Production of Polyhydroxyalkanoates and Extracellular Products Using Pseudomonas Corrugata and P. Mediterranea: A Review
Abstract
:1. Introduction
2. Production of mcl-PHA and Extracellular Products
3. Conversion Process and Recovery
4. Composition and Technological Properties of mcl-PHA
5. Evaluation of Mixed Blends and Coatings
6. P. corrugata and P. mediterranea PHA Locus
7. Transcriptional Regulation during PHA Production
7.1. Expression of phaC1 and phaC2 under Different Carbon Sources
7.2. Transcriptome Analysis on Glycerol-Grown Strains
8. Genetically Modified Bacteria to Improve the Production of mcl-PHAs
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Q.; Sun, S.Q.; Yu, P.H.F.; Chen, A.X.Z.; Chen, G.Q. Environmental dependence of microbial synthesis of polyhydroxyalkanoates. Acta Polym. Sin. 2000, 6, 751–756. [Google Scholar]
- Kadouri, D.; Jurkevitch, E.; Okon, Y.; Castro-Sowinski, S. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 2005, 31, 55–56. [Google Scholar] [CrossRef]
- Mozejko-Ciesielska, J.; Szacherska, K.; Marciniak, P. Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates. J. Polym. Environ. 2019, 27, 1151–1166. [Google Scholar] [CrossRef]
- Chen, G.Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar] [CrossRef]
- Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Del. Rev. 2001, 53, 5–21. [Google Scholar] [CrossRef]
- Możejko-Ciesielska, J.; Kiewisz, R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 2016, 192, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Kessler, B.; Palleroni, N. Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads. Int. J. Syst. Evol. Microbiol. 2000, 50, 711–713. [Google Scholar] [CrossRef]
- Solaiman, D.K.Y.; Ashby, R.D.; Foglia, T.A. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 2000, 53, 690–694. [Google Scholar] [CrossRef]
- Solaiman, D.K.Y.; Catara, V.; Greco, S. Poly(hydroxyalkanoate) synthase genotype and PHA production of Pseudomonas corrugata and P. mediterranea. J. Ind. Microbiol. Biotechnol. 2005, 32, 75–82. [Google Scholar] [CrossRef]
- Solaiman, D.K.Y.; Ashby, R.D.; Foglia, T.A.; Marmer, W.N. Conversion of agricultural feedstockand coproducts into poly(hydroxyalkanoates). Appl. Microbiol. Biotechnol. 2006, 71, 783–789. [Google Scholar] [CrossRef]
- Ashby, R.D.; Solaiman, D.K.Y.; Foglia, T.A. Bacterial poly(hydroxyalcanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 2004, 12, 105–112. [Google Scholar] [CrossRef]
- Ashby, R.D.; Solaiman, D.K.Y.; Foglia, T.A. Synthesis of short-/medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules 2005, 6, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, F.; Fragalà, M.; Mineo, P.G.; Damigella, A.; Catara, A.F.; Palmeri, R.; Rescifina, A. Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by P. mediterranea. Int. J. Biol. Macromol. 2014, 65, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ashby, R.D.; Foglia, T.A. Poly(hydroxyalkanoates) biosynthesis from triglyceride substrates. Appl. Microbiol. Biotechnol. 1998, 49, 431–437. [Google Scholar] [CrossRef]
- Da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27, 30–39. [Google Scholar] [CrossRef]
- Koller, M.; Marsalek, L. Principles of Glycerol-Based Polyhydroxyalkanoate Production. Appl. Food Biotechnol. 2015, 2, 3–10. [Google Scholar]
- De Smet, M.J.; Eggink, G.; Witholt, B.; Kingma, J.; Wynberg, H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J. Bacteriol. 1983, 154, 870–878. [Google Scholar]
- Panith, N.; Assavanig, A.; Lertsiri, S.; Bergkvist, M.; Surarit, R.; Niamsiri, N. Development of tunable biodegradable polyhydroxyalkanoates microspheres for controlled delivery of tetracycline for treating periodontal disease. J. Appl. Polym. Sci. 2016, 133, 44128–44140. [Google Scholar] [CrossRef]
- Zhang, J.; Shishatskaya, E.I.; Volova, T.G.; da Silva, L.F.; Chen, G.Q. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater. Sci. Eng. C 2018, 86, 144–150. [Google Scholar] [CrossRef]
- Basnett, P.; Ching, K.Y.; Stolz, M.; Knowles, J.C.; Boccaccini, A.R.; Smith, C.; Locke, I.C.; Keshavarz, T.; Roy, I. Novel poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blends for medical applications. React. Funct. Polym. 2013, 73, 1340–1348. [Google Scholar] [CrossRef]
- Takagi, Y.; Yasuda, R.; Yamaoka, M.; Yamane, T. Morphologies and mechanical properties of polylactide blends with medium chain length poly(3-hydroxyalkanoate) and chemically modified poly(3-hydroxyalkanoate). J. Appl. Polym. Sci. 2004, 93, 2363–2369. [Google Scholar] [CrossRef]
- Scaffaro, R.; Dintcheva, N.T.; Marino, R.; La Mantia, F.P. Processing and properties of biopolymer/polyhydroxyalkanoates blends. J. Polym. Environ. 2012, 20, 267–272. [Google Scholar] [CrossRef]
- Prieto, A.; Escapa, I.F.; Martínez, V.; Dinjaski, N.; Herencias, C.; de la Peña, F.; Tarazona, N.; Revelles, O. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ. Microbiol. 2016, 18, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Catara, V. Pseudomonas corrugata: Plant pathogen and/or biological resource? Mol. Plant. Pathol. 2007, 8, 233–244. [Google Scholar] [CrossRef]
- Trantas, E.A.; Licciardello, G.; Almeida, N.F.; Witek, K.; Strano, C.P.; Duxbury, Z.; Ververidis, F.; Goumas, D.E.; Jones, J.D.G.; Guttman, D.S.; et al. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front. Microbiol. 2015, 6, 811. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, N.M.; Piaz, F.D.; Lanzetta, R.; Naldi, T.; Parrilli, M. Structure of Lipid A from Pseudomonas corrugata by electrospray ionisation quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 853–858. [Google Scholar] [CrossRef]
- Fett, W.F.; Cescutti, P.; Wijey, C. Exopolysaccharides of the plant pathogens Pseudomonas corrugata and Ps. flavescens and the saprophyte Ps. chlororaphis. J. Appl. Bacteriol. 1996, 81, 181–187. [Google Scholar] [CrossRef]
- Scaloni, A.; Dalla Serra, M.; Amodeo, P.; Mannina, L.; Vitale, R.M.; Segre, A.L.; Cruciani, O.; Lodovichetti, F.; Greco, M.L.; Fiore, A.; et al. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: Cormycin A. Biochem. J. 2004, 384, 25–36. [Google Scholar] [CrossRef]
- Emanuele, M.C.; Scaloni, A.; Lavermicocca, P.; Jacobellis, N.S.; Camoni, L.; Di Giorgio, D.; Pucci, P.; Paci, M.; Segre, A.; Ballio, A. Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS Lett. 1998, 433, 317–320. [Google Scholar] [CrossRef]
- Strano, C.P.; Bella, P.; Licciardello, G.; Fiore, A.; Lo Piero, A.R.; Fogliano, V.; Venturi, V.; Catara, V. Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in Nicotiana benthamiana. Mol. Plant Pathol. 2014, 9. [Google Scholar] [CrossRef]
- Risse, D.; Beiderbeck, H.; Taraz, K.; Budzikiewicz, H.; Gustine, D. Bacterial constituents part LXXVII. Corrugatin, a lipopeptide siderophore from Pseudomonas corrugata. Z. Naturforsch. C 1998, 53, 295–304. [Google Scholar]
- Alicata, R.; Ballistreri, A.; Catara, V.; Conte, E.; Di Silvestro, S.; Ferreri, A.; Greco, S.; Guglielmino, S.; Impallomeni, G.; La Porta, S.; et al. Used cooking oils as renewable source for polyhydroxyalkanoates production. In Proceedings of the 3th European Symposium on Biopolymers CIB-CSIC, Madrid, Spain, 24–25 November 2005; p. 35. [Google Scholar]
- Palmeri, R.; Pappalardo, F.; Fragalà, M.; Tomasello, M.; Damigella, A.; Catara, A.F. Polyhydroxyalkanoates (PHAs) production through conversion of glycerol by selected strains of Pseudomonas mediterranea and Pseudomonas corrugata. Chem. Eng. Trans. 2012, 27, 121–126. [Google Scholar]
- Solaiman, D.K.Y.; Ashby, R.D.; Foglia, T.A. Physiological characterization and genetic engineering of Pseudomonas corrugata for medium-chain-length polyhydroxyalkanoates synthesis from triacylglycerols. Curr. Microbiol. 2002, 44, 189–195. [Google Scholar] [CrossRef]
- Bella, P.; Catara, A.; Catara, V.; Conte, E.; Di Silvestro, S.; Ferreri, A.; Greco, S.; Guglielmino, S.; Immirzi, B.; Licciardello, G.; et al. Fermentation Process for the Production of Polyhydroxyalkanoates and the Digestion of Cooked Oils by Strains of Pseudomonas Producing Lipase. Italian Industrial Patent No. RM2005A000190, 20 April 2005. [Google Scholar]
- Samadi, N.; Abadian, N.; Akhavan, A.; Fazeli, M.R.; Tahzibi, A.; Jamalifar, H. Biosurfactant production by the strain isolated from contaminated soil. J. Biol. Sci. 2007, 7, 1266–1269. [Google Scholar]
- Licciardello, G.; Ferraro, R.; Russo, M.; Strozzi, F.; Catara, A.F.; Bella, P.; Catara, V. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion. New Biotechnol. 2017, 37, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Licciardello, G.; Russo, M.; Pappalardo, F.; Fragalà, M.; Catara, A. Genetically Modified Bacteria Producing Mcl-PHAs. Italian Industrial Patent No.15MG37I, 12 May 2015. [Google Scholar]
- Solaiman, D.K.Y.; Ashby, R.D.; Licciardello, G.; Catara, V. Genetic organization of pha gene locus affects phaC expression, poly(hydroxyalkanoate) composition and granule morphology in Pseudomonas corrugata. J. Ind. Microb. Biotech. 2008, 35, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Shantini, K.; Yahya, A.R.; Amirul, A.A. Influence of feeding and controlled dissolved oxygen level on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus sp. USMAA2-4 and its characterization. Appl. Biochem. Biotechnol. 2015, 176, 1315–1334. [Google Scholar] [CrossRef]
- Jiang, X.; Ramsay, J.A.; Ramsay, B.A. Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J. Microb. Methods 2006, 67, 212–219. [Google Scholar] [CrossRef]
- Koller, M.; Niebelschütz, H.; Braunegg, G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng. Life Sci. 2013, 13, 549–562. [Google Scholar] [CrossRef]
- Nicolò, M.S.; Franco, D.; Camarda, V.; Gullace, R.; Rizzo, M.G.; Fragalà, M.; Licciardello, G.; Catara, A.F.; Guglielmino, S.P.P. Integrated microbial process for bioconversion of crude glycerol from biodiesel into biosurfactants and PHAs. Chem. Eng. Trans. 2014, 38, 187–192. [Google Scholar]
- Rizzo, M.G.; Chines, V.; Franco, D.; Nicolò, M.S.; Guglielmino, S.P.P. The role of glutamine in Pseudomonas mediterranea in biotechnological processes. New Biotechnol. 2017, 37, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Fragalà, M.; Palmeri, R.; Ferro, G.; Damigella, A.; Pappalardo, F.; Catara, A.F. Production of mcl-PHAs by Pseudomonas mediterranea conversion of biodiesel-glycerol. In Proceedings of the European Symposium on Biopolymers, Lisbon, Portugal, 7–9 October 2013. [Google Scholar]
- Tsuge, T. Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym. J. 2016, 48, 1051–1057. [Google Scholar] [CrossRef]
- Conte, E.; Catara, V.; Greco, S.; Russo, M.; Alicata, R.; Strano, L.; Lombardo, A.; Di Silvestro, S.; Catara, A. Regulation of polyhydroxyalcanoate synthases (phaC1 and phaC2) gene expression in Pseudomonas corrugata. Appl. Microbiol. Biotechnol. 2005, 72, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.; Mistretta, M.C.; Palermo, S.; Fragalà, M.; Pappalardo, F. Characterization and processability of blends of polylactide acid with a new biodegradable medium-chain-length polyhydroxyalkanoate. J. Polym. Environ. 2015, 23, 478–486. [Google Scholar] [CrossRef]
- Cascone, G.; D’Emilio, A.; Buccellato, E.; Mazzarella, R. New biodegradable materials for greenhouse soil mulching. Acta Hortic. 2008, 801, 283–290. [Google Scholar] [CrossRef]
- Salemi, F.; Lamagna, G.; Coco, V.; Barone, L.G. Preparation and characterization of biodegradable paper coated with blends based on PHA. Acta Hortic. 2008, 801, 203–210. [Google Scholar] [CrossRef]
- Catara, V.; Bella, P.; Greco, S.; Licciardello, G.; Pitman, A.; Arnold, D.L. Cloning and sequencing of Pseudomonas corrugata polyhydroxyalkanoates biosynthesis genes. In Proceedings of the National Biotechnology Congress (CNB7), Catania, Italy, 8–10 September 2004; p. 199. [Google Scholar]
- Bella, P.; Licciardello, G.; Lombardo, A.; Pitman, A.; Arnold, D.L.; Solaiman, D.K.Y.; Catara, V. Cloning and sequencing of Pseudomonas mediterranea PHA locus. In Proceedings of the 4th European Symposium on Biopolymers, Kuşadası, Turkey, 2–4 October 2007; p. 131. [Google Scholar]
- Licciardello, G.; Bella, P.; Devescovi, G.; Strano, C.P.; Catara, V. Draft genome sequence of Pseudomonas mediterranea strain CFBP 5447T, a producer of filmable medium-chain-length polyhydroxyalkanoates. Genome Announc. 2014, 2, e01260-14. [Google Scholar] [CrossRef] [Green Version]
- Licciardello, G.; Jackson, R.W.; Bella, P.; Strano, C.P.; Catara, A.F.; Arnold, D.L.; Venturi, V.; Silby, M.W.; Catara, V. Draft genome sequence of Pseudomonas corrugata, a phytopathogenic bacterium with potential industrial applications. J. Biotechnol. 2014, 17, 65–66. [Google Scholar] [CrossRef]
- Zachow, C.; Müller, H.; Laireiter, C.M.; Tilcher, R.; Berg, G. Complete genome sequence of Pseudomonas corrugata strain RM1-1-4, a stress protecting agent from the rhizosphere of an oilseed rape bait plant. Stand. Genomic Sci. 2017, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Licciardello, G.; Devescovi, G.; Bella, P.; De Gregorio, C.; Catara, A.F.; Gugliemino, S.P.P.; Venturi, V.; Catara, V. Transcriptional analysis of pha genes in Pseudomonas mediterranea CFBP 5447 grown on glycerol. Chem. Eng. Trans. 2014, 38, 289–294. [Google Scholar]
- De Eugenio, L.I.; Escapa, I.F.; Morales, V.; Dinjaski, N.; Galán, B.; García, J.L.; Prieto, M.A. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ. Microbiol. 2010, 12, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Song, C.; Kong, M.; Geng, W.; Wang, Y.; Wang, S. Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl. Microbiol. Biotechnol. 2011, 92, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Chanasit, W.; Hodgson, B.; Sudesh, K.; Umsakul, K. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Biosci. Biotechnol. Biochem. 2016, 80, 1440–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licciardello, G.; Caruso, A.; Bella, P.; Gheleri, R.; Strano, C.P.; Anzalone, A.; Trantas, E.A.; Sarris, P.F.; Almeida, N.F.; Catara, V. The LuxR regulators PcoR and RfiA co-regulate antimicrobial peptide and alginate production in Pseudomonas corrugata. Front. Microbiol. 2018, 9, 521. [Google Scholar] [CrossRef]
- Lombardo, A.; Bella, P.; Licciardello, G.; Palmeri, R.; Catara, V.; Catara, A. Poly(hydroxyalkanoate) synthase genes in Pseudomonads strains, isolation and heterologous expression. J. Biotechnol. 2010, 150, 420–421. [Google Scholar] [CrossRef]
- Hori, K.; Marsudi, S.; Unno, H. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol. Bioeng. 2002, 78, 699–707. [Google Scholar] [CrossRef]
- Wang, Q.; Tappei, R.C.; Zhu, C.; Nomura, T.C. Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non fatty acid feedstocks. Appl. Environ. Microbiol. 2012, 78, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Cortes, A.; Lanz-Landazuri, A.; Garcia-Maldonado, J.Q. Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb. Ecol. 2008, 56, 112–120. [Google Scholar] [CrossRef]
- Luengo, J.M.; García, B.; Sandoval, A.; Naharro, G.; Olivera, E.R. Bioplastics from microorganisms. Curr. Opin. Microbiol. 2003, 6, 251–260. [Google Scholar] [CrossRef]
- Sabirova, J.S.; Ferrer, M.; Lünsdorf, H.; Wray, V.; Kalscheuer, R.; Steinbüchel, A.; Timmis, K.N.; Golyshin, P.N. Mutation in a tesB-Like hydroxyacyl-Coenzyme a-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J. Bacteriol. 2006, 188, 8452–8459. [Google Scholar] [CrossRef] [Green Version]
Carbon Source | Grade | % V:V | Time (h) 1 | P. mediterranea 9.1 | P. corrugata A1 | P. corrugata 388 | References | |||
---|---|---|---|---|---|---|---|---|---|---|
CDW (g/L) | Raw PHA (%) | CDW (g/L) | Raw PHA (%) | CDW (g/L) | Raw PHA (%) | |||||
Glycerol | 15% | 1 | 72 | 3.4 | 50.2 | 4.7 | 50 | 4 | 28.5 | [33] |
≥99% | 3 | 25.3 | 3.5 | 29.4 | 4.2 | 18.7 | ||||
15% | 2 | 72 | 4.8 | 61.6 | 3.5 | 51.5 | 3.8 | 33.6 | ||
≥99% | 3.2 | 26.1 | 3.4 | 30.2 | 3.6 | 15.7 | ||||
15% | 5 | 72 | 4.2 | 38 | 4.1 | 48.5 | 3.2 | 32.1 | ||
≥99% | 3.3 | 21.5 | 4.1 | 22.1 | 2.8 | 14.3 | ||||
Glycerol | 87.5% | 2 | 48 | 3.1 | 16.5 | [13] | ||||
≥99% | 3.3 | 18 | ||||||||
Glycerol | ≥99% | 2 | 66 | 2.9 | 17.9 | 3.1 | 29.4 | [37] | ||
Glycerol | ≥99% | 2 | 66 | 3.6 2 | 38.8 2 | [38] | ||||
Glucose | ≥99% | 0.5 | 72 | 1.5 | 31.3 | [34] | ||||
Oleic acid | ≥99% | 1.6 | 61.8 | |||||||
Oleic acid | ≥99% | 2 | 72 | 3.1 | 24 | [39] | ||||
Glucose | ≥99% | 48 | 1.3 | 2 |
Strain | Carbon Source | Grade | % V:V | Time (h) 1 | Mw (kDa) | PDI | Molar Composition (mol %) | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C6 | C8 | C10 | C12:0 | C12:1 | C12:0 | C14 | C14:1 | ||||||||
Pme 9.1 | Waste fried oil | 2 | 34 | 44 | 14 | 5 | Pappalardo et al., unpublished | ||||||||
Glycerol | 80% | 2 | 1 | 7 | 71 | 8 | 13 | 1 | |||||||
Glycerol | 40% | 2 | 1 | 15 | 43 | 11 | 7 | 24 | |||||||
Glycerol | ≥99% | 2 | 48 | 55.5 | 1.34 | 4.2 | 17.0 | 60.8 | 1.1 | 11.2 | 5.7 | - | - | [13] | |
87.5% | 63.2 | 1.38 | 0.1 | 9.3 | 66.6 | 1.5 | 14.8 | 7.7 | - | - | |||||
Glycerol | ≥99% | 2 | 66 | 4 | 17 | 60 | 7 | 12 | 0.4 | [37] | |||||
Pme 9.1 VVC1GI | Glycerol | ≥99% | 0.9 | 13.5 | 57.5 | 12.8 | 11.8 | 3.7 | [38] | ||||||
Pco A1 | Glucose | 0.5 | 72 | 125.8 | 2.4 | 2 | 14 | 52 | 11 | 17 | 0.4 | 3.6 | [47] | ||
Oleic acid | 159.0 | 1.5 | 10 | 48 | 28 | 8 | 6 | ||||||||
Na octanoate | 183.2 | 2.1 | 11 | 82 | 7 | ||||||||||
Glycerol | ≥99% | 2 | 66 | 2 | 12 | 53 | 14 | 17 | 5 | [37] | |||||
Pco 388 | Oleic acid | 0.5 | 72 | 735 | 4.1 | 47 | 24.5 | 16.5 | [8] | ||||||
Glucose | 0.5 | 72 | nd | 2 | 19 | 56 | 11 | 2 | 9 | [34] | |||||
Oleic acid | nd | 5 | 37 | 33 | 12 | 2 | 12 | ||||||||
Na octanoate | 0.5 | 168 | 114 | 1.8 | 7 | 82 | 11 | [47] | |||||||
Oleic acid | 2 | - | 5 | 54 | 20 | 5 | 15 | [39] | |||||||
Glucose | - | 2 | 28 | 35 | 9 | 14 | 9 |
Bacterial Strain | Carbon Source | % V/V | Time (h) | Detection Method | PhaC1 | PhaC2 | PhaI | Alg Genes | Operon | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Pco 388 | Oleic acid | 2 | 48 | Real-time PCR 1 | 1.2 | 1.4 | nt | nt | nt | [39] |
Pco 388 clone XI 32-1 | 6.6 | 4.7 | nt | nt | nt | |||||
Pco 388 clone XI 32-4 | 7.0 | 5.4 | nt | nt | nt | |||||
Pco 388 | Glucose | 2 | 5.6 | No change | nt | nt | nt | |||
Pco 388 clone XI 32-1 | 6.3 | No change | nt | nt | nt | |||||
Pco 388 clone XI 32-4 | 8.2 | No change | nt | nt | nt | |||||
Pco A1 | Oleic acid | 0.5 | 48 72 | Real-time PCR 1 | 6.8 10.5 | No change | nt | nt | NO | [47] |
Pco 388 | 48 72 | 2.7 2 | No change | nt | nt | NO | ||||
Pco A1 | Glucose | 2 | 72 | 6.2 | 3.5 | nt | nt | NO | ||
Pco 388 | 72 | 3.8 | 3 | nt | nt | NO | ||||
Pme 9.1 | Glycerol | 2 | 24 48 | β-gal 2 | 420 U 300 U | 340 U 400 U | 2200 U 7000 U | nt | PhaC1ZC2D PhaIF | [56] |
Pme 9.1 VVD (phaD-) | 24 48 | β-gal | 140 U 300 U | 350 U 400 U | 45 U 45 U | nt | PhaC1ZC2D PhaIF | |||
Pme 9.1 | Glycerol | 2 | 48 | RNA-Seq 3 | No change | No change | No change | 5.53–2.32 | nt | [37] |
Pco A1 | 48 | RNA-Seq | No change | No change | No change | nt |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licciardello, G.; Catara, A.F.; Catara, V. Production of Polyhydroxyalkanoates and Extracellular Products Using Pseudomonas Corrugata and P. Mediterranea: A Review. Bioengineering 2019, 6, 105. https://doi.org/10.3390/bioengineering6040105
Licciardello G, Catara AF, Catara V. Production of Polyhydroxyalkanoates and Extracellular Products Using Pseudomonas Corrugata and P. Mediterranea: A Review. Bioengineering. 2019; 6(4):105. https://doi.org/10.3390/bioengineering6040105
Chicago/Turabian StyleLicciardello, Grazia, Antonino F. Catara, and Vittoria Catara. 2019. "Production of Polyhydroxyalkanoates and Extracellular Products Using Pseudomonas Corrugata and P. Mediterranea: A Review" Bioengineering 6, no. 4: 105. https://doi.org/10.3390/bioengineering6040105
APA StyleLicciardello, G., Catara, A. F., & Catara, V. (2019). Production of Polyhydroxyalkanoates and Extracellular Products Using Pseudomonas Corrugata and P. Mediterranea: A Review. Bioengineering, 6(4), 105. https://doi.org/10.3390/bioengineering6040105