Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Sample Tests and Analysis
2.2.1. Proximate Analysis
- wsi is the original weight of the biomass sample,
- wcsi is the initial weight of the sample with crucible (before heating), and
- wcsf shows the final weight of the sample with crucible (after heating).
- wsi is the original weight of the biomass sample,
- wmsi is the initial weight of the biomass sample with crucible (before drying), and
- wmsf is the final weight of that sample and crucible (after drying.)
- wsi is the original weight of the sample,
- wdsi is the preliminary weight of the sample and crucible (before drying), and
- wdsf is the final weight of the biomass sample with crucible (after drying)
2.2.2. Ultimate Analysis
2.2.3. Calorific Value Analysis
2.2.4. Thermogravimetric Analysis (TGA and DTG)
2.2.5. Pyrolysis
2.2.6. Fourier Transform Infrared (FTIR) Analysis
3. Results and Discussions
3.1. Proximate Analysis
3.2. Ultimate Analysis
Van Krevelen Diagram
3.3. Scanning Electron Microscope (SEM)
3.4. Calorific Value (Higher Heating Value)
3.5. Product Yield
3.6. Fourier Transforms Infrared (FTIR) Spectroscopy
3.7. Thermogravimetric Analysis (TGA) and Derivative Thermogravimetry (DTG)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Lange, W.J.; van Wilgen, B.W. An economic assessment of the contribution of biological control to the management of invasive alien plants and to the protection of ecosystem services in South Africa. Biol. Invasions 2010, 12, 4113–4124. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Mahlia, T.M.I. Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review. Renew. Sustain. Energy Rev. 2018, 82, 3060–3076. [Google Scholar] [CrossRef]
- Simmons, M.T.; Windhager, S.; Power, P.; Lott, J.; Lyons, R.K.; Schwope, C. Selective and Non-Selective Control of Invasive Plants: The Short-Term Effects of Growing-Season Prescribed Fire, Herbicide. Restor. Ecol. 2007, 15, 662–669. [Google Scholar] [CrossRef]
- Young, S.L.; Gopalakrishnan, G.; Keshwani, D.R. Invasive plant species as potential bioenergy producers and carbon contributors. J. Soil Water Conserv. 2011, 6, 45A–50A. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quéré, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Frame, D.J.; Huntingford, C.; Jones, C.D.; Lowe, J.A.; Meinshausen, M.; Meinshausen, N. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458, 1163. [Google Scholar] [CrossRef] [PubMed]
- David, A. Laird The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality. Agron. J. 2008, 100, 178–180. [Google Scholar]
- Danish, M.; Ahmad, T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Elliott, D.C. Historical Developments in Hydroprocessing Bio-oils. Energy Fuels 2007, 21, 1792–1815. [Google Scholar] [CrossRef]
- Radenahmad, N.; Rahman, I.S.A.; Morni, N.A.H.; Azad, A.K. Acacia-Polyethylene Terephthalate co-gasification as renewable energy resource. Int. J. Renew. Energy Res. 2018, 8, 1612–1620. [Google Scholar]
- Liao, R.; Gao, B.; Fang, J. Invasive plants as feedstock for biochar and bioenergy production. Bioresour. Technol. 2013, 140, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Shimada, I.; Iwata, C.; Taga, S.; Teramachi, H.; Nomura, M.; Miyamoto, K.I.; Tsuciya, H.; Wada, T.; Kimura, K.; Matsushita, R. Enhanced renal clearance of vancomycin in rats with carcinogen-induced osteosarcoma. Anticancer Res. 2012, 32, 823–829. [Google Scholar]
- Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Convers. Manag. 2018, 176, 393–408. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef] [PubMed]
- Suhaili, A.L.R.; Kushan, U.; Tennakoon, R.S.S. Soil Seed Bank of an Exotic Acacia sp. Plantation and an Adjacent Tropical Heath Forest in Brunei Darussalam. BIOTROPIA 2015, 22, 140–150. [Google Scholar]
- Islam, S.N.; Mohamad, S.M.B.H.; Azad, A.K. Acacia spp.: Invasive Trees along the Brunei Coast, Borneo. In Impacts of Invasive Species on Coastal Environments: Coasts in Crisis; Makowski, C., Finkl, C.W., Eds.; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 455–476. [Google Scholar]
- Tanaka, S.; Kano, S.; Lat, J.; Effendi, W.M.; Tan, N.P.; Arifin, A.; Sakurai, K.; Kendawang, J.J. Effects of acacia mangium on morphological and physicochemical properties of soil. J. Trop. For. Sci. 2015, 27, 357–368. [Google Scholar]
- Ahmed, A.; Hidayat, S.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource. Biofuels 2018, 7269, 1–12. [Google Scholar] [CrossRef]
- Plant Threats to Pacific Ecosystems. Available online: http://www.hear.org/pier/scientificnames/scinamea.htm (accessed on 24 January 2019).
- Richardson, D.M.; Rejmánek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Danish, M.; Hashim, R.; Ibrahim, M.N.M.; Rafatullah, M.; Ahmad, T.; Sulaiman, O. Characterization of Acacia mangium wood based activated carbons prepared in the presence of basic activating agents. BioResources 2011, 6, 3019–3033. [Google Scholar]
- Danish, M.; Hashim, R.; Ibrahim, M.N.M.; Rafatullah, M.; Sulaiman, O. Surface characterization and comparative adsorption properties of Cr(VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon. J. Anal. Appl. Pyrolysis 2012, 97, 19–28. [Google Scholar] [CrossRef]
- Kenney, K.L.; Smith, W.A.; Gresham, G.L.; Westover, T.L. Understanding biomass feedstock variability. Biofuels 2013, 4, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.L.; Westover, T.L.; Emerson, R.M.; Tumuluru, J.S.; Li, C. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Res. 2016, 9, 1–14. [Google Scholar] [CrossRef]
- Marsoem, S.N.; Irawati, D. Basic properties of Acacia mangium and Acacia auriculiformis as a heating fuel. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1755, p. 130007. [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Garg, R.; Anand, N.; Kumar, D. Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renew. Energy 2016, 96, 167–171. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G.; Morgan, T.J. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Kabakcı, S.B.; Hacıbektaşoğlu, Ş. Catalytic Pyrolysis of Biomass Literature Review. In Pyrolysis; Samer, M., Ed.; IntechOpen Limited: London, UK, 2017; pp. 167–196. [Google Scholar]
- Senelwa, K.; Sims, R.E.H. Fuel characteristics of short rotation forest biomass. Biomass Bioenergy 1999, 17, 127–140. [Google Scholar] [CrossRef]
- Widhanarto, G.O.; Purwanto, R.H.; Maryudi, A. Senawi Assessing carbon pool of forest plantation to support REDD+ implementation in Indonesia. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1755, p. 130008. [Google Scholar]
- Obernberger, I.; Brunner, T.B.G. Chemical properties of solid biofuels-significance and impact. Biomass Bioenergy 2006, 40, 973–982. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Rambo, M.K.D.; Alexandre, G.P.; Rambo, M.C.D.; Alves, A.R.; Garcia, W.T.; Baruque, E. Characterization of biomasses from the north and northeast regions of Brazil for processes in biorefineries. Food Sci. Technol. 2015, 35, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Das, B.K.; Hoque, S.M.N. Assessment of the Potential of Biomass Gasification for Electricity Generation in Bangladesh. J. Renew. Energy 2014, 2014, 429518. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Aroua, M.K.; Mariod, A.A.; Cheng, S.F.; Abdelrahman, M.A. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Ind. Crop. Prod. 2014, 61, 49–61. [Google Scholar] [CrossRef]
- Liao, C.; Wu, C.; Yan, Y.; Huang, H. Chemical elemental characteristics of biomass fuels in China. Biomass Bioenergy 2004, 27, 119–130. [Google Scholar]
- Crespo, Y.A.; Naranjo, R.A.; Quitana, Y.G.; Sanchez, C.G.; Sanchez, E.M.S. Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis. Wood Sci. Technol. 2017, 51, 1155–1171. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, X.; Jiang, L.; Li, C.; Xiao, Z.; Huang, Z.; Chen, X.; Zeng, G.; Li, H. Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends. Fuel 2016, 175, 129–136. [Google Scholar] [CrossRef]
- Lyubchik, S.; Benoit, R.; Béguin, F. Influence of chemical modification of anthracite on the porosity of the resulting activated carbons. Carbon N. Y. 2002, 40, 1287–1294. [Google Scholar] [CrossRef]
- Vargas-Moreno, J.M.; Callejón-Ferre, A.J.; Pérez-Alonso, J.; Velázquez-Martí, B. A review of the mathematical models for predicting the heating value of biomass materials. Renew. Sustain. Energy Rev. 2012, 16, 3065–3083. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel 2014, 117, 1139–1147. [Google Scholar]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels production through biomass pyrolysis- A technological review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels from Agricultural Biomass. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 1573–1582. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Demirbas, A. Production and Characterization of Bio-Chars from Biomass via Pyrolysis. Energy Sources Part A Recover. Util. Environ. Eff. 2006, 28, 413–422. [Google Scholar] [CrossRef]
- Mccarthy, J.L.; Islam, A. Lignin Chemistry, Technology, and Utilization: A Brief History. In Lignin: Historical, Biological, and Materials Perspectives; Glasser, W.G., Northey, R.A., Schultz, T.P., Eds.; American Chemical Society: Washington, DC, USA, 2000; pp. 1–99. ISBN 0-8412-3611-9. [Google Scholar]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cell. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Kumar, V.; Priya, S. Review Paper on Biofuels from Lignin. Int. J. Adv. Sci. Tech. Res. Issue 2018, 2, 48–56. [Google Scholar] [CrossRef]
- Demirbas, A. Bio-fuels from Agricutural Residues. Energy Sourcespart A Recover. Util. Environ. Eff. 2007, 30, 101–109. [Google Scholar] [CrossRef]
- Zanzi, R.; Sjöström, K.; Björnbom, E. Rapid high-temperature pyrolysis of biomass in a free-fall reactor. Fuel 1996, 75, 545–550. [Google Scholar] [CrossRef]
- Freudenberg, K.; Neish, A.C. Constitution and Biosynthesis of Lignin, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1968; ISBN 978-3-540-04274-7. [Google Scholar]
- Lee, K.H.; Kang, B.S.; Park, Y.K.; Kim, J.-S. Influence of Reaction Temperature, Pretreatment, and a Char Removal System on the Production of Bio-oil from Rice Straw by Fast Pyrolysis, Using a Fluidized Bed. Am. Chem. Soc. 2005, 19, 2179–2184. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Biofuels in the European Union: A Vision for 2030 and Beyond. Available online: http://projects.mcrit.com/foresightlibrary/index.php/megatrens2/energy-sp-530260595/technologies/146-biofuels-in-the-european-union-a-vision-for-2030-and-beyond (accessed on 5 April 2019).
- Özçimen, D.; Ersoy-Meriçboyu, A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy 2010, 35, 1319–1324. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Li, W.; Shi, Y. Preparation and Characterization of Bio-Oil from Biomass. In Progress in Biomass and Bioenergy Production; Shaukat, S., Ed.; InTech: Shanghai, China, 2011; pp. 197–222. ISBN 978-953-307-491-7. [Google Scholar]
- Yan, F.; Luo, S.; Hu, Z.; Xiao, B.; Cheng, G. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresour. Technol. 2010, 101, 5633–5637. [Google Scholar] [CrossRef] [PubMed]
- Nath, K.; Das, D. Hydrogen from biomass. Curr. Sci. 2003, 85, 265–271. [Google Scholar]
- Naik, S.; Goud, V.V.; Rout, P.K.; Jacobson, K.; Dalai, A.K. Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energy 2010, 35, 1624–1631. [Google Scholar] [CrossRef]
- Akhtar, N.; Goyal, D.; Goyal, A. Physico-chemical characteristics of leaf litter biomass to delineate the chemistries involved in biofuel production. J. Taiwan Inst. Chem. Eng. 2016, 62, 239–246. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, M.; Zhu, X.; Guo, D.; Liu, S.; Hu, Z.; Xiao, B.; Wang, J.; Laghari, M. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour. Technol. 2015, 192, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, M.A.; Ye, G.; Luo, H.; Liu, C.; Malik, S.; Afzal, I.; Xu, J.; Ahmad, M.S. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour. Technol. 2017, 228, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Raveendran, K.; Ganesh, A.; Khilar, K.C. Pyrolysis characteristics of biomass and biomass components. Fuel 1996, 75, 987–998. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, J.; Kim, S.S.; Park, Y.K. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresour. Technol. 2009, 100, 400–405. [Google Scholar] [CrossRef]
- Zanzi-vigouroux, R.; Aguiar-trujillo, L. Pyrolytic Degradation Studies of Acacia mangium wood. BioResources 2015, 10, 1825–1844. [Google Scholar]
- Titiloye, J.O.; Abu Bakar, M.S.; Odetoye, T.E. Thermochemical characterisation of agricultural wastes from West Africa. Ind. Crop. Prod. 2013, 47, 199–203. [Google Scholar] [CrossRef]
- Australian National Botanic Gardens. Wattles, Genus Acacia—Australian Plant Information. Available online: http://www.anbg.gov.au/acacia/ (accessed on 9 February 2019).
Species | Moisture Content (MC) | Volatile Matter (VM) | Fixed Carbon (FC) | Ash Content (AC) |
---|---|---|---|---|
Acacia Holosericea | 9.56% | 65.32% | 21.21% | 3.91% |
Sample | Carbon | Hydrogen | Nitrogen | Sulfur | Oxygen 1 | H/C | O/C |
---|---|---|---|---|---|---|---|
Trunk | 44.03% | 5.67% | 0.25% | ND 2 | 50.05% | 1.534 | 0.853 |
Species | Part | HHV Value | Unit |
---|---|---|---|
Acacia Holosericea | Trunk | 18.13 | MJ/Kg |
Species | Part | Temperature (°C) | Bio-char | Bio-oil | Biogas 1 |
---|---|---|---|---|---|
Acacia Holosericea | Trunk | 500 (5 °C/min) | 34.35% | 32.56% | 33.09% |
Acacia Holosericea | Trunk | 600 (10 °C/min) | 25.81% | 37.61% | 36.58% |
Functional Group | Wave Number (cm−1) |
---|---|
O–H stretching in cellulose and lignin | 3600–3000 |
C–H stretching in aliphatic formation | 2960–2850 |
C=C=O stretching ketene | 2150 |
C–H Bending in cellulose and hemicellulose | 2000–1650 |
C = O stretching of hemicelluloses | 1750–1630 |
C–H deformation in cellulose and hemicellulose | 1384–1346 |
C–O stretching vibration in cellulose and hemicelluloses | 1085–1050 |
C=C stretching alkene vinylidene | 895–885 |
Aromatic rings | 842–720 |
Item | Stage (1) | Stage (2) | Stage (3) | Remark |
---|---|---|---|---|
Temperature (°C) | 40–197 | 197–432 | 432–900 | 357 (Peak) |
Weight Loss (%) | 9.86 | 52.31 | 13.12 | 24.71 (Residue) |
Item | Stage (1) | Stage (2) | Stage (3) | Remark |
---|---|---|---|---|
Temperature (°C) | 40–202 | 202–437 | 437–900 | 287 (Peak) |
Weight Loss (%) | 9.86 | 81.93 | 4.23 | 3.98 (Residue) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reza, M.S.; Ahmed, A.; Caesarendra, W.; Abu Bakar, M.S.; Shams, S.; Saidur, R.; Aslfattahi, N.; Azad, A.K. Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production. Bioengineering 2019, 6, 33. https://doi.org/10.3390/bioengineering6020033
Reza MS, Ahmed A, Caesarendra W, Abu Bakar MS, Shams S, Saidur R, Aslfattahi N, Azad AK. Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production. Bioengineering. 2019; 6(2):33. https://doi.org/10.3390/bioengineering6020033
Chicago/Turabian StyleReza, Md Sumon, Ashfaq Ahmed, Wahyu Caesarendra, Muhammad S. Abu Bakar, Shahriar Shams, R. Saidur, Navid Aslfattahi, and Abul K. Azad. 2019. "Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production" Bioengineering 6, no. 2: 33. https://doi.org/10.3390/bioengineering6020033
APA StyleReza, M. S., Ahmed, A., Caesarendra, W., Abu Bakar, M. S., Shams, S., Saidur, R., Aslfattahi, N., & Azad, A. K. (2019). Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production. Bioengineering, 6(2), 33. https://doi.org/10.3390/bioengineering6020033