Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Polydimethylsiloxane (PDMS) Templates
2.3. Preparation of PCL-Based Tissue Scaffolds with Aligned Pores
2.4. Preparation of Electroactive PCL-Based Tissue Scaffolds with Aligned Pores
2.5. Scanning Electron Microscopy (SEM)
2.6. Electrical Sheet Resistance
2.7. Fourier Transform Infrared Spectroscopy (FTIR)
2.8. X-Ray Photoelectron Spectroscopy (XPS)
2.9. In Vitro Degradation Study
2.10. In Vitro Cell Culture
2.10.1. PCL-Based Tissue Scaffold Preparation and Sterilization
2.10.2. In Vitro Culture of Schwann Cells
2.10.3. Electrical Stimulation of Schwann Cells
2.10.4. Fluorescence Staining and Imaging of Cells
2.10.5. NGF Secretion Studies
3. Results and Discussion
3.1. Preparation of PCL-Based Tissue Scaffolds with Highly Aligned Pores
3.2. Preparation and Characterization of Electroactive PCL-Based Tissue Scaffolds with Aligned Pores
3.2.1. Methodology for the Preparation of Electroactive PCL-Based Tissue Scaffolds
3.2.2. Spectroscopic Analysis of Non-Electroactive and Electroactive PCL-Based Tissue Scaffolds
3.2.3. Electrical Properties of Electroactive PCL-Based Tissue Scaffolds
3.2.4. In Vitro Degradation of Non-Electroactive and Electroactive PCL-Based Tissue Scaffolds
3.3. In Vitro Cell Culture Studies on Instructional PCL-Based Tissue Scaffolds
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jaklenec, A.; Stamp, A.; Deweerd, E.; Sherwin, A.; Langer, R. Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Eng. B 2012, 18, 155–166. [Google Scholar] [CrossRef]
- Harrison, R.H.; St-Pierre, J.; Stevens, M.M. Tissue engineering and regenerative medicine: A year in review. Tissue Eng. B 2014, 20, 1–16. [Google Scholar] [CrossRef]
- Wrobel, M.R.; Sundararaghavan, H.G. Directed migration in neural tissue engineering. Tissue Eng. B 2014, 20, 93–105. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Electrical stimulation: A novel tool for tissue engineering. Tissue Eng. B 2013, 19, 48–57. [Google Scholar] [CrossRef]
- Zhang, B.G.X.; Quigley, A.F.; Myers, D.E.; Wallace, G.G.; Kapsa, R.M.I.; Choong, P.F.M. Recent advances in nerve tissue engineering. Int. J. Artif. Organs. 2014, 37, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug Deliver. Rev. 2008, 60, 184–198. [Google Scholar] [CrossRef]
- Lutolf, M.P.; Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Spivey, E.C.; Khaing, Z.Z.; Shear, J.B.; Schmidt, C.E. The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials 2012, 33, 4264–4276. [Google Scholar] [CrossRef] [PubMed]
- Dvir, T.; Timko, B.P.; Kohane, D.S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, Y.; Zhang, R. Recent trends and challenges in complex organ manufacturing. Tissue Eng. B 2010, 16, 189–197. [Google Scholar] [CrossRef]
- Griffith, L.G.; Swartz, M.A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 2006, 7, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.B.; Mauck, R.L. Tissue engineering and regenerative medicine: Recent innovations and the transition to translation. Tissue Eng. B 2013, 19, 1–13. [Google Scholar] [CrossRef]
- Salgado, A.J.; Oliveira, J.M.; Martins, A.; Teixeira, F.G.; Silva, N.A.; Neves, N.M.; Sousa, N.; Reis, R.L. Chapter One—Tissue engineering and regenerative medicine: Past, present, and future. Int. Rev. Neurobiol. 2013, 108, 1–33. [Google Scholar] [PubMed]
- Berthiaume, F.; Maguire, T.J.; Yarmush, M.L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 403–430. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.G.; Lee, J.Y.; Schmidt, C.E. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol. 2013, 24, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Rutten, W.L.C. Selective electrical interfaces with the nervous system. Annu. Rev. Biomed. Eng. 2002, 4, 407–452. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.M.; Koppes, A.N.; Hardy, J.G.; Schmidt, C.E. Electrical stimuli in the central nervous system microenvironment. Annu. Rev. Biomed. Eng. 2014, 16, 397–430. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Moulton, S.E.; Cook, M.; O’Leary, S.; Wallace, G.G. Controlled delivery for neuro-bionic devices. Adv. Drug Deliver. Rev. 2013, 65, 559–569. [Google Scholar] [CrossRef]
- Despang, F.; Bernhardt, A.; Lode, A.; Dittrich, R.; Hanke, T.; Shenoy, S.J.; Mani, S.; John, A.; Gelinsky, M. Synthesis and physicochemical, in vitro and in vivo evaluation of an anisotropic, nanocrystalline hydroxyapatite bisque scaffold with parallel-aligned pores mimicking the microstructure of cortical bone. J. Tissue Eng. Regen. Med. 2013. [Google Scholar] [CrossRef]
- Spoerke, E.D.; Murray, N.G.D.; Li, H.; Brinson, L.C.; Dunand, D.C.; Stupp, S.I. Titanium with aligned, elongated pores for orthopedic tissue engineering applications. J. Biomed. Mater. Res. A 2008, 84A, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Davidenko, N.; Gibb, T.; Schuster, C.; Best, S.M.; Campbell, J.J.; Watson, C.J.; Cameron, R.E. Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 2012, 8, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Vejseli, V.; Lee, E.J. Cardiac Fibroblast-Formed Anisotropic Decellularized Engineered Cardiac Tissues. In Proceedings of 2013 39th Annual Northeast Bioengineering Conference (NEBEC), Syracuse, NY, USA, 5–7 April 2013; pp. 127–128.
- Kim, D.; Lipke, E.A.; Kim, P.; Cheong, R.; Thompson, S.; Delannoy, M.; Suh, K.Y.; Tung, L.; Levchenko, A. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Nat. Acad. Sci. USA 2010, 107, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Dunn, D.A.; Hodge, A.J.; Lipke, E.A. Biomimetic materials design for cardiac tissue regeneration. WIRES Nanomed. Nanobiotechnol. 2014, 6, 15–39. [Google Scholar] [CrossRef]
- Phillips, J.B. Building stable anisotropic tissues using cellular collagen gels. Organogenesis 2014, 10, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Nectow, A.R.; Kilmer, M.E.; Kaplan, D.L. Quantifying cellular alignment on anisotropic biomaterial platforms. J. Biomed. Mater. Res. A 2014, 102, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; O’Brien, C.; O’Brien, J.R.; Zhang, L.G. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 2014, 9, 859–875. [Google Scholar] [CrossRef] [PubMed]
- Sayyar, S.; Cornock, R.; Murray, E.; Beirne, S.; Officer, D.L.; Wallace, G.G. Extrusion printed graphene/polycaprolactone/composites for tissue engineering. Mater. Sci. Forum 2014, 773–774, 496–502. [Google Scholar]
- Ferris, C.J.; Gilmore, K.G.; Wallace, G.G.; Panhuis, M.I.H. Biofabrication: An overview of the approaches used for printing of living cells. Appl. Microbiol. Biotechnol. 2013, 97, 4243–4258. [Google Scholar] [CrossRef] [PubMed]
- Ferris, C.J.; Gilmore, K.J.; Beirne, S.; McCallum, D.; Wallace, G.G.; Panhuis, M.I.H. Bio-ink for on-demand printing of living cells. Biomater. Sci. 2013, 1, 224–230. [Google Scholar] [CrossRef]
- Zawko, S.A.; Schmidt, C.E. Crystal templating dendritic pore networks and fibrillar microstructure into hydrogels. Acta Biomater. 2010, 6, 2415–2421. [Google Scholar] [CrossRef] [PubMed]
- Seidlits, S.K.; Khaing, Z.Z.; Petersen, R.R.; Nickel, J.D.; Vanscoy, J.E.; Shear, J.B.; Schmidt, C.E. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 2010, 31, 3930–3940. [Google Scholar] [CrossRef] [PubMed]
- Zohora, F.T.; Azim, A.M.A. Biomaterials as porous scaffolds for tissue engineering applications: A review. Eur. Sci. J. 2014, 10, 186–209. [Google Scholar]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J. Biomed. Sci. 2009, 16. [Google Scholar] [CrossRef]
- Tresco, P.A. Tissue engineering strategies for nervous system repair. Neural Plast. Regen. 2000, 128, 349–363. [Google Scholar]
- Saracino, G.A.A.; Cigognini, D.; Silva, D.; Caprini, A.; Gelain, F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev. 2013, 42, 225–262. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Ding, F.; Williams, D.F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014, 35, 6143–6156. [Google Scholar] [CrossRef] [PubMed]
- Geuna, S.; Gnavi, S.; Perroteau, I.; Tos, P.; Battiston, B. Tissue engineering and peripheral nerve reconstruction: An overview. Int. Rev. Neurobiol. 2013, 108, 35–57. [Google Scholar] [PubMed]
- Marquardt, L.M.; Sakiyama-Elbert, S.E. Engineering peripheral nerve repair. Curr. Opin. Biotechnol. 2013, 24, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Angius, D.; Wang, H.; Spinner, R.J.; Gutierrez-Cotto, Y.; Yaszemski, M.J.; Windebank, A.J. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials 2012, 33, 8034–8039. [Google Scholar] [CrossRef] [PubMed]
- Daly, W.T.; Knight, A.M.; Wang, H.; de Boer, R.; Giusti, G.; Dadsetan, M.; Spinner, R.J.; Yaszemski, M.J.; Windebank, A.J. Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair. Biomaterials 2013, 34, 8630–8639. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.W.; Liu, S.Y.; Schmidt, C.E. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004, 10, 1346–1358. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.W.; Zawko, S.; Deister, C.; Lundy, S.; Hu, C.Y.; Lee, K.; Schmidt, C.E. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 2004, 10, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.W.; Evans, G.R.D.; Schmidt, C.E. Engineering strategies for peripheral nerve repair. Orthop. Clin. North Am. 2000, 31, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.W.; Evans, G.R.D.; Schmidt, C.E. Engineering strategies for peripheral nerve repair. Clin. Plast. Surg. 1999, 26, 617–628. [Google Scholar] [PubMed]
- Ikegami, R. Changes of nerve growth factor (NGF) content in injured peripheral nerve during regeneration: Local synthesis of NGF by schwann cells. Nihon Seikeigeka Gakkai zasshi. 1990, 64, 612–622. [Google Scholar] [PubMed]
- Yu, H.; Peng, J.; Sun, H.; Xu, F.; Zhang, L.; Zhao, B.; Sui, X.; Xu, W.; Lu, S. Effect of controlled release nerve growth factor on repairing peripheral nerve defect by acellular nerve graft. Chin. J. Repar. Reconstr. Surg. 2008, 22, 1373–1377. [Google Scholar]
- Sobue, G. The role of schwann cells in peripheral nerve degeneration and regeneration—NGF-NGF receptor system. Clin. Neurol. 1990, 30, 1358–1360. [Google Scholar]
- Gambarotta, G.; Fregnan, F.; Gnavi, S.; Perroteau, I. Neuregulin 1 role in schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int. Rev. Neurobiol. 2013, 108, 223–256. [Google Scholar] [PubMed]
- Tonda-Turo, C.; Ruini, F.; Gnavi, S.; Di Blasio, L.; Primo, L.; Chiono, V.; Perroteau, I.; Ciardelli, G. Naturally-derived hydrogels for growth factors release in peripheral nerve tissue engineering. J. Tissue Eng. Regen. Med. 2012, 6, 79. [Google Scholar]
- Scholz, T.; Rogers, J.M.; Krichevsky, A.; Dhar, S.; Evans, G.R.D. Inducible nerve growth factor delivery for peripheral nerve regeneration in vivo. Plast. Reconstr. Surg. 2010, 126, 1874–1889. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.D.; Hunter, D.; Mackinnon, S.E.; Sakiyama-Elbert, S.E. Heparin-binding-affinity-based delivery systems releasing nerve growth factor enhance sciatic nerve regeneration. J. Biomater. Sci. Polym. Ed. 2010, 21, 771–787. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.W.P.; Webb, A.A.; Midha, R. Sensorimotor analysis of peripheral nerve regeneration through T-tube chambers loaded with nerve growth factor (NGF). J. Peripher. Nerv. Syst. 2009, 14, 73–74. [Google Scholar]
- Valmikinathan, C.M.; Defroda, S.; Yu, X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules 2009, 10, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Peng, J.; Guo, Q.; Zhang, L.; Li, Z.; Zhao, B.; Sui, X.; Wang, Y.; Xu, W.; Lu, S. Improvement of peripheral nerve regeneration in acellular nerve grafts with local release of nerve growth factor. Microsurgery 2009, 29, 330–336. [Google Scholar] [CrossRef] [PubMed]
- De Boer, R.; Knight, A.M.; Wang, H.; Malessy, M.J.A.; Spinner, R.J.; Windebank, A.J.; Yaszemski, M.J. Microsphere delivery of nerve growth factor (NGF) and glial cell line derived neurotrophic factor (GDNF) in supporting peripheral nerve regeneration in polymer scaffolds. Ann. Neurol. 2008, 64, S31–S32. [Google Scholar]
- Kemp, S.W.P.; Walsh, S.K.; Midha, R. Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurol. Res. 2008, 30, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.C.; Yu, V.M.; Lowe, J.B., III; Brenner, M.J.; Hunter, D.A.; Mackinnon, S.E.; Sakiyama-Elbert, S.E. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp. Neurol. 2003, 184, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, H.; Ugawa, Y.; Genba, K.; Shimpo, T.; Mannen, T. Percutaneous electrical stimulation (PES) and SEP in peripheral neuropathies. Clin. Neurol. 1988, 28, 447–452. [Google Scholar]
- Xu, X.Y.; Yee, W.C.; Hwang, P.Y.K.; Yu, H.; Wan, A.C.A.; Gao, S.; Boon, K.-L.; Mao, H.-Q.; Leong, K.W.; Wang, S. Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials 2003, 24, 2405–2412. [Google Scholar] [CrossRef]
- Heine, J.; Schmiedl, A.; Cebotari, S.; Mertsching, H.; Karck, M.; Haverich, A.; Kallenbach, K. Preclinical assessment of a tissue-engineered vasomotive human small-calibered vessel based on a decellularized xenogenic matrix: Histological and functional characterization. Tissue Eng. A. 2011, 17, 1253–1261. [Google Scholar] [CrossRef]
- McCallister, W.V.; Tang, P.; Smith, J.; Trumble, T.E. Axonal regeneration stimulated by the combination of nerve growth factor and ciliary neurotrophic factor in an end-to-side model. J. Hand Surg. 2001, 26A, 478–488. [Google Scholar] [CrossRef]
- Brown, M.C.; Perry, V.H.; Lunn, E.R.; Gordon, S.; Heumann, R. Macrophage dependence of peripheral sensory nerve regeneration—Possible involvement of nerve growth-factor. Neuron 1991, 6, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Bashur, C.A.; Goldstein, A.S.; Schmidt, C.E. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009, 30, 4325–4335. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.P.; Tessier, D.; Dao, L.H.; Zhang, Z. Biostability of electrically conductive polyester fabrics: An in vitro study. J. Biomed. Mater. Res. 2002, 62, 507–513. [Google Scholar] [CrossRef]
- Zawko, S.A.; Schmidt, C.E. Simple benchtop patterning of hydrogel grids for living cell microarrays. Lab Chip 2010, 10, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Fonner, J.M.; Forciniti, L.; Nguyen, H.; Byrne, J.D.; Kou, Y.-F.; Syeda-Nawaz, J.; Schmidt, C.E. Biocompatibility implications of polypyrrole synthesis techniques. Biomed. Mater. 2008. [Google Scholar] [CrossRef]
- Gordon, T.; Udina, E.; Verge, V.M.K.; de Chaves, E.I.P. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Motor Contr. 2009, 13, 412–441. [Google Scholar]
- Gordon, T.; Udina, E.; Verge, V.M.K.; de Chaves, E.I.P. (Correction) Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Motor Contr. 2010, 14, 147. [Google Scholar]
- Al-Majed, A.A.; Neumann, C.M.; Brushart, T.M.; Gordon, T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 2000, 20, 2602–2608. [Google Scholar] [PubMed]
- Brooks, D.N.; Weber, R.V.; Chao, J.D.; Rinker, B.D.; Zoldos, J.; Robichaux, M.R.; Ruggeri, S.B.; Anderson, K.A.; Bonatz, E.E.; Wisotsky, S.M.; Cho, M.S.; Wilson, C.; Cooper, E.O.; Ingari, J.V.; Safa, B.; Parrett, B.M.; Buncke, G.M. Processed nerve allografts for peripheral nerve reconstruction: A multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 2012, 32, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bechara, S.; Wadman, L.; Popat, K.C. Electroconductive polymeric nanowire templates facilitates in vitro C17.2 neural stem cell line adhesion, proliferation and differentiation. Acta Biomater. 2011, 7, 2892–2901. [Google Scholar] [CrossRef] [PubMed]
- Moroder, P.; Runge, M.B.; Wang, H.; Ruesink, T.; Lu, L.; Spinner, R.J.; Windebank, A.J.; Yaszemski, M.J. Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater. 2011, 7, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Runge, M.B.; Dadsetan, M.; Baltrusaitis, J.; Knight, A.M.; Ruesink, T.; Lazcano, E.A.; Lu, L.; Windebank, A.J.; Yaszemski, M.J. The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials 2010, 31, 5916–5926. [Google Scholar] [CrossRef] [PubMed]
- Runge, M.B.; Dadsetan, M.; Baltrusaitis, J.; Ruesink, T.; Lu, L.; Windebank, A.J.; Yaszemski, M.J. Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration. Biomacromolecules 2010, 11, 2845–2853. [Google Scholar] [CrossRef] [PubMed]
- Runge, M.B.; Wang, H.; Spinner, R.J.; Windebank, A.J.; Yaszemski, M.J. Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: Effects of polymeric branching and autoclave sterilization on material properties. Acta Biomater. 2012, 8, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Eisazadeh, H. Studying the characteristics of polypyrrole and its composites. World J. Chem. 2007, 2, 67–74. [Google Scholar]
- Bruno, F.F.; Fossey, S.A.; Nagarajan, S.; Nagarajan, R.; Kumar, J.; Samuelson, L.A. Biomimetic synthesis of water-soluble conducting copolymers/homopolymers of pyrrole and 3,4-ethylenedioxythiophene. Biomacromolecules 2006, 7, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.G.; Mouser, D.J.; Arroyo-Currás, N.; Geissler, S.; Chow, J.K.; Nguy, L.; Kim, J.M.; Schmidt, C.E. Biodegradable electroactive polymers for electrochemically-triggered drug delivery. J. Mater. Chem. B 2014, 2, 6809–6822. [Google Scholar] [CrossRef]
- Bilston, L.E. Neural Tissue Biomechanics; Springer: Randwick, Australia, 2011; Volume 3. [Google Scholar]
- Guimard, N.K.E.; Sessler, J.L.; Schmidt, C.E. Toward a biocompatible and biodegradable copolymer incorporating electroactive oligothiophene units. Macromolecules 2009, 42, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.A.; Crawford, A.; Mundy, J.; Martins, A.; Araújo, J.V.; Hatton, P.V.; Reis, R.L.; Neves, N.M. Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes. Tissue Eng. A 2009, 15, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Jukola, H.; Nikkola, L.; Gomes, M.E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R.L.; Ashammakhi, N. Development of a bioactive glass fiber reinforced starch-polycaprolactone composite. J. Biomed. Mater. Res. B 2008, 87, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.E.; Shastri, V.R.; Vacanti, J.P.; Langer, R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Nat. Acad. Sci. USA 1997, 94, 8948–8953. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Roberge, C.; Dao, L.H.; Wan, Y.; Shi, G.; Rouabhia, M.; Guidoin, R.; Zhang, Z. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated-poly(D,L-lactide-co-glycolide) membranes. J. Biomed. Mater. Res. A 2004, 70, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Mihardja, S.S.; Sievers, R.E.; Lee, R.J. The effect of polypyrrole on arteriogenesis in an acute rat infarct model. Biomaterials 2008, 29, 4205–4210. [Google Scholar] [CrossRef] [PubMed]
- Durgam, H.; Sapp, S.; Deister, C.; Khaing, Z.; Chang, E.; Luebben, S.; Schmidt, C.E. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation. J. Biomater. Sci. Polym. Ed. 2010, 21, 1265–1282. [Google Scholar] [CrossRef] [PubMed]
- George, P.M.; Lyckman, A.W.; LaVan, D.A.; Hegde, A.; Leung, Y.; Avasare, R.; Testa, C.; Alexander, P.M.; Langer, R.; Sur, M. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005, 26, 3511–3519. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ye, Z.; Hu, X.; Lu, L.; Luo, Z. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 2010, 58, 622–631. [Google Scholar] [PubMed]
- Huang, J.; Hu, X.; Lu, L.; Ye, Z.; Zhang, Q.; Luo, Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J. Biomed. Mater. Res. A 2010, 93A, 164–174. [Google Scholar] [PubMed]
- Zhu, B.; Luo, S.C.; Zhao, H.; Lin, H.A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 2014. [Google Scholar] [CrossRef]
- Koppes, A.N.; Nordberg, A.L.; Paolillo, G.M.; Goodsell, N.M.; Darwish, H.A.; Zhang, L.; Thompson, D.M. Electrical stimulation of Schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng. A 2014, 20, 494–506. [Google Scholar]
- George, P.M.; LaVan, D.A.; Burdick, J.A.; Chen, C.Y.; Liang, E.; Langer, R. Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv. Mater. 2006, 18, 577–581. [Google Scholar] [CrossRef]
- Cho, Y.; Shi, R.; Ivanisevic, A.; Ben Borgens, R. A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology 2009. [Google Scholar] [CrossRef]
- Liu, J.; Lamb, D.; Chou, M.M.; Liu, Y.; Li, G. Nerve growth factor-mediated neurite outgrowth via regulation of Rab5. Mol Biol Cell. 2007, 18, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.Q.; Ulfendahl, M.; Olivius, N.P. NGF stimulates extensive neurite outgrowth from implanted dorsal root ganglion neurons following transplantation into the adult rat inner ear. Neurobiol. Dis. 2005, 18, 184–192. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardy, J.G.; Cornelison, R.C.; Sukhavasi, R.C.; Saballos, R.J.; Vu, P.; Kaplan, D.L.; Schmidt, C.E. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering 2015, 2, 15-34. https://doi.org/10.3390/bioengineering2010015
Hardy JG, Cornelison RC, Sukhavasi RC, Saballos RJ, Vu P, Kaplan DL, Schmidt CE. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering. 2015; 2(1):15-34. https://doi.org/10.3390/bioengineering2010015
Chicago/Turabian StyleHardy, John G., R. Chase Cornelison, Rushi C. Sukhavasi, Richard J. Saballos, Philip Vu, David L. Kaplan, and Christine E. Schmidt. 2015. "Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering" Bioengineering 2, no. 1: 15-34. https://doi.org/10.3390/bioengineering2010015
APA StyleHardy, J. G., Cornelison, R. C., Sukhavasi, R. C., Saballos, R. J., Vu, P., Kaplan, D. L., & Schmidt, C. E. (2015). Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering, 2(1), 15-34. https://doi.org/10.3390/bioengineering2010015