Relevance of Leg Rehabilitation to Modulating Neurogenic Lower Urinary Tract Symptoms: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
- RQ1: Is there a relationship between lower limb-centered rehabilitation and the inhibition of NLUTD?
- RQ2: Could a specific rehabilitation program be useful to better manage neurological bladder dysfunction?
2.1. Search Strategy
- (P) Participants: Patients with neurological conditions, with a diagnosis of NLUTD
- (I) Intervention: Lower limb exercises focused on controlling NLUTD (hypothesized interventions: leg strength/stretching, exercises, therapeutic walking with braces, and exoskeleton training)
- (C) Comparison: Placebo/sham treatments, conventional rehabilitation
- (O) Outcome measure: NLUTD Assessment Tool scores, urodynamic parameters
2.2. Data Extraction
2.3. Appraisal
3. Results
3.1. Quality Assessment
3.2. Synthesis of Results
3.3. Intervention
3.4. Outcomes
3.5. Lower Urinary Tract Questionnaire and Secondary Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panicker, J.N.; Fowler, C.J.; Kessler, T.M. Lower urinary tract dysfunction in the neurological patient: Clinical assessment and management. Lancet Neurol. 2015, 14, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Panicker, J.N. Neurogenic bladder: Epidemiology, diagnosis, and management. Semin. Neurol. 2020, 40, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.J. Management and rehabilitation of neurologic patients with lower urinary tract dysfunction. Handb. Clin. Neurol. 2015, 130, 451–468. [Google Scholar] [CrossRef]
- Schurch, B.; Tawadros, C.; Carda, S. Dysfunction of lower urinary tract in patients with spinal cord injury. Handb. Clin. Neurol. 2015, 130, 247–267. [Google Scholar] [CrossRef]
- Qin, C.; Wang, Y.; Gao, Y. Overactive bladder symptoms within the nervous system: A focus on etiology. Front. Physiol. 2021, 12, 747144. [Google Scholar] [CrossRef]
- Averbeck, M.A.; Madersbacher, H. Follow-up of the neuro-urological patient: A systematic review. BJU Int. 2015, 115 (Suppl. S6), 39–46. [Google Scholar] [CrossRef]
- Peyronnet, B.; Mironska, E.; Chapple, C.; Cardozo, L.; Oelke, M.; Dmochowski, R.; Amarenco, G.; Gamé, X.; Kirby, R.; Van Der Aa, F.; et al. A comprehensive review of overactive bladder pathophysiology: On the way to tailored treatment. Eur. Urol. 2019, 75, 988–1000. [Google Scholar] [CrossRef]
- Wyndaele, J.; Madersbacher, H.; Castro, D.; Chartier-Kasler, E.; Igawa, Y.; Kovindha, H. Chapter 17: Neurologic urinary and fecal incontinence. In Incontinence; Abrams, P., Cardozo, L., Khoury, S., Wein, A., Eds.; Health Publications: Plymouth, UK, 2004; Volume 2. [Google Scholar]
- Wyndaele, J.; Kovindha, H.; Madersbacher, H.; Castro, D.; Chartier-Kasler, E.; Igawa, Y. Chapter 10: Neurogenic bladder and bowel. In Incontinence. In Incontinence; Abrams, P., Cardozo, L., Khoury, S., Wein, A., Eds.; Health Publications: Plymouth, UK, 2009; Volume 1. [Google Scholar]
- Sakakibara, R. Lower urinary tract dysfunction in patients with brain lesions. Handb. Clin. Neurol. 2015, 130, 269–287. [Google Scholar] [CrossRef]
- Weld, K.J.; Dmochowski, R.R. Association of level of injury and bladder behavior in patients with post-traumatic spinal cord injury. Urology 2000, 55, 490–494. [Google Scholar] [CrossRef]
- Podnar, S.; Vodušek, D.B. Lower urinary tract dysfunction in patients with peripheral nervous system lesions. Handb. Clin. Neurol. 2015, 130, 203–224. [Google Scholar] [CrossRef]
- Brocklehurst, J.C.; Andrews, K.; Richards, B.; Laycock, P.J. Incidence and correlates of incontinence in stroke patients. J. Am. Geriatr. Soc. 1985, 33, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Blok, B.; Castro-Diaz, D.; Del Popolo, G.; Groen, J.; Hamid, R.; Karsenty, G.; Kessler, T.M.; Pannek, J.; Ecclestone, H.; Musco, S.; et al. EEAU Guidelines on Neurourology; European Association of Urology: Arnhem, The Netherlands, 2023. [Google Scholar]
- Finazzi Agrò, E.; Salvatore, S.; Braga, A.; DeLancey, J.; Fernando, R.; Iacovelli, V. Committee 3: Pathophysiology of urinary incontinence, pelvic organ prolapse, and faecal incontinence. In International Consultation on Incontinence, 7th ed.; Cardozo, L., Rovner, E., Wagg, A., Wein, A., Abrams, P., Eds.; Health Publications Ltd.: Plymouth, UK, 2023. [Google Scholar]
- Konstantinidis, C.; Kratiras, Z.; Samarinas, M.; Skriapas, K. Optimal bladder diary duration for patients with supraspinal neurogenic lower urinary tract dysfunction. Int. Braz. J. Urol. 2016, 42, 766–772. [Google Scholar] [CrossRef]
- Best, K.L.; Ethans, K.; Craven, B.C.; Noreau, L.; Hitzig, S.L. Identifying and classifying quality of life tools for neurogenic bladder function after spinal cord injury: A systematic review. J. Spinal Cord. Med. 2017, 40, 505–529. [Google Scholar] [CrossRef] [PubMed]
- Bonniaud, V.; Bryant, D.; Parratte, B.; Guyatt, G. Development and validation of the short form of a urinary quality of life questionnaire: SF-Qualiveen. J. Urol. 2008, 180, 2592–2598. [Google Scholar] [CrossRef]
- Bellucci, C.H.; Wöllner, J.; Gregorini, F.; Birnböck, D.; Kozomara, M.; Mehnert, U.; Kessler, T.M. Neurogenic lower urinary tract dysfunction: Do we need same-session repeat urodynamic investigations? J. Urol. 2012, 187, 1318–1323. [Google Scholar] [CrossRef]
- Schöps, T.F.; Schneider, M.P.; Steffen, F.; Ineichen, B.V.; Mehnert, U.; Kessler, T.M. Neurogenic lower urinary tract dysfunction (NLUTD) in patients with spinal cord injury: Long-term urodynamic findings. BJU Int. 2015, 115 (Suppl. S6), 33–38. [Google Scholar] [CrossRef]
- Rosier, P.F.W.M.; Schaefer, W.; Lose, G.; Goldman, H.B.; Guralnick, M.; Eustice, S.; Dickinson, T.; Hashim, H. International Continence Society Good Urodynamic Practices and Terms 2016: Urodynamics, uroflowmetry, cystometry, and pressure-flow study. Neurourol. Urodyn. 2017, 36, 1243–1260. [Google Scholar] [CrossRef]
- Drake, M.J.; Doumouchtsis, S.K.; Hashim, H.; Gammie, A. Fundamentals of urodynamic practice, based on International Continence Society good urodynamic practices recommendations. Neurourol. Urodyn. 2018, 37, S50–S60. [Google Scholar] [CrossRef] [PubMed]
- Lucas, E. Medical management of neurogenic bladder for children and adults: A review. Top. Spinal Cord. Inj. Rehabil. 2019, 25, 195–204. [Google Scholar] [CrossRef]
- Madhuvrata, P.; Singh, M.; Hasafa, Z.; Abdel-Fattah, M. Anticholinergic drugs for adult neurogenic detrusor overactivity: A systematic review and meta-analysis. Eur. Urol. 2012, 62, 816–830. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, F.; Yao, H.; Bao, X.; Wang, D.; Cui, Y.; Wu, J. The efficacy and safety of Mirabegron for the treatment of neurogenic lower urinary tract dysfunction: A systematic review and meta-analysis. Front. Pharmacol. 2021, 12, 756582. [Google Scholar] [CrossRef]
- Hu, J.C.; Hsu, L.N.; Lee, W.C.; Chuang, Y.C.; Wang, H.J. Role of urological botulinum toxin-A injection for overactive bladder and voiding dysfunction in patients with Parkinson’s disease or post-stroke. Toxins 2023, 15, 166. [Google Scholar] [CrossRef]
- Ni, J.; Wang, X.; Cao, N.; Si, J.; Gu, B. Is repeat botulinum toxin A injection valuable for neurogenic detrusor overactivity? A systematic review and meta-analysis. Neurourol. Urodyn. 2018, 37, 542–553. [Google Scholar] [CrossRef]
- Huang, J.; Fan, Y.; Zhao, K.; Yang, C.; Zhao, Z.; Chen, Y.; Yang, J.; Wang, T.; Qu, Y. Comparative efficacy of neuromodulation technologies for overactive bladder in adults: A network meta-analysis of randomized controlled trials. Neuromodulation 2023, 26, 1535–1548. [Google Scholar] [CrossRef]
- Tahmasbi, F.; Salehi-Pourmehr, H.; Naseri, A.; Ghaderi, S.; Javadi-Farid, F.; Hajebrahimi, S.; Sedigh, O.; Soleimanzadeh, F. Effects of posterior tibial nerve stimulation (PTNS) on lower urinary tract dysfunction: An umbrella review. Neurourol. Urodyn. 2024, 43, 494–515. [Google Scholar] [CrossRef]
- Averbeck, M.A.; Moreno-Palacios, J.; Aparicio, A. Is there a role for sacral neuromodulation in patients with neurogenic lower urinary tract dysfunction? Int. Braz. J. Urol. 2020, 46, 891–901. [Google Scholar] [CrossRef]
- De Wachter, S.; Knowles, C.H.; Elterman, D.S.; Kennelly, M.J.; Lehur, P.A.; Matzel, K.E.; Engelberg, S.; Van Kerrebroeck, P.E.V. New technologies and applications in sacral neuromodulation: An update. Adv. Ther. 2020, 37, 637–643. [Google Scholar] [CrossRef]
- Evancho, A.; Tyler, W.J.; McGregor, K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front. Human Neurosci. 2023, 17, 1151218. [Google Scholar] [CrossRef]
- Lúcio, A.C.; Campos, R.M.; Perissinotto, M.C.; Miyaoka, R.; Damasceno, B.P.; D’ancona, C.A. Pelvic floor muscle training in the treatment of lower urinary tract dysfunction in women with multiple sclerosis. Neurourol. Urodyn. 2010, 29, 1410–1413. [Google Scholar] [CrossRef]
- Lúcio, A.C.; Perissinotto, M.C.; Natalin, R.A.; Prudente, A.; Damasceno, B.P.; D’ancona, C.A. A comparative study of pelvic floor muscle training in women with multiple sclerosis: Its impact on lower urinary tract symptoms and quality of life. Clin. 2011, 66, 1563–1568. [Google Scholar] [CrossRef]
- Shin, D.C.; Shin, S.H.; Lee, M.M.; Lee, K.J.; Song, C.H. Pelvic floor muscle training for urinary incontinence in female stroke patients: A randomized, controlled and blinded trial. Clin. Rehabil. 2016, 30, 259–267. [Google Scholar] [CrossRef]
- Tibaek, S.; Jensen, R.; Lindskov, G.; Jensen, M. Can quality of life be improved by pelvic floor muscle training in women with urinary incontinence after ischemic stroke? A randomized, controlled and blinded study. Int. Urogynecol. J. 2004, 15, 117–123. [Google Scholar] [CrossRef]
- Tibaek, S.; Gard, G.; Jensen, R. Is there a long-lasting effect of pelvic floor muscle training in women with urinary incontinence after ischemic stroke? A 6-month follow-up study. Int. Urogynecol. J. 2007, 18, 281–287. [Google Scholar] [CrossRef]
- Tibaek, S.; Gard, G.; Jensen, R. Pelvic floor muscle training is effective in women with urinary incontinence after stroke: A randomized, controlled and blinded study. Neurourol. Urodyn. 2005, 24, 348–357. [Google Scholar] [CrossRef]
- Asavasopon, S.; Rana, M.; Kirages, D.J.; Yani, M.S.; Fisher, B.E.; Hwang, D.H.; Lohman, E.B.; Berk, L.S.; Kutch, J.J. Cortical activation associated with muscle synergies of the human male pelvic floor. J. Neurosci. 2014, 34, 13811–13818. [Google Scholar] [CrossRef]
- Santana, N.N.M.; Silva, E.H.A.; Santos, S.F.D.; Bezerra, L.L.F.; da Silva, M.M.O.; Cavalcante, J.S.; Fiuza, F.P.; Morais, d.G.P.L.A.; Engelberth, R.C. Neuronal Stability, Volumetric Changes, and Decrease in GFAP Expression of Marmoset (Callithrix jacchus) Subcortical Visual Nuclei During Aging. J. Comp. Neurol. 2024, 532, e25649. [Google Scholar] [CrossRef]
- Baunsgaard, C.B.; Nissen, U.V.; Brust, A.K.; Frotzler, A.; Ribeill, C.; Kalke, Y.B.; León, N.; Gómez, B.; Samuelsson, K.; Antepohl, W.; et al. Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions. J. Rehabil. Med. 2018, 50, 806–813. [Google Scholar] [CrossRef]
- Schalow, G.; Jaigma, P.; Belle, V.K. Near-total functional recovery achieved in partial cervical spinal cord injury (50% injury) after 3 years of coordination dynamics therapy. Electromyogr. Clin. Neurophysiol. 2009, 49, 67–91. [Google Scholar]
- Schalow, G. Scientific basis for learning transfer from movements to urinary bladder functions for bladder repair in human patients with CNS injury. Electromyogr. Clin. Neurophysiol. 2010, 50, 339–395. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Lamberti, G. Can a lower limb-centered movement training inhibit overactive bladder? Systematic review of literature. Inplasy Protoc. 2022, 22, 202270099. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Hubscher, C.H.; Herrity, A.N.; Williams, C.S.; Montgomery, L.R.; Willhite, A.M.; Angeli, C.A.; Harkema, S.J. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury. PLoS ONE 2018, 13, e0190998. [Google Scholar] [CrossRef]
- Hubscher, C.H.; Wyles, J.; Gallahar, A.; Johnson, K.; Willhite, A.; Harkema, S.; Herrity, A.N. Impact of different forms of activity-based recovery training on bladder, bowel and sexual function following spinal cord injury. Arch. Phys. Med. Rehabil. 2021, 102, 865–873. [Google Scholar] [CrossRef]
- Williams, A.M.M.; Deegan, E.; Walter, M.; Stothers, L.; Lam, T. Exoskeleton gait training to improve lower urinary tract function in people with motor-complete spinal cord injury: A randomized pilot trial. J. Rehabil. Med. 2021, 53, jrm00222. [Google Scholar] [CrossRef]
- Gajewski, J.B.; Drake, M.J. Neurological lower urinary tract dysfunction essential terminology. Neurourol. Urodyn. 2018, 37, S25–S31. [Google Scholar] [CrossRef]
- Holstege, G.; Griffiths, D.; de Wall, H.; Dalm, E. Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J. Comp. Neurol. 1986, 250, 449–461. [Google Scholar] [CrossRef]
- Griffiths, D.; Tadic, S.D. Bladder control, urgency, and urge incontinence: Evidence from functional brain imaging. Neurourol. Urodyn. 2008, 27, 466–474. [Google Scholar] [CrossRef]
- Tadic, S.D.; Griffiths, D.; Schaefer, W.; Murrin, A.; Clarkson, B.; Resnick, N.M. Brain activity underlying impaired continence control in older women with overactive bladder. Neurourol. Urodyn. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Häbler, H.J.; Jänig, W.; Koltzenburg, M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J. Physiol. 1990, 425, 545–562. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N. Bladder afferent pathway and spinal cord injury: Possible mechanisms inducing hyperreflexia of the urinary bladder. Prog. Neurobiol. 1999, 57, 583–606. [Google Scholar] [CrossRef] [PubMed]
- Horst, M.; Heutschi, J.; van den Brand, R.; Andersson, K.E.; Gobet, R.; Sulser, T.; Courtine, G.; Eberli, D. Multisystem neuroprosthetic training improves bladder function after severe spinal cord injury. J. Urol. 2013, 189, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Gajeski, J.B.; Madersbacher, H. Classification and terminology of neurogenic LUT dysfunction. In Handbook of Neurourology, 1st ed.; Liao, L., Madersbacher, H., Eds.; Springer Nature: Singapore, 2023. [Google Scholar]
- Hamid, R.; Averbeck, M.A.; Chiang, H.; Garcia, A.; Al Mousa, R.T.; Oh, S.J.; Patel, A.; Plata, M.; Del Popolo, G. Epidemiology and pathophysiology of neurogenic bladder after spinal cord injury. World J. Urol. 2018, 36, 1517–1527. [Google Scholar] [CrossRef]
- Craig, A.; Nicholson Perry, K.; Guest, R.; Tran, Y.; Middleton, J. Adjustment following chronic spinal cord injury: Determining factors that contribute to social participation. Br. J. Health Psychol. 2015, 20, 807–823. [Google Scholar] [CrossRef]
- Piatt, J.A.; Nagata, S.; Zahl, M.; Li, J.; Rosenbluth, J.P. Problematic secondary health conditions among adults with spinal cord injury and its impact on social participation and daily life. J. Spinal Cord. Med. 2016, 39, 693–698. [Google Scholar] [CrossRef]
- Tate, D.G.; Wheeler, T.; Lane, G.I.; Forchheimer, M.; Anderson, K.D.; Biering-Sorensen, F.; Cameron, A.P.; Santacruz, B.G.; Jakeman, L.B.; Kennelly, M.J.; et al. Recommendations for evaluation of neurogenic bladder and bowel dysfunction after spinal cord injury and/or disease. J. Spinal Cord. Med. 2020, 43, 141–164. [Google Scholar] [CrossRef]
- Mashola, M.K.; Korkie, E.; Mothabeng, D.J. Exploring the experience of living with pain after spinal cord injury: A qualitative study. Behav. Neurol. 2024, 2024, 9081530. [Google Scholar] [CrossRef]
- Hubscher, C.H.; Montgomery, L.R.; Fell, J.D.; Armstrong, J.E.; Poudyal, P.; Herrity, A.N.; Harkema, S.J. Effects of exercise training on urinary tract function after spinal cord injury. Am. J. Physiol. Ren. Physiol. 2016, 310, 1258–1268. [Google Scholar] [CrossRef]
- Timoney, A.G.; Shaw, P.J. Urological outcome in female patients with spinal cord injury: The effectiveness of intermittent catheterisation. Paraplegia 1990, 28, 556–563. [Google Scholar] [CrossRef]
- Perrouin-Verbe, B.; Labat, J.J.; Richard, I.; Mauduyt de la Greve, I.; Buzelin, J.M.; Mathe, J.F. Clean intermittent catheterisation from the acute period in spinal cord injury patients. Long term evaluation of urethral and genital tolerance. Paraplegia 1995, 33, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Behrman, A.L.; Lawless-Dixon, A.R.; Davis, S.B.; Bowden, M.G.; Nair, P.; Phadke, C.; Hannold, E.M.; Plummer, P.; Harkema, S.J. Locomotor training progression and outcomes after incomplete spinal cord injury. Phys. Ther. 2005, 85, 1356–1371. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V.; Harkema, S.J. Locomotor activity in spinal cord-injured persons. J. Appl. Physiol. 2004, 96, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Harkema, S.J.; Hillyer, J.; Schmidt-Read, M.; Ardolino, E.; Sisto, S.A.; Behrman, A.L. Locomotor training as a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Arch. Phys. Med. Rehabil. 2012, 93, 1588–1597. [Google Scholar] [CrossRef]
- Pedersen, E.; Petersen, T.; Schrøder, H.D. Relation between flexor spasms, uninhibited detrusor contractions and anal sphincter activity. J. Neurol. Neurosurg. Psychiatry 1986, 49, 273–277. [Google Scholar] [CrossRef]
- Ward, P.J.; Herrity, A.N.; Smith, R.R.; Willhite, A.; Harrison, B.J.; Petruska, J.C.; Harkema, S.J.; Hubscher, C.H. Novel multi-system functional gains via task-specific training in spinal cord injured male rats. J. Neurotrauma 2014, 31, 819–833. [Google Scholar] [CrossRef]
- Ward, P.J.; Herrity, A.N.; Harkema, S.J.; Hubscher, C.H. Training-induced functional gains following SCI. Neural Plast. 2016, 2016, 4307694. [Google Scholar] [CrossRef]
- Shafik, A.; Shafik, I.A. Overactive bladder inhibition in response to pelvic floor muscle exercises. World J. Urol. 2003, 20, 374–377. [Google Scholar] [CrossRef]
- Burgio, K.L. Update on behavioral and physical therapies for incontinence and overactive bladder: The role of pelvic floor muscle training. Curr. Urol. Rep. 2013, 14, 457–464. [Google Scholar] [CrossRef]
- Amorim, A.C.; Cacciari, L.P.; Passaro, A.C.; Silveira, S.R.B.; Amorim, C.F.; Loss, J.F.; Sacco, I.C.N. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women. PLoS ONE 2017, 12, e0177575. [Google Scholar] [CrossRef]
- Cardozo, L.; Stanton, S.L.; Hafner, J.; Allan, V. Biofeedback in the treatment of detrusor instability. Br. J. Urol. 1978, 50, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Elmelund, M.; Biering-Sorensen, F.; Due, U.; Klarskov, N. The effect of pelvic floor muscle training and intravaginal electrical stimulation on urinary incontinence in women with incomplete spinal cord injury: An investigator-blinded parallel randomized clinical trial. Int. Urogynecol. J. 2018, 29, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, A.J.; Kanase, S.B. Effect of structured bladder training in urinary incontinence. Indian J. Physiother. Occup. Ther. 2020, 14, 30–36. [Google Scholar]
- Kocjancic, E.; Chung, E.; Garzon, J.A.; Haylen, B.; Iacovelli, V.; Jaunarena, J.; Locke, J.; Millman, A.; Nahon, I.; Ohlander, S.; et al. International Continence Society (ICS) report on the terminology for sexual health in men with lower urinary tract (LUT) and pelvic floor (PF) dysfunction. Neurourol. Urodyn. 2022, 41, 140–165. [Google Scholar] [CrossRef]
- Schrum, A.; Wolff, S.; van der Horst, C.; Kuhtz-Buschbeck, J.P. Motor cortical representation of the pelvic floor muscles. J. Urol. 2011, 186, 185–190. [Google Scholar] [CrossRef]
- Fowler, S.B. Pelvic floor muscle training versus no treatment, or inactive control treatments, for urinary incontinence in women. Clin. Nurse Spec. 2011, 25, 226–227. [Google Scholar] [CrossRef]
- Martin, V.; Dousset, E.; Laurin, J.; Gondin, J.; Gautier, M.; Decherchi, P. Group III and IV muscle afferent discharge patterns after repeated lengthening and shortening actions. Muscle Nerve 2009, 40, 827–837. [Google Scholar] [CrossRef]
- Chen, G.; Larson, J.A.; Ogagan, P.D.; Shen, B.; Wang, J.; Roppolo, J.R.; de Groat, W.C.; Tai, C. Post-stimulation inhibitory effect on reflex bladder activity induced by activation of somatic afferent nerves in the foot. J. Urol. 2012, 187, 338–343. [Google Scholar] [CrossRef]
- Behrman, A.L.; Harkema, S.J. Locomotor training after human spinal cord injury: A series of case studies. Phys. Ther. 2000, 80, 688–700. [Google Scholar] [CrossRef]
- Erdfelder, E.; Faul, F.; Buchner, A. GPOWER: A general power analysis program. Behav. Res. Methods Instrum. Comput. 1996, 28, 1–11. [Google Scholar] [CrossRef]
- Tai, C.; Shen, B.; Chen, M.; Wang, J.; Liu, H.; Roppolo, J.R.; de Groat, W.C. Suppression of bladder overactivity by activation of somatic afferent nerves in the foot. BJU Int. 2011, 107, 303–309. [Google Scholar] [CrossRef] [PubMed]
Author, Date | Country | Aim[s] | Design | Intervention | Sampling | Outcome Measures | Summary of Findings | Study Limitations | Methodological Quality |
---|---|---|---|---|---|---|---|---|---|
Hubscher et al., 2018 [48] | USA | Identify whether LT as can improve bladder, bowel, and sexual function in chronic SCI (more than two years post-injury) compared to usual cares | Prospective cohort study | 12 participants with SCI. Exp (8): 80 session of LT on a weight supported treadmill/LT plus 1 h/day stand training; Cont (4): usual cares prosecution | Convenience sample | UDS; The International SCI Data Sets Questionnaires for Urodynamics and Lower Urinary Tract Function, Bowel Function, Female Sexual, and Reproductive function Male Sexual Function | Significant increase in bladder capacity, voiding efficiency, detrusor contraction time, and decrease in voiding pressure post-training relative to baseline were found in Exp group. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence, decrease in time for defecation, increase in sexual desire in Exp group. | Small sample size | Pedro score 5/10 Cochrane rob tool for cohort studies detected a low risk of bias |
Hubscher et al., 2021 [49] | USA | Determine if urogenital and bowel improvements in chronic SCI could derive by weight-bearing training or from general exercise | Prospective cohort study | 22 individuals with chronic SCI, who were either enrolled in a prior stand training study (N = 12) or upper extremity training (N = 10) Exp: 80 session of standing with weight support Cont: 80 sessions of arm crank | Convenience sample | UDS; International SCI Data Set for lower urinary tract function; International SCI Data Set for bowel function; 15-item International Index of Erectile Function/the 19-item Female Sexual Function Index. All questionnaires were administered pre-/post-training | UDS revealed no significant benefits for Exp group; in Cont group a reduction in bladder pressure and increase of compliance were reported. No differences were identified regarding bowel and sexual functions | Small sample size | Pedro score 6/10 Cochrane rob tool for cohort studies detected a low risk of bias |
Williams et al., 2021 [50] | Canada | Testing an exoskeleton-assisted intervention targeting NLUTD in people with motor-complete SCI; compare two exoskeleton programmes | Randomized pilot trial | 6 participants Exp (4): 36 sessions of Ekso training Cont (2): 36 sessions of Lokomat training | Convenience sample | Mean speed, distance, and session RPE were taken for each participant during the first and last 5 sessions; EMG for PFM; UDS; 3-day bladder diary; SF-Qualiveen-30. | All participants improved walking speed, distance but not RPE; PFM activity was greater in the Ekso group. UDS, bladder diary, and questionnaires did not clearly change in either group. | Small sample size | Pedro score 7/10 Cochrane rob tool for RCTs detected a low risk of bias |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciardi, G.; Giraudo, D.; Fontana, M.; Citterio, C.; Gandolfi, P.; Lamberti, G. Relevance of Leg Rehabilitation to Modulating Neurogenic Lower Urinary Tract Symptoms: A Systematic Review. Bioengineering 2025, 12, 127. https://doi.org/10.3390/bioengineering12020127
Ciardi G, Giraudo D, Fontana M, Citterio C, Gandolfi P, Lamberti G. Relevance of Leg Rehabilitation to Modulating Neurogenic Lower Urinary Tract Symptoms: A Systematic Review. Bioengineering. 2025; 12(2):127. https://doi.org/10.3390/bioengineering12020127
Chicago/Turabian StyleCiardi, Gianluca, Donatella Giraudo, Milena Fontana, Chiara Citterio, Paola Gandolfi, and Gianfranco Lamberti. 2025. "Relevance of Leg Rehabilitation to Modulating Neurogenic Lower Urinary Tract Symptoms: A Systematic Review" Bioengineering 12, no. 2: 127. https://doi.org/10.3390/bioengineering12020127
APA StyleCiardi, G., Giraudo, D., Fontana, M., Citterio, C., Gandolfi, P., & Lamberti, G. (2025). Relevance of Leg Rehabilitation to Modulating Neurogenic Lower Urinary Tract Symptoms: A Systematic Review. Bioengineering, 12(2), 127. https://doi.org/10.3390/bioengineering12020127