V.A.; Lin, M.-W.; Kieu Nguyen, N.T.; Hwang, S.-M.; Hu, Y.-C. CRISPR Interference-Mediated Noggin Knockdown Promotes BMP2-Induced Osteogenesis and Calvarial Bone Healing. Biomaterials 2020, 252, 120094. [Google Scholar] [CrossRef]
- Yaffe, D. Retention of Differentiation Potentialities during Prolonged Cultivation of Myogenic Cells. Proc. Natl. Acad. Sci. USA 1968, 61, 477–483. [Google Scholar] [CrossRef]
- Qu-Petersen, Z.; Deasy, B.; Jankowski, R.; Ikezawa, M.; Cummins, J.; Pruchnic, R.; Mytinger, J.; Cao, B.; Gates, C.; Wernig, A.; et al. Identification of a Novel Population of Muscle Stem Cells in Mice: Potential for Muscle Regeneration. J. Cell Biol. 2002, 157, 851–864. [Google Scholar] [CrossRef]
- Mastrogiacomo, M.; Derubeis, A.R.; Cancedda, R. Bone and Cartilage Formation by Skeletal Muscle Derived Cells. J. Cell. Physiol. 2005, 204, 594–603. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Chen, B.; An, X. Muscle-Derived Stem Cells: Isolation, Characterization, Differentiation, and Application in Cell and Gene Therapy. Cell Tissue Res. 2010, 340, 549–567. [Google Scholar] [CrossRef]
- Lavasani, M.; Lu, A.; Thompson, S.D.; Robbins, P.D.; Huard, J.; Niedernhofer, L.J. Isolation of Muscle-Derived Stem/Progenitor Cells Based on Adhesion Characteristics to Collagen-Coated Surfaces. Methods Mol. Biol. 2013, 976, 53–65. [Google Scholar] [CrossRef]
- Bosch, P.; Musgrave, D.S.; Lee, J.Y.; Cummins, J.; Shuler, T.; Ghivizzani, T.C.; Evans, T.; Robbins, T.D.; Huard, J. Osteoprogenitor Cells within Skeletal Muscle. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2000, 18, 933–944. [Google Scholar] [CrossRef]
- Musgrave, D.S.; Pruchnic, R.; Wright, V.; Bosch, P.; Ghivizzani, S.C.; Robbins, P.D.; Huard, J. The Effect of Bone Morphogenetic Protein-2 Expression on the Early Fate of Skeletal Muscle-Derived Cells. Bone 2001, 28, 499–506. [Google Scholar] [CrossRef]
- Lee, J.Y.; Peng, H.; Usas, A.; Musgrave, D.; Cummins, J.; Pelinkovic, D.; Jankowski, R.; Ziran, B.; Robbins, P.; Huard, J. Enhancement of Bone Healing Based on Ex Vivo Gene Therapy Using Human Muscle-Derived Cells Expressing Bone Morphogenetic Protein 2. Hum. Gene Ther. 2002, 13, 1201–1211. [Google Scholar] [CrossRef]
- Gao, X.; Usas, A.; Lu, A.; Tang, Y.; Wang, B.; Chen, C.-W.; Li, H.; Tebbets, J.C.; Cummins, J.H.; Huard, J. BMP2 Is Superior to BMP4 for Promoting Human Muscle-Derived Stem Cell-Mediated Bone Regeneration in a Critical-Sized Calvarial Defect Model. Cell Transplant. 2013, 22, 2393–2408. [Google Scholar] [CrossRef]
- Wright, V.; Peng, H.; Usas, A.; Young, B.; Gearhart, B.; Cummins, J.; Huard, J. BMP4-Expressing Muscle-Derived Stem Cells Differentiate into Osteogenic Lineage and Improve Bone Healing in Immunocompetent Mice. Mol. Ther. J. Am. Soc. Gene Ther. 2002, 6, 169–178. [Google Scholar] [CrossRef]
- Gao, X.; Usas, A.; Proto, J.D.; Lu, A.; Cummins, J.H.; Proctor, A.; Chen, C.-W.; Huard, J. Role of Donor and Host Cells in Muscle-Derived Stem Cell-Mediated Bone Repair: Differentiation vs. Paracrine Effects. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2014, 28, 3792–3809. [Google Scholar] [CrossRef]
- Shen, H.-C.; Peng, H.; Usas, A.; Gearhart, B.; Cummins, J.; Fu, F.H.; Huard, J. Ex Vivo Gene Therapy-Induced Endochondral Bone Formation: Comparison of Muscle-Derived Stem Cells and Different Subpopulations of Primary Muscle-Derived Cells. Bone 2004, 34, 982–992. [Google Scholar] [CrossRef]
- Liu, J.; Yu, F.; Sun, Y.; Jiang, B.; Zhang, W.; Yang, J.; Xu, G.-T.; Liang, A.; Liu, S. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015, 33, 627–638. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal Human Dental Pulp Stem Cells (DPSCs) in Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef]
- Pierdomenico, L.; Bonsi, L.; Calvitti, M.; Rondelli, D.; Arpinati, M.; Chirumbolo, G.; Becchetti, E.; Marchionni, C.; Alviano, F.; Fossati, V.; et al. Multipotent Mesenchymal Stem Cells with Immunosuppressive Activity Can Be Easily Isolated from Dental Pulp. Transplantation 2005, 80, 836–842. [Google Scholar] [CrossRef]
- Aghajani, F.; Hooshmand, T.; Khanmohammadi, M.; Khanjani, S.; Edalatkhah, H.; Zarnani, A.-H.; Kazemnejad, S. Comparative Immunophenotypic Characteristics, Proliferative Features, and Osteogenic Differentiation of Stem Cells Isolated from Human Permanent and Deciduous Teeth with Bone Marrow. Mol. Biotechnol. 2016, 58, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Kunimatsu, R.; Nakajima, K.; Awada, T.; Tsuka, Y.; Abe, T.; Ando, K.; Hiraki, T.; Kimura, A.; Tanimoto, K. Comparative Characterization of Stem Cells from Human Exfoliated Deciduous Teeth, Dental Pulp, and Bone Marrow-Derived Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2018, 501, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Adolpho, L.F.; Lopes, H.B.; Freitas, G.P.; Weffort, D.; Campos Totoli, G.G.; Loyola Barbosa, A.C.; Freire Assis, R.I.; Silverio Ruiz, K.G.; Andia, D.C.; Rosa, A.L.; et al. Human Periodontal Ligament Stem Cells with Distinct Osteogenic Potential Induce Bone Formation in Rat Calvaria Defects. Regen. Med. 2022, 17, 341–353. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Y.; Jia, L.; Ji, Y.; Zhao, B.; Wen, Y.; Xu, X. An In Vitro Comparative Study of Multisource Derived Human Mesenchymal Stem Cells for Bone Tissue Engineering. Stem Cells Dev. 2018, 27, 1634–1645. [Google Scholar] [CrossRef]
- Winning, L.; El Karim, I.A.; Lundy, F.T. A Comparative Analysis of the Osteogenic Potential of Dental Mesenchymal Stem Cells. Stem Cells Dev. 2019, 28, 1050–1058. [Google Scholar] [CrossRef]
- Hagar, M.N.; Yazid, F.; Luchman, N.A.; Ariffin, S.H.Z.; Wahab, R.M.A. Comparative Evaluation of Osteogenic Differentiation Potential of Stem Cells Derived from Dental Pulp and Exfoliated Deciduous Teeth Cultured over Granular Hydroxyapatite Based Scaffold. BMC Oral Health 2021, 21, 263. [Google Scholar] [CrossRef]
- Yu, B.-H.; Zhou, Q.; Wang, Z.-L. Periodontal Ligament versus Bone Marrow Mesenchymal Stem Cells in Combination with Bio-Oss Scaffolds for Ectopic and in Situ Bone Formation: A Comparative Study in the Rat. J. Biomater. Appl. 2014, 29, 243–253. [Google Scholar] [CrossRef]
- Jin, Q.; Yuan, K.; Lin, W.; Niu, C.; Ma, R.; Huang, Z. Comparative Characterization of Mesenchymal Stem Cells from Human Dental Pulp and Adipose Tissue for Bone Regeneration Potential. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1577–1584. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chan, Y.-H.; Hsieh, S.-C.; Lew, W.-Z.; Feng, S.-W. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. Int. J. Mol. Sci. 2019, 20, 5015. [Google Scholar] [CrossRef]
- Rutherford, R.B.; Moalli, M.; Franceschi, R.T.; Wang, D.; Gu, K.; Krebsbach, P.H. Bone Morphogenetic Protein-Transduced Human Fibroblasts Convert to Osteoblasts and Form Bone in Vivo. Tissue Eng. 2002, 8, 441–452. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, K.-H.; Gwak, E.-H.; Rhee, S.-H.; Lee, J.-C.; Shin, S.-Y.; Koo, K.-T.; Lee, Y.-M.; Seol, Y.-J. Ex Vivo Bone Morphogenetic Protein 2 Gene Delivery Using Periodontal Ligament Stem Cells for Enhanced Re-Osseointegration in the Regenerative Treatment of Peri-Implantitis. J. Biomed. Mater. Res. A 2015, 103, 38–47. [Google Scholar] [CrossRef]
- Yang, X.; van der Kraan, P.M.; Bian, Z.; Fan, M.; Walboomers, X.F.; Jansen, J.A. Mineralized Tissue Formation by BMP2-Transfected Pulp Stem Cells. J. Dent. Res. 2009, 88, 1020–1025. [Google Scholar] [CrossRef]
- Perrin, S.; Colnot, C. Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration. Curr. Osteoporos. Rep. 2022, 20, 334–343. [Google Scholar] [CrossRef]
- Breitbart, A.S.; Grande, D.A.; Mason, J.M.; Barcia, M.; James, T.; Grant, R.T. Gene-Enhanced Tissue Engineering: Applications for Bone Healing Using Cultured Periosteal Cells Transduced Retrovirally with the BMP-7 Gene. Ann. Plast. Surg. 1999, 42, 488–495. [Google Scholar] [CrossRef]
- Krebsbach, P.H.; Gu, K.; Franceschi, R.T.; Rutherford, R.B. Gene Therapy-Directed Osteogenesis: BMP-7-Transduced Human Fibroblasts Form Bone in Vivo. Hum. Gene Ther. 2000, 11, 1201–1210. [Google Scholar] [CrossRef]
- Chunmeng, S.; Tianmin, C. Effects of Plastic-Adherent Dermal Multipotent Cells on Peripheral Blood Leukocytes and CFU-GM in Rats. Transplant. Proc. 2004, 36, 1578–1581. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, P.; Yu, C.; Wu, J. The Proliferation and Stemness of Peripheral Blood-Derived Mesenchymal Stromal Cells Were Enhanced by Hypoxia. Front. Endocrinol. 2022, 13, 873662. [Google Scholar] [CrossRef]
- Eghbali-Fatourechi, G.Z.; Lamsam, J.; Fraser, D.; Nagel, D.; Riggs, B.L.; Khosla, S. Circulating Osteoblast-Lineage Cells in Humans. N. Engl. J. Med. 2005, 352, 1959–1966. [Google Scholar] [CrossRef]
- Zvaifler, N.J.; Marinova-Mutafchieva, L.; Adams, G.; Edwards, C.J.; Moss, J.; Burger, J.A.; Maini, R.N. Mesenchymal Precursor Cells in the Blood of Normal Individuals. Arthritis Res. 2000, 2, 477–488. [Google Scholar] [CrossRef]
- Chong, P.-P.; Selvaratnam, L.; Abbas, A.A.; Kamarul, T. Human Peripheral Blood Derived Mesenchymal Stem Cells Demonstrate Similar Characteristics and Chondrogenic Differentiation Potential to Bone Marrow Derived Mesenchymal Stem Cells. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2012, 30, 634–642. [Google Scholar] [CrossRef]
- Wu, G.; Pan, M.; Wang, X.; Wen, J.; Cao, S.; Li, Z.; Li, Y.; Qian, C.; Liu, Z.; Wu, W.; et al. Osteogenesis of Peripheral Blood Mesenchymal Stem Cells in Self Assembling Peptide Nanofiber for Healing Critical Size Calvarial Bony Defect. Sci. Rep. 2015, 5, 16681. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, H.; Yang, S.; Wang, G.; Zhu, L.; Sun, C.; An, Y. Urine-Derived Stem Cells: Promising Advancements and Applications in Regenerative Medicine and Beyond. Heliyon 2024, 10, e27306. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef]
- Hass, R.; Kasper, C.; Böhm, S.; Jacobs, R. Different Populations and Sources of Human Mesenchymal Stem Cells (MSC): A Comparison of Adult and Neonatal Tissue-Derived MSC. Cell Commun. Signal. CCS 2011, 9, 12. [Google Scholar] [CrossRef]
- Todeschi, M.R.; El Backly, R.; Capelli, C.; Daga, A.; Patrone, E.; Introna, M.; Cancedda, R.; Mastrogiacomo, M. Transplanted Umbilical Cord Mesenchymal Stem Cells Modify the In Vivo Microenvironment Enhancing Angiogenesis and Leading to Bone Regeneration. Stem Cells Dev. 2015, 24, 1570–1581. [Google Scholar] [CrossRef]
- Torre, P.D.L.; Flores, A.I. Current Status and Future Prospects of Perinatal Stem Cells. Genes 2020, 12, 6. [Google Scholar] [CrossRef]
- Deuse, T.; Stubbendorff, M.; Tang-Quan, K.; Phillips, N.; Kay, M.A.; Eiermann, T.; Phan, T.T.; Volk, H.-D.; Reichenspurner, H.; Robbins, R.C.; et al. Immunogenicity and Immunomodulatory Properties of Umbilical Cord Lining Mesenchymal Stem Cells. Cell Transplant. 2011, 20, 655–667. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jo, C.H.; Kim, H.-R.; Hwang, Y.-I. Comparison of Immunological Characteristics of Mesenchymal Stem Cells from the Periodontal Ligament, Umbilical Cord, and Adipose Tissue. Stem Cells Int. 2018, 2018, 8429042. [Google Scholar] [CrossRef]
- Heo, J.S.; Choi, Y.; Kim, H.-S.; Kim, H.O. Comparison of Molecular Profiles of Human Mesenchymal Stem Cells Derived from Bone Marrow, Umbilical Cord Blood, Placenta and Adipose Tissue. Int. J. Mol. Med. 2016, 37, 115–125. [Google Scholar] [CrossRef]
- Choi, Y.S.; Park, Y.-B.; Ha, C.-W.; Kim, J.A.; Heo, J.-C.; Han, W.-J.; Oh, S.-Y.; Choi, S.-J. Different Characteristics of Mesenchymal Stem Cells Isolated from Different Layers of Full Term Placenta. PLoS ONE 2017, 12, e0172642. [Google Scholar] [CrossRef]
- Shen, C.; Yang, C.; Xu, S.; Zhao, H. Comparison of Osteogenic Differentiation Capacity in Mesenchymal Stem Cells Derived from Human Amniotic Membrane (AM), Umbilical Cord (UC), Chorionic Membrane (CM), and Decidua (DC). Cell Biosci. 2019, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Y.; Teoh, S.-H.; Chong, M.S.K.; Schantz, J.T.; Fisk, N.M.; Choolani, M.A.; Chan, J. Superior Osteogenic Capacity for Bone Tissue Engineering of Fetal Compared with Perinatal and Adult Mesenchymal Stem Cells. Stem Cells 2009, 27, 126–137. [Google Scholar] [CrossRef]
- Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells 2006, 24, 1294–1301. [Google Scholar] [CrossRef]
- Zajdel, A.; Kałucka, M.; Kokoszka-Mikołaj, E.; Wilczok, A. Osteogenic Differentiation of Human Mesenchymal Stem Cells from Adipose Tissue and Wharton’s Jelly of the Umbilical Cord. Acta Biochim. Pol. 2017, 64, 365–369. [Google Scholar] [CrossRef]
- Bougioukli, S.; Saitta, B.; Sugiyama, O.; Tang, A.H.; Elphingstone, J.; Evseenko, D.; Lieberman, J.R. Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Hum. Gene Ther. 2019, 30, 906–917. [Google Scholar] [CrossRef]
- Kermani, A.J.; Fathi, F.; Mowla, S.J. Characterization and Genetic Manipulation of Human Umbilical Cord Vein Mesenchymal Stem Cells: Potential Application in Cell-Based Gene Therapy. Rejuvenation Res. 2008, 11, 379–386. [Google Scholar] [CrossRef]
- Lu, F.-Z.; Fujino, M.; Kitazawa, Y.; Uyama, T.; Hara, Y.; Funeshima, N.; Jiang, J.-Y.; Umezawa, A.; Li, X.-K. Characterization and Gene Transfer in Mesenchymal Stem Cells Derived from Human Umbilical-Cord Blood. J. Lab. Clin. Med. 2005, 146, 271–278. [Google Scholar] [CrossRef]
- Wang, B.; Huang, S.; Pan, L.; Jia, S. Enhancement of Bone Formation by Genetically Engineered Human Umbilical Cord-Derived Mesenchymal Stem Cells Expressing Osterix. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, e221–e229. [Google Scholar] [CrossRef]
- Baksh, D.; Yao, R.; Tuan, R.S. Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow. Stem Cells 2007, 25, 1384–1392. [Google Scholar] [CrossRef]
- Julier, Z.; Park, A.J.; Briquez, P.S.; Martino, M.M. Promoting Tissue Regeneration by Modulating the Immune System. Acta Biomater. 2017, 53, 13–28. [Google Scholar] [CrossRef]
- Amari, A.; Ebtekar, M.; Moazzeni, S.M.; Soleimani, M.; Amirabad, L.M.; Tahoori, M.T.; Massumi, M. Investigation of Immunomodulatory Properties of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells after Lentiviral Transduction. Cell. Immunol. 2015, 293, 59–66. [Google Scholar] [CrossRef]
- Patrikoski, M.; Sivula, J.; Huhtala, H.; Helminen, M.; Salo, F.; Mannerström, B.; Miettinen, S. Different Culture Conditions Modulate the Immunological Properties of Adipose Stem Cells. Stem Cells Transl. Med. 2014, 3, 1220–1230. [Google Scholar] [CrossRef]
- McIntosh, K.; Zvonic, S.; Garrett, S.; Mitchell, J.B.; Floyd, Z.E.; Hammill, L.; Kloster, A.; Di Halvorsen, Y.; Ting, J.P.; Storms, R.W.; et al. The Immunogenicity of Human Adipose-Derived Cells: Temporal Changes in Vitro. Stem Cells 2006, 24, 1246–1253. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhu, G.; Ma, Q.; Huang, S.; Guo, G.; Zhu, F. Application Progress of Single-Cell Sequencing Technology in Mesenchymal Stem Cells Research. Front. Cell Dev. Biol. 2023, 11, 1336482. [Google Scholar] [CrossRef]
- Collon, K.; Bell, J.A.; Chang, S.W.; Gallo, M.C.; Sugiyama, O.; Marks, C.; Lieberman, J.R. Effects of Cell Seeding Technique and Cell Density on BMP-2 Production in Transduced Human Mesenchymal Stem Cells. J. Biomed. Mater. Res. A 2022, 110, 1944–1952. [Google Scholar] [CrossRef]
- Qu, H.; Fu, H.; Han, Z.; Sun, Y. Biomaterials for Bone Tissue Engineering Scaffolds: A Review. RSC Adv. 2019, 9, 26252–26262. [Google Scholar] [CrossRef]
Viral Vector | Packaging Capacity | Viral Genome | Tropism | Integration | Transduction Efficiency | Transgene Expression | Immunogenicity | Potential for Oncogenesis |
---|---|---|---|---|---|---|---|---|
Retrovirus | 7–11 kb | ssRNA | Dividing cells only | Integrating | Moderate | Long-term | Moderate | Yes |
Lentivirus | 6–10 kb | ssRNA | Dividing and non-dividing cells | Integrating | Moderate/High | Long-term | Low/Moderate | Yes |
Adenovirus | 7–37 kb | dsDNA | Dividing and non-dividing cells | Non-Integrating | High | Transient | High | No |
Adeno-associated virus | 2–9 kb | ssDNA | Dividing and non-dividing cells | Recombinant AAV non-integrating wild type AAV may integrate | Moderate | Long-Term Transient | Low | Yes if integrating |
Cell Source | Availability | Harvest | Yield | Immunogenicity | Proliferation | Osteogenic Potential |
---|---|---|---|---|---|---|
Bone Marrow | +++ | Invasive | ++ | ++ | ++ | +++ |
Periosteum | + | Invasive | +++ | + ↓ relative to BMSC | +++ | +++ |
Skeletal Muscle | +++ | Less invasive (e.g., biopsy) | +++ | + ↓ relative to BMSC | +++ ↑ relative to BMSC | +++ |
Dental Pulp | + | Medical procedure byproduct | + | + | +++ | ++ ↓ relative to BMSC |
Periodontal Ligament | + | ++ | + | +++ | ++ | |
Gingival | + | +++ | + | +++ | +++ | |
Adipose | +++ | Less invasive (e.g., liposuction) | +++ | + ↓ relative to BMSC | +++ ↑ relative to BMSC | ++/+++ non-transduced: ↓ relative to BMSC BMP-2 transduced: ↑ relative to BMSC |
Skin (Fibroblast) | +++ | Less invasive (e.g., biopsy) | +++ | + | ++ | ++ |
Peripheral Blood | +++ | Minimally invasive | + | + ≈to BMSC | ++ | ++ |
Amniotic fluid | ++ | Non-invasive (considered medical waste) | + | ↓ relative to most other MSC sources AF<UCT/UCB<P | +++ | +++ |
Amnion (Placenta) | +++ | +++ | +++ | +++ | ||
Umbilical Cord Tissue | +++ | +++ | +++ ↑ relative to BMSC | +++ | ||
Umbilical Cord Blood | ++ | ++ | +++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, M.C.; Elias, A.; Reynolds, J.; Ball, J.R.; Lieberman, J.R. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering 2025, 12, 120. https://doi.org/10.3390/bioengineering12020120
Gallo MC, Elias A, Reynolds J, Ball JR, Lieberman JR. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering. 2025; 12(2):120. https://doi.org/10.3390/bioengineering12020120
Chicago/Turabian StyleGallo, Matthew C., Aura Elias, Julius Reynolds, Jacob R. Ball, and Jay R. Lieberman. 2025. "Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review" Bioengineering 12, no. 2: 120. https://doi.org/10.3390/bioengineering12020120
APA StyleGallo, M. C., Elias, A., Reynolds, J., Ball, J. R., & Lieberman, J. R. (2025). Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering, 12(2), 120. https://doi.org/10.3390/bioengineering12020120