Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrospinning
2.2. Preparation of Fibrin-Incorporated Electron Membrane
2.3. Genipin Crosslinking of Fibrin-Incorporated Electrospun Membranes
2.4. Biodegradation Assay with Trypsin
2.5. Uniaxial Tensile Testing
2.6. Statistical Analyses
3. Results
3.1. Electrospinning PCL Membranes
3.2. Generation of Fibrin Matrix and Hybrid PCL-fibrin Matrix:
3.3. Genipin Crosslinking and Trypsin Degradation Assay
3.4. Mechanical Properties
3.4.1. Baseline PCL Membrane
3.4.2. Modulus
3.4.3. Energy to Break
3.4.4. Strain at Break
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Trypsin Degradation | Modulus | Strain at Break | Energy to Break | |
---|---|---|---|---|
Membrane (yes/no) | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
Centrifuge Rate (400, 1450, 3000) | <0.0001 * | 0.0008 * | 0.2116 | 0.5871 |
Crosslinking (XL or UNXL) | <0.0001 * | 0.0969 | <0.0001 * | 0.0736 |
Membrane × centrifuge rate | <0.0001 * | 0.0007 * | 0.2777 | 0.5974 |
Centrifuge rate × crosslinking | <0.0001 * | 0.8140 | 0.9735 | 0.2512 |
Membrane × crosslinking | 0.2290 | 0.1307 | <0.0001 * | 0.0544 |
Membrane × centrifuge rate × crosslinking | 0.0064 * | 0.8352 | 0.4000 | 0.2831 |
Comparison | Estimated Difference (% Remaining) | Adj P |
---|---|---|
No membrane at 400 g: UNXL vs. XL | −60% | <0.0001 * |
No membrane at 1450 g: UNXL vs. XL | −89% | <0.0001 * |
No membrane at 3000 g: UNXL vs. XL | −30% | <0.0001 * |
Membrane at 400 g: UNXL vs. XL | −83% | <0.0001 * |
Membrane at 1450 g: UNXL vs. XL | −77% | <0.0001 * |
Membrane at 3000 g: UNXL vs. XL | −33% | <0.0001 * |
No membrane UNXL: 400 g vs. 1450 g | 36% | <0.0001 * |
No membrane UNXL: 400 g vs. 3000 g | 36% | <0.0001 * |
No membrane UNXL: 1450 g vs. 3000 g | 0% | 1 |
No membrane XL: 400 g vs. 1450 g | 6% | 0.9887 |
No membrane XL: 400 g vs. 3000 g | 66% | <0.0001 * |
No membrane XL: 1450 g vs. 3000 g | 59% | <0.0001 * |
Membrane UNXL: 400 g vs. 1450 g | −7% | 0.9637 |
Membrane UNXL: 400 g vs. 3000 g | −32% | <0.0001 * |
Membrane UNXL: 1450 g vs. 300 g | −25% | 0.0001 * |
Membrane XL: 400 g vs. 1450 g | −1% | 1 |
Membrane XL: 400 g vs. 3000 g | 18% | 0.0235 * |
Membrane XL: 1450 g vs. 3000 g | 19% | 0.0096 * |
UNXL at 400 g: no membrane vs. membrane | 20% | 0.0044 * |
UNXL at 1450 g: no membrane vs. membrane | −22% | 0.001 * |
UNXL at 3000 g: no membrane vs. membrane | −47% | <0.0001 * |
XL at 400 g: no membrane vs. membrane | −3% | 1 |
XL at 1450 g: no membrane vs. membrane | −11% | 0.6658 |
XL at 3000 g: no membrane vs. membrane | −51% | <0.0001 * |
Comparison | Estimated Difference (MPa) | Adj P |
---|---|---|
400 g: No membrane vs. membrane | −65.70 | <0.0001 |
1450 g: No membrane vs. membrane | −52.21 | <0.0001 |
3000 g: No membrane vs. membrane | −37.60 | <0.0001 |
No membrane: 1450 g vs. 3000 g | −0.20 | 1 |
No membrane: 400 g vs. 1450 g | −0.01 | 1 |
No membrane: 400 g vs. 3000g | −0.21 | 1 |
Membrane: 1450 g vs. 3000 g | 1,5.41 | 0.0403 |
Membrane: 400 g vs. 1450 g | 13.47 | 0.0600 |
Membrane: 400 g vs. 3000 g | 27.88 | <0.0001 |
Membrane | Estimated Mean (N*mm) | SE | p-Value * |
---|---|---|---|
No membrane | 2.0 | 3.55 | |
Membrane | 95.5 | 3.45 | |
Difference (no membrane−membrane) | −93.5 | 4.95 | <0.0001 |
Comparison | Estimated Difference (mm/mm) | Adj P |
---|---|---|
UNXL: no membrane vs. membrane | −1.09 | <0.0001 * |
No membrane: UNXL vs. XL | 0.09 | 0.9116 |
Membrane: UNXL vs. XL | 1.44 | <0.0001 * |
XL: no membrane vs. membrane | 0.26 | 0.2193 |
References
- Hench, L.L.; Thompson, I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface 2010, 7, S379–S391. [Google Scholar] [CrossRef] [PubMed]
- Tibbitt, M.W.; Rodell, C.B.; Burdick, J.A.; Anseth, K.S. Progress in material design for biomedical applications. Proc. Natl. Acad. Sci. USA 2015, 112, 14444–14451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eke, P.I.; Dye, B.A.; Wei, L.; Thornton-Evans, G.O.; Genco, R.J. Prevalence of Periodontitis in Adults in the United States: 2009 and 2010. J. Dent. Res. 2012, 91, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Gottlow, J.; Nyman, S.; Karring, T.; Lindhe, J. New attachment formation as the result of controlled tissue regeneration. J. Clin. Periodontol. 1984, 11, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Melcher, A.H. On the repair potentials of the periodontal tissues. J. Periodontol. 1976, 47, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Bottino, M.C.; Thomas, V.; Schmidt, G.; Vohra, Y.K.; Chu, T.-M.G.; Kowolik, M.J.; Janowski, G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent. Mater. 2012, 28, 703–721. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Chiono, V.; Tonda-Turo, C.; Ferreira, A.M.; Ciardelli, G. Polymeric membranes for guided bone regeneration. Biotechnol. J. 2011, 6, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Engelberg, I.; Kohn, J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991, 12, 292–304. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef]
- Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules 2002, 3, 232–238. [Google Scholar] [CrossRef]
- Badami, A.S.; Kreke, M.R.; Thompson, M.S.; Riffle, J.S.; Goldstein, A.S. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2006, 27, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Sundararaghavan, H.G.; Burdick, J.A. Gradients with Depth in Electrospun Fibrous Scaffolds for Directed Cell Behavior. Biomacromolecules 2011, 12, 2344–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, K.M.; Bhaw-Luximon, A.; Jhurry, D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater. 2017, 50, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Feng, B.; Zhang, W.; Yan, C.; Yao, Q.; Shao, C.; Yu, F.; Li, F.; Fu, Y. Electrospun gelatin/PCL and collagen/PCL scaffolds for modulating responses of bone marrow endothelial progenitor cells. Exp. Ther. Med. 2019, 15, 3717–3726. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, S.; Timofeeva, V.; Permykova, E.; Ershov, S.; Kiryukhantsev-Korneev, P.; Dvořaková, E.; Shtansky, D.V.; Zajíčková, L.; Solovieva, A.; Manakhov, A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials 2019, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Yeo, M.; Lee, H.; Kim, G. Three-Dimensional Hierarchical Composite Scaffolds Consisting of Polycaprolactone, β-Tricalcium Phosphate, and Collagen Nanofibers: Fabrication, Physical Properties, and In Vitro Cell Activity for Bone Tissue Regeneration. Biomacromolecules 2011, 12, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Venugopal, J.; Huang, Z.-M.; Lim, C.T.; Ramakrishna, S.; Zhang, Y. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules 2005, 6, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Laurens, N.; Koolwijk, P.; de Maat, M.P. Fibrin structure and wound healing. J. Thromb. Haemost. 2006, 4, 932–939. [Google Scholar] [CrossRef]
- Breen, A.; O’Brien, T.; Pandit, A. Fibrin as a Delivery System for Therapeutic Drugs and Biomolecules. Tissue Eng. Part B Rev. 2009, 15, 201–214. [Google Scholar] [CrossRef]
- Shiu, H.T.; Goss, B.; Lutton, C.; Crawford, R.; Xiao, Y. Formation of Blood Clot on Biomaterial Implants Influences Bone Healing. Tissue Eng. Part B Rev. 2014, 20, 697–712. [Google Scholar] [CrossRef]
- Hasanzadeh, E.; Ebrahimi-Barough, S.; Mirzaei, E.; Azami, M.; Tavangar, S.M.; Mahmoodi, N.; Basiri, A.; Ai, J.; Basiri, A. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J. Biomed. Mater. Res. Part A 2019, 107, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, E.H.; Shin, D.; Roh, J.L. Accelerated oral wound healing using a pre-vascularized mucosal cell sheet. Sci. Rep. 2017, 7, 10667. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.; Ashrafi, S.J.; Vaez-Ghaemi, R.; Hatamian-Zaremi, A.; Webster, T.J. A review of fibrin and fibrin composites for bone tissue engineering. Int. J. Nanomed. 2017, 12, 4937–4961. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, H.J.; Chung, J.Y.; Lee, J.H.; Young, S.B.; Kim, Y.H. Natural and synthetic biomaterials for controlled drug delivery. Arch. Pharm. Res. 2014, 37, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Yoganarasimha, S.; Trahan, W.R.; Best, A.M.; Bowlin, G.L.; Kitten, T.O.; Moon, P.C.; Madurantakam, P.A. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds. Tissue Eng. Part C Methods 2014, 20, 714–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-L.; Boyapati, L. “PASS” Principles for Predictable Bone Regeneration. Implant. Dent. 2006, 15, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Postlethwaite, A.E.; Seymer, J.M.; Kang, A.H. Chemotactic attraction of human fibroblasts to type I, II and II collagens and collagen derived peptides. Proc. Natl. Acad. Sci. USA 1978, 75, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Locci, P.; Calvitt, M.; Belcastro, S.; Pugliese, M.; Guerra, M.; Marinucci, L.; Staffolani, N.; Becchetti, E. Phenotype expression of gingival fibrobalsts cultured on membranes used in guided tissue regeneration. J. Periodontol. 1997, 68, 857–863. [Google Scholar] [CrossRef]
- Machtei, E.E. The Effect of Membrane Exposure on the Outcome of Regenerative Procedures in Humans: A Meta-Analysis. J. Periodontol. 2001, 72, 512–516. [Google Scholar] [CrossRef]
- Bottino, M.C.; Jose, M.V.; Thomas, V.; Dean, D.R.; Janowski, G.M. Freeze-dried acellular dermal matrix graft: Effects of rehydration on physical, chemical, and mechanical properties. Dent. Mater. 2009, 25, 1109–1115. [Google Scholar] [CrossRef]
- Madurantakam, P.; Yoganarasimha, S.; Hasan, F.K. Characterization of Leukocyte-platelet Rich Fibrin, A Novel Biomaterial. J. Vis. Exp. 2015, 29, 103. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Roh, Y.H.; Kim, J.E.; Shin, S.; Yoon, K.S. Optimizing Platelet-Rich Plasma Gel Formation by Varying Time and Gravitational Forces During Centrifugation. J. Oral Implant. 2013, 39, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfest, D.; Corso, M.; Kang, B.; Lanata, N.; Quiryen, M.; Wang, H.; Pinto, N. The impact of centrifuge characteristics and centrifugation protocols on the cells, growth factors and fibrin architecture of a leukocyte-and-platelet rich fibrin (L-PRF) clot and membrane. Platelets 2018, 29, 171–184. [Google Scholar] [CrossRef] [PubMed]
- A Sell, S.; Francis, M.P.; Garg, K.; McClure, M.J.; Simpson, D.G.; Bowlin, G.L. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed. Mater. 2008, 3, 45001. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Cruz, M.A.; Nasser, P.; Rosenberg, J.D.; Iatridis, J.C. Fibrin-Genipin Hydrogel for Cartilage Tissue Engineering in Nasal Reconstruction. Ann. Otol. Rhinol. Laryngol. 2019, 128, 640–646. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, C.; Yoganarasimha, S.; Carrico, C.; Madurantakam, P. Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing. Bioengineering 2019, 6, 57. https://doi.org/10.3390/bioengineering6030057
Wong C, Yoganarasimha S, Carrico C, Madurantakam P. Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing. Bioengineering. 2019; 6(3):57. https://doi.org/10.3390/bioengineering6030057
Chicago/Turabian StyleWong, Choyi, Suyog Yoganarasimha, Caroline Carrico, and Parthasarathy Madurantakam. 2019. "Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing" Bioengineering 6, no. 3: 57. https://doi.org/10.3390/bioengineering6030057
APA StyleWong, C., Yoganarasimha, S., Carrico, C., & Madurantakam, P. (2019). Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing. Bioengineering, 6(3), 57. https://doi.org/10.3390/bioengineering6030057